BMC Evolutionary Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review of Southern Iraq Herpetofauna
Vol. 3 (1): 61-71, 2019 A Review of Southern Iraq Herpetofauna Nadir A. Salman Mazaya University College, Dhi Qar, Iraq *Corresponding author: [email protected] Abstract: The present review discussed the species diversity of herpetofauna in southern Iraq due to their scientific and national interests. The review includes a historical record for the herpetofaunal studies in Iraq since the earlier investigations of the 1920s and 1950s along with the more recent taxonomic trials in the following years. It appeared that, little is known about Iraqi herpetofauna, and no comprehensive checklist has been done for these species. So far, 96 species of reptiles and amphibians have been recorded from Iraq, but only a relatively small proportion of them occur in the southern marshes. The marshes act as key habitat for globally endangered species and as a potential for as yet unexplored amphibian and reptile diversity. Despite the lack of precise localities, the tree frog Hyla savignyi, the marsh frog Pelophylax ridibunda and the green toad Bufo viridis are found in the marshes. Common reptiles in the marshes include the Caspian terrapin (Clemmys caspia), the soft-shell turtle (Trionyx euphraticus), the Euphrates softshell turtle (Rafetus euphraticus), geckos of the genus Hemidactylus, two species of skinks (Trachylepis aurata and Mabuya vittata) and a variety of snakes of the genus Coluber, the spotted sand boa (Eryx jaculus), tessellated water snake (Natrix tessellata) and Gray's desert racer (Coluber ventromaculatus). More recently, a new record for the keeled gecko, Cyrtopodion scabrum and the saw-scaled viper (Echis carinatus sochureki) was reported. The IUCN Red List includes six terrestrial and six aquatic amphibian species. -
CBD Strategy and Action Plan
Biological Diversity of Tajikistan 1.2.2. Specific diversity For thousands of years, people of Tajiki- stan lived in harmony with the natural diversity of flora and fauna. In the process of historical de- velopment, they created many new forms of food, medicine, and forage crops, and domestic animals, promoted their conservation, thus en- riching the natural biodiversity. The recent cen- tury was marked by an increased human nega- tive impact on biodiversity, due to the population Ruderal-degraded ecosystems growth and active land mastering. The conservation of vegetation biodiver- Ruderal ecosystems of the foothills are sity in the mountains prevents the fertile soil generally represented by one species open plant layer from erosion and destruction by mudflows, communities: caper (Capparis spinosa), frag- and regulates groundwater formation. ments of wall barley (Hordeum leporinum), an- nual saltworts (Salsola pestifera, S.turkestanica, A. Vegetation world S.forcipitata), and camel’s thorn (Alhagi kirghi- The vegetation world is represented by a sorum). great genetic and environmental diversity, and a Ruderal communities of the low-mountain unique specific diversity; it includes 9771 species zone are represented by Cynodon dactilon, Pro- and 20 formations. sopis farcta, cousinia (Cousinia Olgae, The processes of xerophytization, C.polycephala, C.ambigens, C.dichromata, ephemerization, mesophyllization, cryophytiza- C.microcarpa, C.radians, C.pseudoarctium, etc.), tion, and migration processes in Tajikistan and forbs. caused an extensive formation of flora species Licorice, together with reed (Saccharum and forms. This resulted in the appearance of spontaneum) and camel’s thorn (Alhagi kirghi- numerous vicarious plants, altitudinal and eco- sorum), are formed after cuttings in the forest logical vicariants that considerably enriched the ecosystem zone. -
An Overview and Checklist of the Native and Alien Herpetofauna of the United Arab Emirates
Herpetological Conservation and Biology 5(3):529–536. Herpetological Conservation and Biology Symposium at the 6th World Congress of Herpetology. AN OVERVIEW AND CHECKLIST OF THE NATIVE AND ALIEN HERPETOFAUNA OF THE UNITED ARAB EMIRATES 1 1 2 PRITPAL S. SOORAE , MYYAS AL QUARQAZ , AND ANDREW S. GARDNER 1Environment Agency-ABU DHABI, P.O. Box 45553, Abu Dhabi, United Arab Emirates, e-mail: [email protected] 2Natural Science and Public Health, College of Arts and Sciences, Zayed University, P.O. Box 4783, Abu Dhabi, United Arab Emirates Abstract.—This paper provides an updated checklist of the United Arab Emirates (UAE) native and alien herpetofauna. The UAE, while largely a desert country with a hyper-arid climate, also has a range of more mesic habitats such as islands, mountains, and wadis. As such it has a diverse native herpetofauna of at least 72 species as follows: two amphibian species (Bufonidae), five marine turtle species (Cheloniidae [four] and Dermochelyidae [one]), 42 lizard species (Agamidae [six], Gekkonidae [19], Lacertidae [10], Scincidae [six], and Varanidae [one]), a single amphisbaenian, and 22 snake species (Leptotyphlopidae [one], Boidae [one], Colubridae [seven], Hydrophiidae [nine], and Viperidae [four]). Additionally, we recorded at least eight alien species, although only the Brahminy Blind Snake (Ramphotyplops braminus) appears to have become naturalized. We also list legislation and international conventions pertinent to the herpetofauna. Key Words.— amphibians; checklist; invasive; reptiles; United Arab Emirates INTRODUCTION (Arnold 1984, 1986; Balletto et al. 1985; Gasperetti 1988; Leviton et al. 1992; Gasperetti et al. 1993; Egan The United Arab Emirates (UAE) is a federation of 2007). -
Oman UAE & Arabian Peninsula 5
©Lonely Planet Publications Pty Ltd 467 Behind the Scenes SEND US YOUR FEEDBACK We love to hear from travellers – your comments keep us on our toes and help make our books better. Our well-travelled team reads every word on what you loved or loathed about this book. Although we cannot reply individually to your submissions, we always guarantee that your feed- back goes straight to the appropriate authors, in time for the next edition. Each person who sends us information is thanked in the next edition – the most useful submissions are rewarded with a selection of digital PDF chapters. Visit lonelyplanet.com/contact to submit your updates and suggestions or to ask for help. Our award-winning website also features inspirational travel stories, news and discussions. Note: We may edit, reproduce and incorporate your comments in Lonely Planet products such as guidebooks, websites and digital products, so let us know if you don’t want your comments reproduced or your name acknowledged. For a copy of our privacy policy visit lonelyplanet.com/ privacy. Kuwaitis and Bahrainis were generous with OUR READERS their time and unfailingly patient with my Many thanks to the travellers who used questions. To Jan – much strength to you the last edition and wrote to us with help- in the days (and hopefully journeys) that ful hints, useful advice and interesting lie ahead. Special, heartfelt thanks to Mari- anecdotes: na, Carlota and Valentina for enduring my Hao Yan, Jens Riiis, Johann Schelesnak, Jonas absences again and again and welcoming me Wernli, Margret van Irsel, Nicole Smoot, Peter home with such love. -
Biodiversity Profile of Afghanistan
NEPA Biodiversity Profile of Afghanistan An Output of the National Capacity Needs Self-Assessment for Global Environment Management (NCSA) for Afghanistan June 2008 United Nations Environment Programme Post-Conflict and Disaster Management Branch First published in Kabul in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme. This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. United Nations Environment Programme Darulaman Kabul, Afghanistan Tel: +93 (0)799 382 571 E-mail: [email protected] Web: http://www.unep.org DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP, or contributory organizations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP or contributory organizations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. Unless otherwise credited, all the photos in this publication have been taken by the UNEP staff. Design and Layout: Rachel Dolores -
Systematics and Biogeography of Stenodactylus Geckos
Metallinou et al. BMC Evolutionary Biology 2012, 12:258 http://www.biomedcentral.com/1471-2148/12/258 RESEARCH ARTICLE Open Access Conquering the Sahara and Arabian deserts: systematics and biogeography of Stenodactylus geckos (Reptilia: Gekkonidae) Margarita Metallinou1, Edwin Nicholas Arnold2, Pierre-André Crochet3, Philippe Geniez4, José Carlos Brito5, Petros Lymberakis6, Sherif Baha El Din7, Roberto Sindaco8, Michael Robinson9 and Salvador Carranza1* Abstract Background: The evolutionary history of the biota of North Africa and Arabia is inextricably tied to the complex geological and climatic evolution that gave rise to the prevalent deserts of these areas. Reptiles constitute an exemplary group in the study of the arid environments with numerous well-adapted members, while recent studies using reptiles as models have unveiled interesting biogeographical and diversification patterns. In this study, we include 207 specimens belonging to all 12 recognized species of the genus Stenodactylus. Molecular phylogenies inferred using two mitochondrial (12S rRNA and 16S rRNA) and two nuclear (c-mos and RAG-2) markers are employed to obtain a robust time-calibrated phylogeny, as the base to investigate the inter- and intraspecific relationships and to elucidate the biogeographical history of Stenodactylus, a genus with a large distribution range including the arid and hyper-arid areas of North Africa and Arabia. Results: The phylogenetic analyses of molecular data reveal the existence of three major clades within the genus Stenodactylus, which is supported by previous studies based on morphology. Estimated divergence times between clades and sub-clades are shown to correlate with major geological events of the region, the most important of which is the opening of the Red Sea, while climatic instability in the Miocene is hypothesized to have triggered diversification. -
Ecological Consequences Artificial Night Lighting
Rich Longcore ECOLOGY Advance praise for Ecological Consequences of Artificial Night Lighting E c Ecological Consequences “As a kid, I spent many a night under streetlamps looking for toads and bugs, or o l simply watching the bats. The two dozen experts who wrote this text still do. This o of isis aa definitive,definitive, readable,readable, comprehensivecomprehensive reviewreview ofof howhow artificialartificial nightnight lightinglighting affectsaffects g animals and plants. The reader learns about possible and definite effects of i animals and plants. The reader learns about possible and definite effects of c Artificial Night Lighting photopollution, illustrated with important examples of how to mitigate these effects a on species ranging from sea turtles to moths. Each section is introduced by a l delightful vignette that sends you rushing back to your own nighttime adventures, C be they chasing fireflies or grabbing frogs.” o n —JOHN M. MARZLUFF,, DenmanDenman ProfessorProfessor ofof SustainableSustainable ResourceResource Sciences,Sciences, s College of Forest Resources, University of Washington e q “This book is that rare phenomenon, one that provides us with a unique, relevant, and u seminal contribution to our knowledge, examining the physiological, behavioral, e n reproductive, community,community, and other ecological effectseffects of light pollution. It will c enhance our ability to mitigate this ominous envirenvironmentalonmental alteration thrthroughough mormoree e conscious and effective design of the built environment.” -
Comparative Study of the Osteology and Locomotion of Some Reptilian Species
International Journal Of Biology and Biological Sciences Vol. 2(3), pp. 040-058, March 2013 Available online at http://academeresearchjournals.org/journal/ijbbs ISSN 2327-3062 ©2013 Academe Research Journals Full Length Research Paper Comparative study of the osteology and locomotion of some reptilian species Ahlam M. El-Bakry2*, Ahmed M. Abdeen1 and Rasha E. Abo-Eleneen2 1Department of Zoology, Faculty of Science, Mansoura University, Egypt. 2 Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt. Accepted 31 January, 2013 The aim of this study is to show the osteological characters of the fore- and hind-limbs and the locomotion features in some reptilian species: Laudakia stellio, Hemidactylus turcicus, Acanthodatylus scutellatus, Chalcides ocellatus, Chamaeleo chamaeleon, collected from different localities from Egypt desert and Varanus griseus from lake Nassir in Egypt. In the studied species, the fore- and hind-feet show wide range of variations and modifications as they play very important roles in the process of jumping, climbing and digging which suit their habitats and their mode of life. The skeletal elements of the hand and foot exhibit several features reflecting the specialized methods of locomotion, and are related to the remarkable adaptations. Locomotion is a fundamental skill for animals. The animals of the present studies can take various forms including swimming, walking as well as some more idiosyncratic gaits such as hopping and burrowing. Key words: Lizards, osteology, limbs, locomotion. INTRODUCTION In vertebrates, the appendicular skeleton provides (Robinson, 1975). In the markedly asymmetrical foot of leverage for locomotion and support on land (Alexander, most lizards, digits one to four of the pes are essentially 1994). -
OMAN DESERT TREK in the Footsteps of Thesiger
OMAN DESERT TREK In the Footsteps of Thesiger This five day journey through the sands of Oman, accompanied by Bedouin and camels, will provide students with the opportunity to learn more about Oman’s Desert Bedouin culture, as they explore the dramatic Sharqiya (Wahiba) sands. During their Desert Journey students will be taught how to bake their own bread under the sand, to grind their own cardoman coffee, and to navigate by the sun and the stars. They’ll return home motivated, refreshed and energised. The ‘In the Footsteps of Thesiger’ journey involves trekking on foot through the desert, using camels for support. Our journey through the sands follows that of an ancient trade route across the sands called the Darb Muqta’a Habl, which translates as ‘the route that cuts between the tallest dunes’, connecting the coast of the Arabian sea to the Eastern Hajar mountains. Gane and Marshall School Challenges Tel: +44(0)1822 600 300 e-mail: [email protected] website: www.schoolchallenges.co.uk Day 0 Depart UK Depart UK on Oman Air, arriving Muscat next day. Day 1 Arriva Oman, Transfer to Sharqiya Sands Fullboard camping On arrival in Muscat, Oman, you will be met by our ground support team and transported south for two hours to the edge of the Sharqiya Sands (Wahiba) desert. The focus of an intensive Royal Geographical Society research expedition in the mid 1980s, Sharqiya Sands On arrival at Sharqiya Sands the group will have a relaxed lunch, before take your first steps into the sands to set up camp for an amazing night under the desert stars. -
Characterization of Five Complete Cyrtodactylus Mitogenome Structures Reveals Low Structural Diversity and Conservation of Repeated Sequences in the Lineage
Characterization of five complete Cyrtodactylus mitogenome structures reveals low structural diversity and conservation of repeated sequences in the lineage Prapatsorn Areesirisuk1,2,3, Narongrit Muangmai3,4, Kirati Kunya5, Worapong Singchat1,3, Siwapech Sillapaprayoon1,3, Sorravis Lapbenjakul1,3, Watcharaporn Thapana1,3,6, Attachai Kantachumpoo1,3,6, Sudarath Baicharoen7, Budsaba Rerkamnuaychoke2, Surin Peyachoknagul1,8, Kyudong Han9 and Kornsorn Srikulnath1,3,6,10 1 Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand 2 Human Genetic Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand 3 Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Kasetsart University, Bangkok, Thailand 4 Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand 5 Nakhon Ratchasima Zoo, Nakhon Ratchasima, Thailand 6 Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU, Thailand), Kasetsart University, Bangkok, Thailand 7 Bureau of Conservation and Research, Zoological Park Organization under the Royal Patronage of His Majesty the King, Bangkok, Thailand 8 Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand 9 Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea 10 Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, Thailand ABSTRACT Submitted 30 July 2018 Accepted 15 November 2018 Mitochondrial genomes (mitogenomes) of five Cyrtodactylus were determined. Their Published 13 December 2018 compositions and structures were similar to most of the available gecko lizard Corresponding author mitogenomes as 13 protein-coding, two rRNA and 22 tRNA genes. -
Checklist of Amphibians and Reptiles of Morocco: a Taxonomic Update and Standard Arabic Names
Herpetology Notes, volume 14: 1-14 (2021) (published online on 08 January 2021) Checklist of amphibians and reptiles of Morocco: A taxonomic update and standard Arabic names Abdellah Bouazza1,*, El Hassan El Mouden2, and Abdeslam Rihane3,4 Abstract. Morocco has one of the highest levels of biodiversity and endemism in the Western Palaearctic, which is mainly attributable to the country’s complex topographic and climatic patterns that favoured allopatric speciation. Taxonomic studies of Moroccan amphibians and reptiles have increased noticeably during the last few decades, including the recognition of new species and the revision of other taxa. In this study, we provide a taxonomically updated checklist and notes on nomenclatural changes based on studies published before April 2020. The updated checklist includes 130 extant species (i.e., 14 amphibians and 116 reptiles, including six sea turtles), increasing considerably the number of species compared to previous recent assessments. Arabic names of the species are also provided as a response to the demands of many Moroccan naturalists. Keywords. North Africa, Morocco, Herpetofauna, Species list, Nomenclature Introduction mya) led to a major faunal exchange (e.g., Blain et al., 2013; Mendes et al., 2017) and the climatic events that Morocco has one of the most varied herpetofauna occurred since Miocene and during Plio-Pleistocene in the Western Palearctic and the highest diversities (i.e., shift from tropical to arid environments) promoted of endemism and European relict species among allopatric speciation (e.g., Escoriza et al., 2006; Salvi North African reptiles (Bons and Geniez, 1996; et al., 2018). Pleguezuelos et al., 2010; del Mármol et al., 2019). -
ESIA of Block VI Lignite Mining Project
Environmental and Social Impact Assessment Block VI Lignite Mining Project Volume 2 of 3 (Appendices A to H) Sindh Carbon Energy Limited R3E03TCO April 2013 Hagler Bailly Pakistan Wardell Armstrong International Ltd. ESIA of Block VI Lignite Mining Project Appendix A: SCEL’s Policies A.1 Environmental Policy Statement Oracle Coalfields and its subsidiaries are engaged in mining activities and principally in the development of a surface coal mine in the Sindh Province of Pakistan. We acknowledging that our business has an impact on the environment and we are committed to managing and reducing that impact through the adoption of the following policy, which requires us to: Identify and comply with all legislation, standards and codes of practice, which are relevant to our businesses activities; Continue to improve our environmental performance through effective communication, provision of staff training and adoption of best techniques available; Use energy and fossil fuels efficiently so as to reduce our carbon emissions; Prevent pollution incidents; Reduce the amount of waste generated by our activities, sites and premises and the percentage that is sent to landfill; Conserve water by reducing demand at our sites and premises; Be a respectful neighbor by minimizing the impact that our activities, sites and premises have on local communities; Protect and, where feasible, enhance biodiversity on sites and premises where we hold responsibility or can influence those that do; Seek to influence our clients to adopt, and our designers to provide, solutions that benefit the environment; Promote, as far as is practicable, responsible sourcing and the purchase of materials and services that through their use, sourcing or manufacture have the least harmful effect on the environment; Minimize the need to travel, but where travel is unavoidable use modern and efficient modes of transport; Work with our Supply Chain to help them improve their own environmental performance.