Gene Set Size Count Z-Score P-Value Q-Value List of Genes

Total Page:16

File Type:pdf, Size:1020Kb

Gene Set Size Count Z-Score P-Value Q-Value List of Genes Supplementary Data 2-1 Results from competitive pathway enrichment analysis based on genome-wide summary-level data of hsGWAS. Gene Set Size Count z-score p-value q-value List of Genes KEGG_ALLOGRAFT_ 38 36 12.6476 0.00E+00 0.00E+00 HLA-DRB5(4.11028); IL2(3.62922); HLA-E(3.27708); HLA-G(3.2749); HLA- REJECTION DQA2(3.16347); HLA-DRA(3.14994); HLA-DOB(3.11438); HLA-DMB(3.09917); HLA-DMA(3.09615); TNF(3.09414); HLA-DPB1(3.03922); HLA-DPA1(3.0355); HLA-A(3.02312); HLA-C(2.98835); HLA-DQB1(2.97025); HLA-B(2.95626); HLA- DQA1(2.94591); HLA-F(2.83254); HLA-DRB1(2.76738); HLA-DOA(2.72508); IFNG(1.74523); PRF1(1.46483); FASLG(1.10083); FAS(0.923795); HLA- DRB3(0.760622); CD80(0.436654); IL4(0.324564); CD40(0.271072); HLA- DRB4(0.0708609); IL12A(0.0685942); IL5(0.0659333); CD86(0.049911); CD28(- 0.16103); IL10(-0.165903); IL12B(-0.245281); GZMB(-0.268581); KEGG_GRAFT_VERSUS_HOS 42 37 12.6129 0.00E+00 0.00E+00 HLA-DRB5(4.11028); IL2(3.62922); HLA-E(3.27708); HLA-G(3.2749); HLA- T_DISEASE DQA2(3.16347); HLA-DRA(3.14994); HLA-DOB(3.11438); HLA-DMB(3.09917); HLA-DMA(3.09615); TNF(3.09414); HLA-DPB1(3.03922); HLA-DPA1(3.0355); HLA-A(3.02312); HLA-C(2.98835); HLA-DQB1(2.97025); HLA-B(2.95626); HLA- DQA1(2.94591); HLA-F(2.83254); HLA-DRB1(2.76738); HLA-DOA(2.72508); IL6(1.94139); IFNG(1.74523); PRF1(1.46483); FASLG(1.10083); FAS(0.923795); HLA-DRB3(0.760622); CD80(0.436654); IL1A(0.402186); KLRD1(0.29064); KIR3DL1(0.157683); HLA-DRB4(0.0708609); CD86(0.049911); CD28(-0.16103); GZMB(-0.268581); IL1B(-0.388308); KLRC1(-0.466394); KIR3DL2(-0.786806); KEGG_TYPE_I_DIABETES_ME 44 43 12.0019 0.00E+00 0.00E+00 HLA-DRB5(4.11028); IL2(3.62922); HLA-E(3.27708); HLA-G(3.2749); HLA- LLITUS DQA2(3.16347); HLA-DRA(3.14994); HLA-DOB(3.11438); HLA-DMB(3.09917); HLA-DMA(3.09615); TNF(3.09414); LTA(3.08913); HLA-DPB1(3.03922); HLA- DPA1(3.0355); HLA-A(3.02312); HLA-C(2.98835); HLA-DQB1(2.97025); HLA- B(2.95626); HLA-DQA1(2.94591); HLA-F(2.83254); HLA-DRB1(2.76738); HLA- DOA(2.72508); IFNG(1.74523); PRF1(1.46483); FASLG(1.10083); GAD1(0.975717); FAS(0.923795); HLA-DRB3(0.760622); ICA1(0.752093); CD80(0.436654); HSPD1(0.404551); IL1A(0.402186); PTPRN2(0.388508); HLA-DRB4(0.0708609); IL12A(0.0685942); CD86(0.049911); CPE(-0.0572665); CD28(-0.16103); IL12B(- 0.245281); GZMB(-0.268581); IL1B(-0.388308); GAD2(-0.416458); INS(- 0.642122); PTPRN(-0.757008); KEGG_AUTOIMMUNE_ 53 51 11.9818 0.00E+00 0.00E+00 HLA-DRB5(4.11028); IL2(3.62922); HLA-E(3.27708); HLA-G(3.2749); HLA- THYROID_DISEASE DQA2(3.16347); HLA-DRA(3.14994); HLA-DOB(3.11438); HLA-DMB(3.09917); HLA-DMA(3.09615); HLA-DPB1(3.03922); HLA-DPA1(3.0355); HLA-A(3.02312); HLA-C(2.98835); HLA-DQB1(2.97025); HLA-B(2.95626); HLA-DQA1(2.94591); HLA-F(2.83254); HLA-DRB1(2.76738); HLA-DOA(2.72508); IFNA1(2.57774); IFNA17(1.64472); IFNA7(1.62659); IFNA10(1.62315); IFNA16(1.61427); PRF1(1.46483); IFNA14(1.46285); TSHB(1.42533); IFNA13(1.4019); IFNA6(1.3785); FASLG(1.10083); FAS(0.923795); IFNA8(0.870525); HLA- DRB3(0.760622); CD80(0.436654); IL4(0.324564); IFNA21(0.297396); CD40(0.271072); CTLA4(0.235469); IFNA4(0.226331); IFNA2(0.151927); HLA- DRB4(0.0708609); IL5(0.0659333); CD86(0.049911); TPO(-0.0662216); IFNA5(- 0.102715); TG(-0.153394); CD28(-0.16103); IL10(-0.165903); GZMB(-0.268581); CGA(-0.403254); TSHR(-1.08937); KEGG_ANTIGEN_ 89 80 10.3794 0.00E+00 0.00E+00 HLA-DRB5(4.11028); HSPA1B(3.36842); HSPA1A(3.3411); HSPA1L(3.30303); PROCESSING_AND_PRESEN HLA-E(3.27708); HLA-G(3.2749); HLA-DQA2(3.16347); HLA-DRA(3.14994); TATION HLA-DOB(3.11438); HLA-DMB(3.09917); HLA-DMA(3.09615); LTA(3.08913); HLA-DPB1(3.03922); HLA-DPA1(3.0355); HLA-A(3.02312); TAP1(2.99505); HLA- C(2.98835); HLA-DQB1(2.97025); HLA-B(2.95626); HLA-DQA1(2.94591); TAP2(2.93098); HLA-F(2.83254); HLA-DRB1(2.76738); HLA-DOA(2.72508); IFNA1(2.57774); IFNA17(1.64472); IFNA7(1.62659); IFNA10(1.62315); IFNA16(1.61427); TAPBP(1.53511); IFNA14(1.46285); IFNA13(1.4019); IFNA6(1.3785); IFI30(1.11839); IFNA8(0.870525); HSPA6(0.860512); HLA- DRB3(0.760622); LGMN(0.751155); RFX5(0.731158); CTSS(0.725716); HSPA4(0.673791); HSPA5(0.578858); NFYB(0.53654); HSPA2(0.427194); IFNA21(0.297396); KLRD1(0.29064); IFNA4(0.226331); KIR2DL4(0.178735); KIR3DL1(0.157683); IFNA2(0.151927); HLA-DRB4(0.0708609); CANX(- 0.00786418); PSME3(-0.0268547); HSPA8(-0.0426388); PSME2(-0.0436557); RFXANK(-0.0511772); PSME1(-0.079645); IFNA5(-0.102715); CTSB(-0.128134); CIITA(-0.148118); RFXAP(-0.178394); NFYC(-0.287989); CREB1(-0.315765); PDIA3(-0.348713); CD74(-0.359131); CD8A(-0.391305); KLRC2(-0.405379); CALR(-0.437964); CD4(-0.44345); CD8B(-0.443911); KLRC1(-0.466394); KIR3DL3(-0.471068); B2M(-0.476766); KIR2DS4(-0.529479); KLRC4(-0.562774); KLRC3(-0.592427); HSP90AB1(-0.674748); HSP90AA1(-0.681845); KIR3DL2(- 0.786806); NFYA(-0.833691); KEGG_SYSTEMIC_LUPUS_ER 140 130 9.74006 0.00E+00 0.00E+00 HLA-DRB5(4.11028); HIST1H2AI(3.65052); HIST1H2BL(3.64688); YTHEMATOSUS HIST1H3H(3.64339); HIST1H2BM(3.33787); HIST1H2AJ(3.33787); HLA- DQA2(3.16347); HLA-DRA(3.14994); HLA-DOB(3.11438); HLA-DMB(3.09917); HLA-DMA(3.09615); TNF(3.09414); C2(3.05293); C4B(3.05007); C4A(3.05007); HLA-DPB1(3.03922); HLA-DPA1(3.0355); HLA-DQB1(2.97025); HLA- DQA1(2.94591); HLA-DRB1(2.76738); HLA-DOA(2.72508); H2AFY2(2.02561); HIST1H3J(2.00032); HIST1H2BO(1.99425); HIST1H2AM(1.99425); IFNG(1.74523); HIST1H2AG(1.66906); HIST1H2BJ(1.65621); HIST1H2AH(1.6501); HIST1H4I(1.61301); HIST1H2BK(1.56533); HIST1H2BN(1.48654); HIST1H4L(1.47987); HIST1H2AL(1.47987); HIST1H2AK(1.47651); HIST1H3I(1.47623); HIST1H4J(1.34966); HIST1H4K(1.34164); C9(1.18727); C6(1.1118); C1S(1.09855); HIST1H4D(1.03022); HIST1H2BG(1.01864); HIST1H2AE(1.01701); HIST1H2AD(1.00268); HIST1H2BF(0.999573); C8G(0.999052); HIST1H3D(0.998028); C1R(0.997817); HIST1H4E(0.996491); HIST1H2BD(0.969877); ACTN2(0.962041); HIST1H4C(0.940817); HIST1H2BE(0.886607); FCGR2B(0.823869); FCGR2A(0.817765); H3F3A(0.794914); GRIN2B(0.790131); HLA-DRB3(0.760622); HIST1H2BA(0.742792); HIST1H2AA(0.739847); HIST1H3C(0.718367); HIST1H2BB(0.718367); HIST1H4B(0.706147); HIST1H2AB(0.704646); HIST1H3B(0.701784); HIST1H2AC(0.586216); HIST1H2BC(0.578733); HIST1H4H(0.572592); H2AFY(0.536314); FCGR3B(0.471305); CD80(0.436654); H2AFJ(0.429568); HIST4H4(0.427884); FCGR2C(0.401133); ACTN4(0.360653); C5(0.360513); CD40(0.271072); GRIN2A(0.262373); H2AFZ(0.20518); H2AFX(0.153526); ACTN1(0.0709246); HLA-DRB4(0.0708609); SSB(0.070463); HIST1H3G(0.0698672); HIST1H2BI(0.0604719); CD86(0.049911); TROVE2(0.0439053); C3(0.0236471); HIST1H3F(-0.00841189); HIST1H4G(- 0.00841189); HIST1H2BH(-0.00963075); HIST1H3E(-0.0205535); ACTN3(- 0.034746); H2AFV(-0.0819867); HIST1H4F(-0.133493); CD28(-0.16103); IL10(- 0.165903); HIST3H2BB(-0.174075); HIST3H2A(-0.174075); HIST3H3(-0.174075); KEGG_VIRAL_ 73 68 8.21851 0.00E+00 0.00E+00 HLA-DRB5(4.11028); HLA-E(3.27708); HLA-G(3.2749); HLA-DQA2(3.16347); MYOCARDITIS HLA-DRA(3.14994); HLA-DOB(3.11438); HLA-DMB(3.09917); HLA- DMA(3.09615); HLA-DPB1(3.03922); HLA-DPA1(3.0355); HLA-A(3.02312); HLA- C(2.98835); HLA-DQB1(2.97025); HLA-B(2.95626); HLA-DQA1(2.94591); HLA- F(2.83254); LAMA2(2.79088); HLA-DRB1(2.76738); HLA-DOA(2.72508); ICAM1(2.37149); MYH14(2.15065); EIF4G2(1.86535); PRF1(1.46483); ABL1(1.23708); ITGB2(1.12695); EIF4G1(1.10593); SGCD(1.09625); RAC3(0.881826); CASP9(0.79633); HLA-DRB3(0.760622); SGCB(0.698544); RAC2(0.563748); MYH9(0.518042); CYCS(0.504235); ITGAL(0.494027); CD80(0.436654); DAG1(0.358283); CD40(0.271072); MYH13(0.179219); MYH11(0.129008); HLA-DRB4(0.0708609); CD86(0.049911); CAV1(-0.0447534); MYH6(-0.0488321); CXADR(-0.0676558); MYH1(-0.0678804); MYH2(- 0.102955); CD28(-0.16103); MYH10(-0.21898); FYN(-0.241479); ACTB(- 0.251508); MYH7(-0.293116); MYH3(-0.332542); ABL2(-0.340488); CD55(- 0.388429); CCND1(-0.401944); SGCG(-0.517643); CASP3(-0.541075); BID(- 0.589717); CASP8(-0.598201); MYH8(-0.602901); MYH4(-0.670849); MYH15(- 0.683912); EIF4G3(-0.722139); MYH7B(-0.761638); SGCA(-0.830816); RAC1(- 0.871829); ACTG1(-1.26763); KEGG_ASTHMA 30 29 8.05361 0.00E+00 0.00E+00 HLA-DRB5(4.11028); HLA-DQA2(3.16347); HLA-DRA(3.14994); HLA- DOB(3.11438); HLA-DMB(3.09917); HLA-DMA(3.09615); TNF(3.09414); HLA- DPB1(3.03922); HLA-DPA1(3.0355); HLA-DQB1(2.97025); HLA-DQA1(2.94591); HLA-DRB1(2.76738); HLA-DOA(2.72508); IL9(0.88924); HLA-DRB3(0.760622); IL13(0.436581); IL4(0.324564); CD40(0.271072); RNASE3(0.159919); HLA- DRB4(0.0708609); IL5(0.0659333); FCER1A(-0.124279); PRG2(-0.134005); IL10(- 0.165903); CCL11(-0.33936); IL3(-0.347172); FCER1G(-0.449948); EPX(- 0.508371); MS4A2(-0.867899); KEGG_INTESTINAL_ 48 47 7.58457 1.65E-14 2.29E-12 HLA-DRB5(4.11028); IL2(3.62922); HLA-DQA2(3.16347); HLA-DRA(3.14994); IMMUNE_NETWORK_FOR_I HLA-DOB(3.11438); HLA-DMB(3.09917); HLA-DMA(3.09615); HLA- GA_PRODUCTION DPB1(3.03922); HLA-DPA1(3.0355); HLA-DQB1(2.97025); HLA-DQA1(2.94591); HLA-DRB1(2.76738); HLA-DOA(2.72508); IL6(1.94139); ITGA4(1.44516); MAP3K14(1.30259); CCR9(1.22105); IL15RA(1.1474); HLA-DRB3(0.760622); TNFRSF17(0.648255); ITGB7(0.641235); LTBR(0.629883); CXCL12(0.576547); CD80(0.436654); IL15(0.401945); ICOSLG(0.38944); IL4(0.324564); CD40(0.271072); TNFRSF13B(0.134187); HLA-DRB4(0.0708609); IL5(0.0659333); CD86(0.049911); TNFSF13(0.0381369); ICOS(-0.029109); TNFRSF13C(- 0.0470145); TGFB1(-0.0624259); CCL27(-0.06631); CD28(-0.16103); IL10(- 0.165903); MADCAM1(-0.215493); AICDA(-0.228457); CCR10(-0.298206); CCL25(-0.310412); TNFSF13B(-0.330192); CXCR4(-0.338466); CCL28(- 0.446852); PIGR(-0.736478); REACTOME_INTERFERON_ 63 59 6.87752 3.04E-12 3.80E-10 HLA-DRB5(4.11028); IRF4(3.50609); HLA-G(3.2749); HLA-DQA2(3.16347); HLA- GAMMA_SIGNALING DPB1(3.03922); HLA-DPA1(3.0355);
Recommended publications
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Snps) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/07/06/dmd.118.082164.DC1 1521-009X/46/9/1372–1381$35.00 https://doi.org/10.1124/dmd.118.082164 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:1372–1381, September 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Single Nucleotide Polymorphisms (SNPs) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction s Duan Liu, Sisi Qin, Balmiki Ray,1 Krishna R. Kalari, Liewei Wang, and Richard M. Weinshilboum Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (D.L., S.Q., B.R., L.W., R.M.W.) and Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.K.), Mayo Clinic, Rochester, Minnesota Received April 22, 2018; accepted June 28, 2018 ABSTRACT Downloaded from CYP1A1 expression can be upregulated by the ligand-activated aryl fashion. LCLs with the AA genotype displayed significantly higher hydrocarbon receptor (AHR). Based on prior observations with AHR-XRE binding and CYP1A1 mRNA expression after 3MC estrogen receptors and estrogen response elements, we tested treatment than did those with the GG genotype. Electrophoretic the hypothesis that single-nucleotide polymorphisms (SNPs) map- mobility shift assay (EMSA) showed that oligonucleotides with the ping hundreds of base pairs (bp) from xenobiotic response elements AA genotype displayed higher LCL nuclear extract binding after (XREs) might influence AHR binding and subsequent gene expres- 3MC treatment than did those with the GG genotype, and mass dmd.aspetjournals.org sion.
    [Show full text]
  • Jimmunol.0903453.Full.Pdf
    Antiviral Response Dictated by Choreographed Cascade of Transcription Factors This information is current as Elena Zaslavsky, Uri Hershberg, Jeremy Seto, Alissa M. of October 2, 2021. Pham, Susanna Marquez, Jamie L. Duke, James G. Wetmur, Benjamin R. tenOever, Stuart C. Sealfon and Steven H. Kleinstein J Immunol published online 17 February 2010 http://www.jimmunol.org/content/early/2010/02/17/jimmun ol.0903453 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2010/02/15/jimmunol.090345 Material 3.DC1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published February 17, 2010, doi:10.4049/jimmunol.0903453 The Journal of Immunology Antiviral Response Dictated by Choreographed Cascade of Transcription Factors Elena Zaslavsky,*,†,1 Uri Hershberg,‡,1 Jeremy Seto,*,† Alissa M. Pham,x Susanna Marquez,‡ Jamie L. Duke,{ James G. Wetmur,x Benjamin R. tenOever,x Stuart C. Sealfon,*,† and Steven H.
    [Show full text]
  • Diverse Functional Autoantibodies in Patients with COVID-19
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.10.20247205; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Diverse Functional Autoantibodies in Patients with COVID-19 Eric Y. Wang1,*, Tianyang Mao1,*, Jon Klein1,*, Yile Dai1,*, John D. Huck1, Feimei Liu1, Neil S. Zheng1, Ting Zhou1, Benjamin Israelow1, Patrick Wong1, Carolina Lucas1, Julio Silva1, Ji Eun Oh1, Eric Song1, Emily S. Perotti1, Suzanne Fischer1, Melissa Campbell5, John B. Fournier5, Anne L. Wyllie3, Chantal B. F. Vogels3, Isabel M. Ott3, Chaney C. Kalinich3, Mary E. Petrone3, Anne E. Watkins3, Yale IMPACT Team¶, Charles Dela Cruz4, Shelli F. Farhadian5, Wade L. Schulz6,7, Nathan D. Grubaugh3, Albert I. Ko3,5, Akiko Iwasaki1,3,8,#, Aaron M. Ring1,2,# 1 Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA 2 Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA 3 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA 4 Department of Medicine, Section of Pulmonary and Critical Care Medicine, Yale School of Medicine, New Haven, CT, USA 5 Department of Internal Medicine (Infectious Diseases), Yale School of Medicine, New Haven, CT, USA 6 Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA 7 Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA 8 Howard Hughes Medical Institute, Chevy Chase, MD, USA * These authors contributed equally to this work ¶ A list of authors and their affiliations appears at the end of the paper # Correspondence: [email protected] (A.M.R.); [email protected] (A.I.) 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]
  • Table 1. Swine Proteins Identified As Differentially Expressed at 24Dpi in OURT 88/3 Infected Animals
    Table 1. swine proteins identified as differentially expressed at 24dpi in OURT 88/3 infected animals. Gene name Protein ID Protein Name -Log p-value control vs A_24DPI Difference control Vs A_24DPI F8 K7GL28 Coagulation factor VIII 2.123919902 5.42533493 PPBP F1RUL6 C-X-C motif chemokine 3.219079808 4.493174871 SDPR I3LDR9 Caveolae associated protein 2 2.191007299 4.085711161 IGHG L8B0X5 IgG heavy chain 2.084611488 -4.282530149 LOC100517145 F1S3H9 Complement C3 (LOC100517145) 3.885740476 -4.364484406 GOLM1 F1S4I1 Golgi membrane protein 1 1.746130664 -4.767168681 FCN2 I3L5W3 Ficolin-2 2.937884686 -6.029483795 Table 2. swine proteins identified as differentially expressed at 7dpi in Benin ΔMGF infected animals. Gene name Protein ID Protein Name -Log p-value control vs B_7DPI Difference control Vs B_7DPI A0A075B7I5 Ig-like domain-containing protein 1.765578164 -3.480728149 ATP5A1 F1RPS8_PIG ATP synthase subunit alpha 2.270386995 3.270935059 LOC100627396 F1RX35_PIG Fibrinogen C-terminal domain-containing protein 2.211242648 3.967363358 LOC100514666;LOC102158263 F1RX36_PIG Fibrinogen alpha chain 2.337934993 3.758180618 FGB F1RX37_PIG Fibrinogen beta chain 2.411948004 4.03753376 PSMA8 F1SBA5_PIG Proteasome subunit alpha type 1.473601007 -3.815182686 ACAN F1SKR0_PIG Aggrecan core protein 1.974489764 -3.726634026 TFG F1SL01_PIG PB1 domain-containing protein 1.809215274 -3.131304741 LOC100154408 F1SSL6_PIG Proteasome subunit alpha type 1.701949053 -3.944885254 PSMA4 F2Z528_PIG Proteasome subunit alpha type 2.045768185 -4.502977371 PSMA5 F2Z5K2_PIG
    [Show full text]
  • Prevalent Homozygous Deletions of Type I Interferon and Defensin Genes in Human Cancers Associate with Immunotherapy Resistance
    Author Manuscript Published OnlineFirst on April 4, 2018; DOI: 10.1158/1078-0432.CCR-17-3008 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Prevalent Homozygous Deletions of Type I Interferon and Defensin Genes in Human Cancers Associate with Immunotherapy Resistance Zhenqing Ye1; Haidong Dong2,3; Ying Li1; Tao Ma1,4; Haojie Huang4; Hon-Sing Leong4; Jeanette Eckel-Passow1; Jean-Pierre A. Kocher1; Han Liang5; LiguoWang1,4,* 1Division of Biomedical Statistics and Informatics, Department of Health Sciences, Mayo Clinic, Rochester, Minnesota 55905, United States of America 2Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States of America 3Department of Urology, Mayo Clinic, Rochester, Minnesota 55905, United States of America 4Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, United States of America 5Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States of America Running title: Pervasive Deletion of Interferon/Defensin in Human Cancers Keywords: Homozygous deletion, Type-I interferon, Defensin, immunotherapy resistance, cancer * Correspondence to: Liguo Wang, Ph.D. Associate Professor Division of Biomedical Statistics and Informatics, Mayo Clinic 200 1st St SW Rochester, MN 55905, USA Phone: +1-507-284-8728 Fax: +1-507-284-0745 Email: [email protected] The authors declare no potential conflicts of interest. 1 Downloaded from clincancerres.aacrjournals.org on September 29, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on April 4, 2018; DOI: 10.1158/1078-0432.CCR-17-3008 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Polyubiquitin Gene Ubb Is Required for Upregulation of Piwi Protein Level During Mouse Testis Development
    www.nature.com/cddiscovery ARTICLE OPEN Polyubiquitin gene Ubb is required for upregulation of Piwi protein level during mouse testis development 1,4 2,4 2 1 1 2 ✉ Bitnara Han , Byung-Kwon✉ Jung , So-Hyun Park , Kyu Jin Song , Muhammad Ayaz Anwar , Kwon-Yul Ryu and Kwang Pyo Kim 1,3 © The Author(s) 2021 Testis development, including early embryonic gonad formation and late postnatal spermatogenesis, is essential for the reproduction of higher metazoans to generate fertile gametes, called sperm. We have previously reported that the polyubiquitin gene Ubb is required for fertility in both male and female mice. In particular, the Ubb-null male mice showed an azoospermia phenotype due to arrest of spermatogenesis at the pachytene stage. Here, we analyzed the whole testis proteome at postnatal day 20 to define the molecular mediators of the male-infertility phenotype caused by Ubb knockout. From the identified proteome, 564 proteins were significantly and differentially expressed in Ubb-knockout testes and, among these, 36 downregulated proteins were involved at different stages of spermatogenesis. We also found that levels of piRNA metabolic process-related proteins, including Piwil2 and Tdrd1, were downregulated in Ubb-null testes through functional gene ontology analysis. Further, protein–protein interaction mapping revealed that 24 testis development-related proteins, including Hsp90aa1, Eef1a1, and Pabpc1, were directly influenced by the depletion of ubiquitin. In addition, the reduced mRNA levels of these proteins were observed in Ubb-knockout testes, which closely resembled the global downregulation of piRNA-metabolic gene expression at the transcriptional and post- transcriptional levels. Together with proteomic and transcriptional analyses, our data suggest that Ubb expression is essential for the maintenance of testicular RNA-binding regulators and piRNA-metabolic proteins to complete spermatogenesis in mice.
    [Show full text]
  • An Inflammatory Gene Signature Distinguishes Neurofibroma
    www.nature.com/scientificreports OPEN An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages Received: 26 May 2016 Accepted: 25 January 2017 from cells in the normal peripheral Published: 03 March 2017 nervous system Kwangmin Choi1, Kakajan Komurov1, Jonathan S. Fletcher1, Edwin Jousma1, Jose A. Cancelas1,2, Jianqiang Wu1 & Nancy Ratner1 Neurofibromas are benign peripheral nerve tumors driven byNF1 loss in Schwann cells (SCs). Macrophages are abundant in neurofibromas, and macrophage targeted interventions may have therapeutic potential in these tumors. We generated gene expression data from fluorescence- activated cell sorted (FACS) SCs and macrophages from wild-type and mutant nerve and neurofibroma to identify candidate pathways involved in SC-macrophage cross-talk. While in 1-month-old Nf1 mutant nerve neither SCs nor macrophages significantly differed from their normal counterparts, both macrophages and SCs showed significantly altered cytokine gene expression in neurofibromas. Computationally reconstructed SC-macrophage molecular networks were enriched for inflammation- associated pathways. We verified that neurofibroma SC conditioned medium contains macrophage chemo-attractants including colony stimulation factor 1 (CSF1). Network analysis confirmed previously implicated pathways and predict novel paracrine and autocrine loops involving cytokines, chemokines, and growth factors. Network analysis also predicted a central role for decreased type-I interferon signaling. We validated type-I interferon expression in neurofibroma by protein profiling, and show that treatment of neurofibroma-bearing mice with polyethylene glycolyated (PEGylated) type-I interferon- α2b reduces the expression of many cytokines overexpressed in neurofibroma. These studies reveal numerous potential targetable interactions between Nf1 mutant SCs and macrophages for further analyses. Neurofibromatosis type 1 (NF1) is one of the most common human monogenic disorders, affecting about 0.3% of the human population.
    [Show full text]
  • Variation in the Type I Interferon Gene Cluster on 9P21 Influences Susceptibility to Asthma and Atopy
    Genes and Immunity (2006) 7, 169–178 & 2006 Nature Publishing Group All rights reserved 1466-4879/06 $30.00 www.nature.com/gene ORIGINAL ARTICLE Variation in the type I interferon gene cluster on 9p21 influences susceptibility to asthma and atopy A Chan1,2, DL Newman1,3, AM Shon, DH Schneider, S Kuldanek and C Ober Department of Human Genetics, The University of Chicago, Chicago, IL, USA A genome-wide screen for asthma and atopy susceptibility alleles conducted in the Hutterites, a founder population of European descent, reported evidence of linkage with a short tandem repeat polymorphism (STRP) within the type I interferon (IFN) gene cluster on chromosome 9p21. The goal of this study was to identify variation within the IFN gene cluster that influences susceptibility to asthma and atopic phenotypes. We screened approximately 25 kb of sequence, including the flanking sequence of all 15 functional genes and the single coding exon in 12, in Hutterites representing different IFNA-STRP genotypes. We identified 78 polymorphisms, and genotyped 40 of these (in 14 genes) in a large Hutterite pedigree. Modest associations (0.003oPo0.05) with asthma, bronchial hyper-responsiveness (BHR), and atopy were observed with individual variants or genes, spanning the entire 400 kb region. However, pairwise combinations of haplotypes between genes showed highly significant associations with different phenotypes (Po10À5) that were localized to specific pairs of genes or regions of this cluster. These results suggest that variation in multiple genes in the type I IFN cluster on 9p22 contribute to asthma and atopy susceptibility, and that not all genes contribute equally to all phenotypes.
    [Show full text]
  • Supp Material.Pdf
    Supplemental Table I. Genes concomitantly modulated by activated Notch1 in mouse and human primary keratinocytes. Genes up-regulated by Notch1 both in human and in mouse keratinocytes M access. # Hu access. # NIC/GFP M NIC/GFP Hu Description X60367 M11433 20.72 4.23 Retinol binding protein 1 AW049647 AF070523 2.28 8.10 X99921 AI541308 3.46 6.32 S100 calcium-binding protein A13 M28383 U05596 6.02 3.38 Solute carrier family 4 (anion exchanger), member 3 U14135 M14648 2.96 5.91 Integrin alpha V (Cd51) X99921 AI541308 2.06 6.32 S100 calcium-binding protein A13 D88533 D82326 3.58 4.48 NBAT M60057 J03802 3.24 4.55 Parathyroid hormone- like peptide AJ237939 U43185 2.84 4.13 partial STAT5B gene, exons 6-9 U61085 X91220 2.11 4.62 thiazide-sensitive Na-Cl cotransporter mRNA AA882416 D87127 2.54 3.88 L22545 AF018081 2.48 3.79 Procollagen, type XVIII, alpha 1 AW121732 L78833 2.78 3.23 AW121732 L78833 2.78 3.16 U90435 AI807620 2.20 3.68 flotillin AB022022 AL031177 2.07 3.61 gankyrin X14943 Z21488 3.57 2.07 Contactin 1 AJ223855 AJ010063 2.14 3.20 telethonin AW060546 X70944 2.10 3.22 U14135 M14648 2.96 2.20 Integrin alpha V (Cd51) U12961 M81600 2.92 2.20 NAD(P)H menadione oxidoreductase 1, dioxin inducible X98207 U50079 2.15 2.91 histone deacetylase X07888 M11058 2.90 2.15 HMGCR gene for 3- hydroxy-3-methylglutaryl coenzyme A reductase L18888 L10284 2.45 2.54 Calnexin X98207 D50405 2.15 2.79 histone deacetylase AW046032 M62424 2.30 2.62 X13460 Y00097 2.67 2.24 Annexin VI, p68 AC002397 U72511 2.16 2.61 U12961 M81600 2.56 2.20 NAD(P)H menadione oxidoreductase 1, dioxin inducible Z68618 M95787 2.26 2.30 Transgelin AA615429 AB020631 2.17 2.38 AF037312 L78207 2.03 2.37 AC002397 U47924 2.16 2.21 U43541 X79683 2.04 2.26 Laminin, beta 2 Genes down-regulated by Notch1 both in human and in mouse keratinocytes M access.
    [Show full text]
  • A Genomic Analysis of Rat Proteases and Protease Inhibitors
    A genomic analysis of rat proteases and protease inhibitors Xose S. Puente and Carlos López-Otín Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain Send correspondence to: Carlos López-Otín Departamento de Bioquímica y Biología Molecular Facultad de Medicina, Universidad de Oviedo 33006 Oviedo-SPAIN Tel. 34-985-104201; Fax: 34-985-103564 E-mail: [email protected] Proteases perform fundamental roles in multiple biological processes and are associated with a growing number of pathological conditions that involve abnormal or deficient functions of these enzymes. The availability of the rat genome sequence has opened the possibility to perform a global analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into five catalytic classes: 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. Overall, this distribution is similar to that of the mouse degradome, but significatively more complex than that corresponding to the human degradome composed of 561 proteases and homologs. This increased complexity of the rat protease complement mainly derives from the expansion of several gene families including placental cathepsins, testases, kallikreins and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in the rat and mouse genomes and may contribute to explain some functional differences between these two closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with the mouse protease inhibitor complement and the marked expansion of families of cysteine and serine protease inhibitors in rat and mouse with respect to human.
    [Show full text]
  • Supplementary Table 1: Genes Located on Chromosome 18P11-18Q23, an Area Significantly Linked to TMPRSS2-ERG Fusion
    Supplementary Table 1: Genes located on Chromosome 18p11-18q23, an area significantly linked to TMPRSS2-ERG fusion Symbol Cytoband Description LOC260334 18p11 HSA18p11 beta-tubulin 4Q pseudogene IL9RP4 18p11.3 interleukin 9 receptor pseudogene 4 LOC100132166 18p11.32 hypothetical LOC100132166 similar to Rho-associated protein kinase 1 (Rho- associated, coiled-coil-containing protein kinase 1) (p160 LOC727758 18p11.32 ROCK-1) (p160ROCK) (NY-REN-35 antigen) ubiquitin specific peptidase 14 (tRNA-guanine USP14 18p11.32 transglycosylase) THOC1 18p11.32 THO complex 1 COLEC12 18pter-p11.3 collectin sub-family member 12 CETN1 18p11.32 centrin, EF-hand protein, 1 CLUL1 18p11.32 clusterin-like 1 (retinal) C18orf56 18p11.32 chromosome 18 open reading frame 56 TYMS 18p11.32 thymidylate synthetase ENOSF1 18p11.32 enolase superfamily member 1 YES1 18p11.31-p11.21 v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1 LOC645053 18p11.32 similar to BolA-like protein 2 isoform a similar to 26S proteasome non-ATPase regulatory LOC441806 18p11.32 subunit 8 (26S proteasome regulatory subunit S14) (p31) ADCYAP1 18p11 adenylate cyclase activating polypeptide 1 (pituitary) LOC100130247 18p11.32 similar to cytochrome c oxidase subunit VIc LOC100129774 18p11.32 hypothetical LOC100129774 LOC100128360 18p11.32 hypothetical LOC100128360 METTL4 18p11.32 methyltransferase like 4 LOC100128926 18p11.32 hypothetical LOC100128926 NDC80 homolog, kinetochore complex component (S. NDC80 18p11.32 cerevisiae) LOC100130608 18p11.32 hypothetical LOC100130608 structural maintenance
    [Show full text]