Geobacillus and Anoxybacillus Spp. from Terrestrial Geothermal Springs 5 Worldwide: Diversity and Biotechnological Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide
microorganisms Article Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide Kelly J. Hidalgo 1,2,* , Isabel N. Sierra-Garcia 3 , German Zafra 4 and Valéria M. de Oliveira 1 1 Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas–UNICAMP, Av. Alexandre Cazellato 999, 13148-218 Paulínia, Brazil; [email protected] 2 Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária, 13083-862 Campinas, Brazil 3 Biology Department & CESAM, University of Aveiro, Aveiro, Portugal, Campus de Santiago, Avenida João Jacinto de Magalhães, 3810-193 Aveiro, Portugal; [email protected] 4 Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Universidad Industrial de Santander, Cra 27 calle 9, 680002 Bucaramanga, Colombia; [email protected] * Correspondence: [email protected]; Tel.: +55-19981721510 Abstract: Microorganisms inhabiting subsurface petroleum reservoirs are key players in biochemical transformations. The interactions of microbial communities in these environments are highly complex and still poorly understood. This work aimed to assess publicly available metagenomes from oil reservoirs and implement a robust pipeline of genome-resolved metagenomics to decipher metabolic and taxonomic profiles of petroleum reservoirs worldwide. Analysis of 301.2 Gb of metagenomic information derived from heavily flooded petroleum reservoirs in China and Alaska to non-flooded petroleum reservoirs in Brazil enabled us to reconstruct 148 metagenome-assembled genomes (MAGs) of high and medium quality. At the phylum level, 74% of MAGs belonged to bacteria and 26% to archaea. The profiles of these MAGs were related to the physicochemical parameters and recovery management applied. -
Identification and Sequence Analyses of Novel Lipase Encoding Novel
Shahinyan et al. BMC Microbiology (2017) 17:103 DOI 10.1186/s12866-017-1016-4 RESEARCH ARTICLE Open Access Identification and sequence analyses of novel lipase encoding novel thermophillic bacilli isolated from Armenian geothermal springs Grigor Shahinyan1, Armine Margaryan1,2, Hovik Panosyan2 and Armen Trchounian1,2* Abstract Background: Among the huge diversity of thermophilic bacteria mainly bacilli have been reported as active thermostable lipase producers. Geothermal springs serve as the main source for isolation of thermostable lipase producing bacilli. Thermostable lipolytic enzymes, functioning in the harsh conditions, have promising applications in processing of organic chemicals, detergent formulation, synthesis of biosurfactants, pharmaceutical processing etc. Results: In order to study the distribution of lipase-producing thermophilic bacilli and their specific lipase protein primary structures, three lipase producers from different genera were isolated from mesothermal (27.5–70 °C) springs distributed on the territory of Armenia and Nagorno Karabakh. Based on phenotypic characteristics and 16S rRNA gene sequencing the isolates were identified as Geobacillus sp., Bacillus licheniformis and Anoxibacillus flavithermus strains. The lipase genes of isolates were sequenced by using initially designed primer sets. Multiple alignments generated from primary structures of the lipase proteins and annotated lipase protein sequences, conserved regions analysis and amino acid composition have illustrated the similarity (98–99%) of the lipases with true lipases (family I) and GDSL esterase family (family II). A conserved sequence block that determines the thermostability has been identified in the multiple alignments of the lipase proteins. Conclusions: The results are spreading light on the lipase producing bacilli distribution in geothermal springs in Armenia and Nagorno Karabakh. -
A Broadly Distributed Toxin Family Mediates Contact-Dependent Antagonism Between Gram-Positive Bacteria
1 A Broadly Distributed Toxin Family Mediates Contact-Dependent 2 Antagonism Between Gram-positive Bacteria 3 John C. Whitney1,†, S. Brook Peterson1, Jungyun Kim1, Manuel Pazos2, Adrian J. 4 Verster3, Matthew C. Radey1, Hemantha D. Kulasekara1, Mary Q. Ching1, Nathan P. 5 Bullen4,5, Diane Bryant6, Young Ah Goo7, Michael G. Surette4,5,8, Elhanan 6 Borenstein3,9,10, Waldemar Vollmer2 and Joseph D. Mougous1,11,* 7 1Department of Microbiology, School of Medicine, University of Washington, Seattle, 8 WA 98195, USA 9 2Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, 10 Newcastle University, Newcastle upon Tyne, NE2 4AX, UK 11 3Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA 12 4Michael DeGroote Institute for Infectious Disease Research, McMaster University, 13 Hamilton, ON, L8S 4K1, Canada 14 5Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, 15 ON, L8S 4K1, Canada 16 6Experimental Systems Group, Advanced Light Source, Berkeley, CA 94720, USA 17 7Northwestern Proteomics Core Facility, Northwestern University, Chicago, IL 60611, 18 USA 19 8Department of Medicine, Farncombe Family Digestive Health Research Institute, 20 McMaster University, Hamilton, ON, L8S 4K1, Canada 21 9Department of Computer Science and Engineering, University of Washington, Seattle, 22 WA 98195, USA 23 10Santa Fe Institute, Santa Fe, NM 87501, USA 24 11Howard Hughes Medical Institute, School of Medicine, University of Washington, 25 Seattle, WA 98195, USA 26 † Present address: Department of Biochemistry and Biomedical Sciences, McMaster 27 University, Hamilton, ON, L8S 4K1, Canada 28 * To whom correspondence should be addressed: J.D.M. 29 Email – [email protected] 30 Telephone – (+1) 206-685-7742 1 31 Abstract 32 The Firmicutes are a phylum of bacteria that dominate numerous polymicrobial 33 habitats of importance to human health and industry. -
Screening D'activités Hydrolytiques
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MENTOURI-CONSTANTINE Institut de la Nutrition, de l’Alimentation et des Technologies Agro-alimentaires (INATAA) Département de Biotechnologie alimentaire N° d’ordre : Série : MEMOIRE Présenté en vue de l’obtention du diplôme de Magister en Sciences Alimentaires Option : Biotechnologie Alimentaire Screening d’activités hydrolytiques extracellulaires chez des souches bactériennes aérobies thermophiles isolées à partir de sources thermales terrestres de l’Est algérien Présenté par GOMRI Mohamed Amine Devant le jury composé de : Président : Pr. AGLI A. Professeur INATAA, UMC Rapporteur : Dr. KHARROUB K. Docteur INATAA, UMC Examinateurs : Pr. KACEM CHAOUACHE N. Professeur Faculté des SNV, UMC Dr. BARKAT M. Docteur INATAA, UMC Année universitaire 2011-2012 Remerciements Je rends grâce à Dieu, le miséricordieux, le tout puissant, pour ce miracle appelé vie, que sa lumière nous guide vers lui, et que son nom soit l’élixir de nos peines et douleurs. Tout d’abord, je tiens à remercier Madame KHARROUB Karima pour m’avoir donné la chance de travailler sous sa direction, pour sa confiance en moi et ses encouragements mais surtout pour sa générosité dans le travail, qu’elle trouve en ces mots toute ma gratitude. Mes remerciements sont adressés aux membres du Jury qui ont pris sur leur temps et ont bien voulu accepter de juger ce modeste travail : Mr le professeur AGLI qui m’a fait l’honneur de présider ce Jury Mr le professeur KACEM-CHAOUCH E qui a eu l’amabilité de participer à ce Jury Mme BARKAT qui a bien voulu examiner ce travail Je tiens à remercier Mlle AYAD Ryma, Mesdames ZOUBIRI Lamia et DJABALI Saliha, Messieurs ZOUAOUI Nassim, BOUGUERRA Ali, SLIMANI Zakaria et FARHAT Chouaib pour leur aide inestimable, mais aussi pour leur amitié précieuse, qu’ils trouvent ici les plus sincères marques d’affection. -
Genome Sequence of Anoxybacillus Ayderensis AB04T Isolated from the Ayder Hot Spring in Turkey
Belduz et al. Standards in Genomic Sciences (2015) 10:70 DOI 10.1186/s40793-015-0065-2 SHORT GENOME REPORT Open Access Genome sequence of Anoxybacillus ayderensis AB04T isolated from the Ayder hot spring in Turkey Ali Osman Belduz1, Sabriye Canakci1, Kok-Gan Chan2, Ummirul Mukminin Kahar3, Chia Sing Chan3, Amira Suriaty Yaakop3 and Kian Mau Goh3* Abstract Species of Anoxybacillus are thermophiles and, therefore, their enzymes are suitable for many biotechnological applications. Anoxybacillus ayderensis AB04T (= NCIMB 13972T = NCCB 100050T) was isolated from the Ayder hot spring in Rize, Turkey, and is one of the earliest described Anoxybacillus type strains. The present work reports the cellular features of A. ayderensis AB04T, together with a high-quality draft genome sequence and its annotation. The genome is 2,832,347 bp long (74 contigs) and contains 2,895 protein-coding sequences and 103 RNA genes including 14 rRNAs, 88 tRNAs, and 1 tmRNA. Based on the genome annotation of strain AB04T, we identified genes encoding various glycoside hydrolases that are important for carbohydrate-related industries, which we compared with those of other, sequenced Anoxybacillus spp. Insights into under-explored industrially applicable enzymes and the possible applications of strain AB04T were also described. Keywords: Anoxybacillus, Bacillaceae, Bacillus, Geobacillus, Glycoside hydrolase, Thermophile Introduction Almost all members of the Bacillaceae are excellent The family Bacillaceae [1, 2] is one of the largest industrial enzyme producers [4, 14, 15]. Members of the bacterial families and currently consists of 57 genera genus Anoxybacillus exhibit the additional advantage of [3]. The Bacillaceae are either rod-shaped (bacilli) or thermostability compared to the mesophilic Bacillaceae.It spherical (cocci) Gram-positive bacteria, the majority has been reported that enzymes from Anoxybacillus spp. -
Phylogenetic Study of Thermophilic Genera Anoxybacillus, Geobacillus
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.449068; this version posted June 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 bioRxiv 2 Article Type: Research article. 3 Article Title: Phylogenetic study of thermophilic genera Anoxybacillus, Geobacillus, 4 Parageobacillus, and proposal of a new classification Quasigeobacillus 5 gen. nov. 6 Authors: Talamantes-Becerra, Berenice1-2*; Carling, Jason2; Blom, Jochen3; 7 Georges, Arthur1 8 Affiliation: 1Institute for Applied Ecology, University of Canberra ACT 2601 9 Australia. 10 2Diversity Arrays Technology Pty Ltd, Bruce, Canberra ACT 2617 11 Australia. 12 3Bioinformatics & Systems Biology, Justus-Liebig-University Giessen, 13 35392 Glessen, Hesse, Germany 14 *Correspondence: Berenice Talamantes Becerra, Institute for Applied Ecology, 15 University of Canberra ACT 2601 Australia. Email: 16 [email protected] 17 Running head: Phylogenetic study of thermophilic bacteria. 18 Word Count: Abstract: 178 Main body: 3709 References: n= 60 19 20 21 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.449068; this version posted June 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 23 Abstract 24 A phylogenetic study of Anoxybacillus, Geobacillus and Parageobacillus was performed using 25 publicly available whole genome sequences. A total of 113 genomes were selected for 26 phylogenomic metrics including calculation of Average Nucleotide Identity (ANI) and 27 Average Amino acid Identity (AAI), and a maximum likelihood tree was built from alignment 28 of a set of 662 orthologous core genes. -
Genome, Proteome and Physiology of the Thermophilic Bacterium Anoxybacillus Flavithermus
Open Access Research2008SawetVolume al. 9, Issue 11, Article R161 Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1 Jimmy H Saw¤*‡‡, Bruce W Mountain¤†, Lu Feng¤‡§¶, Marina V Omelchenko¤¥, Shaobin Hou¤#, Jennifer A Saito*, Matthew B Stott†, Dan Li‡§¶, Guang Zhao‡§¶, Junli Wu‡§¶, Michael Y Galperin¥, Eugene V Koonin¥, Kira S Makarova¥, Yuri I Wolf¥, Daniel J Rigden**, Peter F Dunfield††, Lei Wang‡§¶ and Maqsudul Alam*# Addresses: *Department of Microbiology, University of Hawai'i, 2538 The Mall, Honolulu, HI 96822, USA. †GNS Science, Extremophile Research Group, 3352 Taupo, New Zealand. ‡TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China. §Tianjin Research Center for Functional Genomics and Biochip, Tianjin 300457, PR China. ¶Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, PR China. ¥National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA. #Advance Studies in Genomics, Proteomics and Bioinformatics, College of Natural Sciences, University of Hawai'i, Honolulu, HI 96822, USA. **School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK. ††Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada. ‡‡Current address: Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA. ¤ These authors contributed equally to this work. Correspondence: Lei Wang. Email: [email protected]. Maqsudul Alam. Email: [email protected] Published: 17 November 2008 Received: 12 June 2008 Revised: 8 October 2008 Genome Biology 2008, 9:R161 (doi:10.1186/gb-2008-9-11-r161) Accepted: 17 November 2008 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2008/9/11/R161 © 2008 Saw et al.; licensee BioMed Central Ltd. -
Complete Genome Sequence of Geobacillus Thermoglucosidasius
Brumm et al. Standards in Genomic Sciences (2015) 10:73 DOI 10.1186/s40793-015-0031-z SHORT GENOME REPORT Open Access Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park Phillip J. Brumm1,3*, Miriam L. Land2 and David A. Mead1,3 Abstract Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). The genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G. thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. This cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. One plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins. Keywords: Geobacillus thermoglucosidasius C56-YS93, Hot springs, Biomass, Xylan, Prophage Introduction new enzyme-producing aerobic organisms from Yellow- Identification of new organisms that produce biomass- stone hot springs. degrading enzymes is of considerable interest. -
Isolation and Identification of Thermophilic Amylolytic Bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 22, Number 6, June 2021 E-ISSN: 2085-4722 Pages: 3326-3332 DOI: 10.13057/biodiv/d220638 Isolation and identification of thermophilic amylolytic bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia ELVY LIKE GINTING1,♥, LETHA L. WANTANIA2, EMMA MAUREN MOKO3, REINY A. TUMBOL1, MAYSE S. SIBY1, STENLY WULLUR1 1Faculty of Fisheries and Marine Science, Universitas Sam Ratulangi. Jl. Kampus Unsrat, Manado 95115, North Sulawesi, Indonesia. Tel./fax.: +62-431-868027, email: [email protected] 2Faculty of Mathematics and Natural Sciences, Bonn University. D-53012 Bonn, Germany 3Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Manado. Jl. Raya Tondano, Minahasa 95618, North Sulawesi, Indonesia Manuscript received: 1 April 2021. Revision accepted: 24 May 2021. Abstract. Ginting EL, Wantania LL, Moko EM, Tumbol RA, Siby MS, Wulur S. 2021. Isolation and identification of thermophilic amylolytic bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia. Biodiversitas 22: 3326-3332. The aims of the research were to isolate and identify the amylase-producing thermophilic bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia. The bacteria were characterized based on the colony and cell morphology and subsequently screened for their amylase activities. The bacterial isolates were identified based on 16S rRNA gene sequences. There were 12 thermophilic bacteria isolates from Likupang Marine Hydrothermal that were able to produce amylase. Two selected isolates (L3 and L9) had an amylolytic index value in the range of 3.04-3.52 at 55oC. The colonies of L3 and L9 are circular, and they are Gram positive, rod-shaped, and motile bacteria. -
ABSTRACT MARKS, TIMOTHY JAMES. Development of a Genetic Toolbox for Geobacillus Kaustophilus Using Novel Bacteriophages GBK1
ABSTRACT MARKS, TIMOTHY JAMES. Development of a Genetic Toolbox for Geobacillus kaustophilus using Novel Bacteriophages GBK1 and GBK2. (Under the direction of Dr. Paul Hamilton). Thermophiles are microorganisms that are capable of growth at temperatures above 45 ˚C. Enzymes from thermophiles are often functional at these higher temperatures, which is of interest from an industrial standpoint because many processes require steps at elevated temperatures. Thermophilic organisms can be used as whole-cell biocatalysts in processes such as bioremediation and bioconversion. Some thermophilic organisms, like Clostridium thermocellum, are well-studied and have a variety of tools available for genetic manipulation. Other thermophilic organisms, like Geobacillus spp., have been characterized more recently and there is a lack of genetic manipulation tools for these organisms that needs to be addressed in order to be viable hosts for industrial processes. Geobacillus spp. are thermophilic (optimal growth between 37 ˚C and 80 ˚C), Gram- positive, facultatively anaerobic bacteria that have industrial potential as whole-cell biocatalysts as well as producers of thermophilic enzymes of interest, including DNA polymerases, lipases, and amylases. Geobacillus spp. are also capable of growth on a variety of C5 and C6 sugars and they can survive unfavorable conditions due to their ability to form endospores. There are challenges with working with Geobacillus spp. as a host, including difficulties in DNA uptake due to the thick peptidoglycan layer and restriction-modification systems present in several host strains that degrade exogenous DNA. Additionally, most antibiotics are not thermostable at ideal growth temperatures for geobacilli and most antibiotic resistance markers lack thermostability. In this research, two novel bacteriophages (named GBK1 and GBK2) were isolated, sequenced, annotated, and characterized. -
Extremophiles, a Nifty Tool to Face Environmental Pollution: from Exploitation of Metabolism to Genome Engineering
International Journal of Environmental Research and Public Health Review Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering Giovanni Gallo 1,2 , Rosanna Puopolo 1 , Miriam Carbonaro 1, Emanuela Maresca 1 and Gabriella Fiorentino 1,2,* 1 Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; [email protected] (G.G.); [email protected] (R.P.); [email protected] (M.C.); [email protected] (E.M.) 2 Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy * Correspondence: fi[email protected] Abstract: Extremophiles are microorganisms that populate habitats considered inhospitable from an anthropocentric point of view and are able to tolerate harsh conditions such as high temperatures, extreme pHs, high concentrations of salts, toxic organic substances, and/or heavy metals. These microorganisms have been broadly studied in the last 30 years and represent precious sources of biomolecules and bioprocesses for many biotechnological applications; in this context, scientific efforts have been focused on the employment of extremophilic microbes and their metabolic pathways to develop biomonitoring and bioremediation strategies to face environmental pollution, as well as to improve biorefineries for the conversion of biomasses into various chemical compounds. This review gives an overview on the peculiar metabolic features of certain -
Geobacillus and Hydrocarbon Utilization R
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ulster University's Research Portal 21 The Genus Geobacillus and Hydrocarbon Utilization R. Marchant . I. M. Banat* School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, Northern Ireland, UK *[email protected] 1 Introduction . .................................................................... 1888 2 The Degradation of Hydrocarbons by Geobacilli . ................................ 1889 3 The Molecular Basis of Thermophily . ............................................. 1891 4 Growth and Survival of Geobacilli Under Different Conditions . ......... 1892 5 Distribution and Ecology of Geobacilli ............................................. 1894 6 Potential Commercial Exploitation and Research Needs . ................... 1894 K. N. Timmis (ed.), Handbook of Hydrocarbon and Lipid Microbiology, DOI 10.1007/978-3-540-77587-4_138, # Springer-Verlag Berlin Heidelberg, 2010 1888 21 The Genus Geobacillus and Hydrocarbon Utilization Abstract: The members of the Gram-positive endospore-forming bacteria that made up the genus Bacillus have been gradually subdivided, during the last few years, into a number of new genera such as Alicyclobacillus, Aneuribacillus, Brevibacillus, Gracilibacillus, Paenibacillus, Salibacillus, Ureibacillus, and Virgibacillus. Nazina et al. in 2001 created the genus Geobacillus based around Bacillus (now Geobacillus) stearothermophilus DSM22 as the type strain. The description included two new species of hydrocarbon-oxidizing bacteria isolated from high- temperature oilfields, and the transfer of six members of genetic group 5 thermophilic species of Bacillus to the new genus. Other additions followed and, most of these species, shared the ability to grow at elevated temperatures and degrade hydrocarbons. The taxonomy of geoba- cilli, hydrocarbon degradation, molecular basis of thermophily, survival, and ecological roles in the environment and possible exploitation potential will be reviewed in this chapter.