Spring 2006 Gems & Gemology Lab Notes

Total Page:16

File Type:pdf, Size:1020Kb

Spring 2006 Gems & Gemology Lab Notes EDITORS Thomas M. Moses and Shane F. McClure GIA Laboratory CONTRIBUTING EDITORS G. Robert Crowningshield GIA Laboratory, East Coast Cheryl Y. Wentzell GIA Laboratory, West Coast ored square tablet in figure 1. This Unusual Multicolored specimen was composed of six thin ASSEMBLED STONE sections, each of a different color—red, Although in some cases (such as orange, yellow, green, light blue, and backed opal) an assembled stone is cre- light purple—joined with colorless ated to increase the durability of a gem cement. The client told us that he had material, the more common purpose purchased this “rainbow stone” with of manufacturing assembled stones is the intent to market it for use in com- to deceive. Green synthetic spinel and mitment ceremonies for members of synthetic quartz triplets have long imi- the Rainbow Coalition, a prominent tated emeralds. Likewise, doublets civil rights organization. consisting of natural green sapphire The client wanted to verify the crowns and synthetic sapphire or syn- identification of each of the six sec- Figure 1. This unusual specimen thetic ruby pavilions have fooled many tions. Due to the nature of the assem- was assembled from slices of buyers, as the natural inclusions in the blage, the individual refractive indices synthetic ruby, synthetic quartz, crown mask the synthetic inclusions were easy to obtain. The light purple, and synthetic spinel. in the pavilion. green, yellow, and orange sections had Rarely, however, do we see assem- R.I.’s of 1.54. The red section had an bled stones created for other, more R.I. of 1.76, and the light blue section synthetic ruby, the light blue section artistic purposes. It was therefore very had an R.I. of 1.72. A combination of as synthetic spinel, and the remaining surprising to receive for identification standard and advanced gemological four sections as synthetic quartz. the nearly 6 mm transparent multicol- testing identified the red section as Wendi M. Mayerson Figure 2. Fingerprint-like inclusions such as these have been reported in several colorless to near-colorless diamonds known to have been HPHT treated (from figure 10 in T. M. Moses et al., Fall 1999 Gems & Gemology, pp. 14–22). From left to right, magnified 32×, 18×, and 13×. 54 LAB NOTES GEMS & GEMOLOGY SPRING 2006 DIAMOND With “Fingerprint” Inclusions Fingerprint-like inclusions are com- mon features in many colored stones, such as ruby and sapphire, but they are extremely rare in diamonds. In corun- dum, these “fingerprint” patterns are formed by fluid-assisted partial heal- ing of pre-existing fractures. However, in the case of diamond, much higher pressures and temperatures are neces- Figure 3. This fingerprint-like Figure 4. A fingerprint-like inclu- sary to promote partial healing of frac- inclusion extends from a graphi- sion seen recently in this 0.64 ct tures and, at these conditions, fluids tized crystal in a colorless dia- natural-color Light blue diamond are usually not present. A few mond that was recently proved actually consists of groups of instances of fingerprint-like patterns to have been HPHT treated. many tiny crystals. Magnified 45×. produced by groups of tiny inclusions Magnified 45×. in natural-color blue and colorless dia- monds have been reported, but the healed fractures in natural, untreated interconnected channel-like structure sisting of several groups of tiny crys- diamonds. that is common to sapphire “finger- tals, very similar to those described in The geologic environment in which prints” was not observed in these the 1968 and 1993 Lab Notes refer- these two diamonds may have been stones (see Lab Notes: Spring 1968, pp. enced above, was observed in a Light heated to the temperatures necessary 278–279; Spring 1993, pp. 47–48). blue, 0.64 ct, type IIb marquise bril- to cause partial healing of fractures In recent years, fingerprint-like liant (figure 4). However, the most remains a mystery. The heating must inclusions seen in colorless to near- intriguing discoveries were two color- have occurred very deep in the earth colorless diamonds are most often less type IIa diamonds (a 2.28 ct D- (i.e., at high pressures), in that the clar- associated with high pressure, high color round brilliant and a 1.00 ct F- ity of these relatively large gem-quality temperature (HPHT) treatment (figure color pear shape) that contained inclu- diamonds did not show any evidence of 2; see also T. M. Moses et al., “Obser- sions with an appearance remarkably the intense graphitization that occurs vations on GE-processed diamonds: A similar to the “fingerprints” seen in in diamonds heated at lower pressures. photographic record,” Fall 1999 Gems rubies and sapphires (figure 5). The These samples also serve as a caution & Gemology, pp. 14–22). Similar to diamonds were tested very carefully to gemologists that fingerprint-like fea- the HPHT-treated stones described in and determined to be of natural color. tures in colorless or near-colorless dia- Moses et al., a small “fingerprint” The channel-like patterns (not com- monds do not always mean the stones extending from a graphitized inclu- posed of tiny crystals) very strongly have been HPHT treated. sion was recently seen in an F-color, suggested that these were partially Christopher M. Breeding 4.79 ct, type IIa heart-shaped brilliant that was found to have been HPHT treated (figure 3). Figure 5. These fingerprint-like inclusions seen in two natural-color type Over the past few months, the IIa colorless diamonds show a channel structure that is remarkably simi- West Coast laboratory has had the lar to the “fingerprints” commonly found in ruby and sapphire. Magnified opportunity to examine three natural- 45× (left), 30× (right). color diamonds with a range of finger- print-like inclusions. A pattern con- Editor’s note: The initials at the end of each item identify the editor(s) or contributing editor(s) who provided that item. Full names are given for other GIA Laboratory contributors. GEMS & GEMOLOGY, Vol. 42, No. 1, pp. 54–61 © 2006 Gemological Institute of America LAB NOTES GEMS & GEMOLOGY SPRING 2006 55 ilar pink glide planes, it contained a mation of the diamond lattice (see, Pink Diamond with Etch high concentration of nitrogen, most- e.g., A. T. Collins, “The colour of dia- Channels at the Intersections of ly in the A-form aggregation, and a rel- mond and how it may be changed,” Glide Planes atively weak platelet peak around Journal of Gemmology, Vol. 27, 2000, Pink graining and pink glide planes are 1365 cm−1 in the infrared absorption pp. 341–359). A glide plane is a distor- the main causes of a pink-to-red body- spectrum. As expected, the UV-visible tion of the crystal lattice, with the car- color in natural diamond. In contrast to absorption spectrum displayed moder- bon atoms shifted away from their pink graining, which is usually rather ately strong and sharp absorptions at normal, stable positions. This distor- irregular in morphology, the glide 316, 330, and 415 nm (N3), and a broad tion would be significantly intensified planes typically occur as a set of well- band centered at ~550 nm. where the two sets of glide planes defined, parallel, and highly color-con- The distance between individual intersect, since it is occurring in two centrated planes that extend through planes varied from about 0.2 to 1.0 separate directions. The carbon atoms the entire stone or a large part of it. In mm. The two sets of planes were near- in these strongly distorted regions our experience, only a few percent of ly perpendicular to each other (again, would not have a normal diamond pink diamonds are colored by glide see figure 6), and etch channels were structure, and thus they would not be planes, and pink stones of this type observed where the two sets intersect- chemically as stable. As a result, dis- usually have only one set. However, ed. All the channels were likewise solution or etching could selectively the East Coast laboratory recently straight and parallel. Depending on occur in these regions. examined a pink diamond that had two the development of the glide planes, Etch channels are a common sets of glide planes (figure 6), as well as the dissolution channels varied from sight in natural diamonds, though etch channels that occurred at the less than 1 mm to over 2 mm deep. their formation mechanisms are not intersections of the planes. This feature The shape and diameter of the chan- fully understood (see, e.g., T. Lu et al., is not only rare among pink diamonds, nels were too small to be determined “Observation of etch channels in sev- but it also supplied an opportunity to with a regular gemological micro- eral natural diamonds,” Diamond examine the mechanism by which scope, but the diameter appeared to be and Related Materials, Vol. 10, 2001, etch channels form in diamond. less than 50 µm. Nevertheless, the pp. 68–75). This unusual pink stone The 0.77 ct round brilliant cut channels were readily seen with prop- revealed that intersections of plastic (5.87 × 5.76 × 3.61 mm) was color grad- er lighting (figure 7). deformation planes are chemically ed Light pink. Two large fractures The physics of the crystalline less stable, so they are one of the local- were present at the girdle. The dia- defect that generates the ~550 nm ities where etching can selectively mond displayed a weak blue fluores- broad absorption band is not well occur. cence to long-wave ultraviolet (UV) understood. However, it is widely Wuyi Wang, Vinny Cracco, radiation and was inert to short-wave believed to be related to plastic defor- and TMM UV, with no phosphorescence.
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Tiger's Eye Is Not a Pseudomorph Glenn Morita in the Early 1800’S, Mineralogists Recognized That Tiger’S Eye Was a Fibrous Variey of Quartz
    Minutes of the 05/20/03 Westside Board Meeting VP Stu Earnst opened the meeting at 7:31pm. Treasurer’s report read by Kathy Earnst. Minutes approved as published in the newsletter. Old business: Lease on Walker valley discussed. The expiration notice was sent but we are not sure who it went to. We do not see any obstacle to renewal as communication between the council and DNR are open and ongoing. Special thanks, to DNR representative, Laurie Bergvall and DNR staff for their time and effort in hearing our concerns and working towards mutually beneficial solutions on the Walker Valley issues. Sign production is on hold until the sign committee decides where and what the signs will say. We have decided that they will not be on the gate but separate from it. There will be a gate going up at Walker Valley but we will have access to that lock and it will probably be a combo type of thing that we can easily give to other rockhound clubs going there. Talked about the possibility of posing the combo on website but that will depend on the type of gate they put up and what ends up being possible with the mechanics of that gate. New business: Thank you from Bob Pattie and Ed Lehman to Bruce Himko and AAA Printing for donation of the paper. Thank you to Danny Vandenberg for providing sample Walker Valley Material to DNR to show the value of the material we are trying to preserve and enjoy. Bob Pattie is pursuing with the retrieval of our state seized funds through the unclaimed property process.
    [Show full text]
  • City of St. Peters Board of Aldermen Tentative Agenda for Regular Meeting St
    CITY OF ST. PETERS BOARD OF ALDERMEN TENTATIVE AGENDA FOR REGULAR MEETING ST. PETERS JUSTICE CENTER, 1020 GRAND TETON DRIVE, ST. PETERS, MO 63376 OCTOBER 22, 2020 – 6:30 P.M. A. Call to Order, Mayor Len Pagano B. Roll Call C. Opening Ceremonies 1. Invocation 2. Pledge of Allegiance 3. Proclamations: National Arts and Humanities Month, Jill Tutt 4. Presentation: No Hunger Holiday, Mike Narkawicz 5. Recognition: Random Acts of Kindness D. Approval of Minutes: The Board of Aldermen Work Session meeting of October 8, 2020; and the Regular Board of Aldermen meeting of October 8, 2020. E. Reports of Officers, Boards and Commissions 1. Mayoral Report of Appointments to Boards and Commissions a. Appointment to the Veterans Memorial Commission 2. City Administrator’s Report: 3. Report of Director, Planning, Community and Economic Development: 4. St. Peters Business Spotlight: None F. Open Forum 1. Citizens Petitions and Comments 2. Communications from the Elected Officials 3. Announcements G. Public Hearings: None H. Unfinished Business Items: None I. New Business Items: 1. Bill No. 20-118: Bill authorizing the City Administrator of the City of St. Peters, Missouri, to execute a Certain Subrecipient Agreement between St. Charles County (Grantee) and the City of St. Peters (Subrecipient) for conducting City Community Development Block Grant (CDBG) Programs with 2020 Federal Funding 2. Bill No. 20-119: Bill of the City of St. Peters, Missouri, deleting Chapter 615 of the Code of the City of St. Peters, Missouri, in its entirety; enacting, in lieu thereof, a new Chapter 615; and providing for the licensing and regulation of body art establishments and body artists 3.
    [Show full text]
  • Symposium on Agate and Cryptocrystalline Quartz
    Symposium on Agate and Cryptocrystalline Quartz September 10 – 13, 2005 Golden, Colorado Sponsored by Friends of Mineralogy, Colorado Chapter; Colorado School of Mines Geology Museum; and U.S. Geological Survey 2 Cover Photos {top left} Fortification agate, Hinsdale County, Colorado, collection of the Geology Museum, Colorado School of Mines. Coloration of alternating concentric bands is due to infiltration of Fe with groundwater into the porous chalcedony layers, leaving the impermeable chalcedony bands uncolored (white): ground water was introduced via the symmetric fractures, evidenced by darker brown hues along the orthogonal lines. Specimen about 4 inches across; photo Dan Kile. {lower left} Photomicrograph showing, in crossed-polarized light, a rhyolite thunder egg shell (lower left) a fibrous phase of silica, opal-CTLS (appearing as a layer of tan fibers bordering the rhyolite cavity wall), and spherulitic and radiating fibrous forms of chalcedony. Field of view approximately 4.8 mm high; photo Dan Kile. {center right} Photomicrograph of the same field of view, but with a 1 λ (first-order red) waveplate inserted to illustrate the length-fast nature of the chalcedony (yellow-orange) and the length-slow character of the opal CTLS (blue). Field of view about 4.8 mm high; photo Dan Kile. Copyright of articles and photographs is retained by authors and Friends of Mineralogy, Colorado Chapter; reproduction by electronic or other means without permission is prohibited 3 Symposium on Agate and Cryptocrystalline Quartz Program and Abstracts September 10 – 13, 2005 Editors Daniel Kile Thomas Michalski Peter Modreski Held at Green Center, Colorado School of Mines Golden, Colorado Sponsored by Friends of Mineralogy, Colorado Chapter Colorado School of Mines Geology Museum U.S.
    [Show full text]
  • Compilation of Reported Sapphire Occurrences in Montana
    Report of Investigation 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg 2015 Cover photo by Richard Berg. Sapphires (very pale green and colorless) concentrated by panning. The small red grains are garnets, commonly found with sapphires in western Montana, and the black sand is mainly magnetite. Compilation of Reported Sapphire Occurrences, RI 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg Montana Bureau of Mines and Geology MBMG Report of Investigation 23 2015 i Compilation of Reported Sapphire Occurrences, RI 23 TABLE OF CONTENTS Introduction ............................................................................................................................1 Descriptions of Occurrences ..................................................................................................7 Selected Bibliography of Articles on Montana Sapphires ................................................... 75 General Montana ............................................................................................................75 Yogo ................................................................................................................................ 75 Southwestern Montana Alluvial Deposits........................................................................ 76 Specifi cally Rock Creek sapphire district ........................................................................ 76 Specifi cally Dry Cottonwood Creek deposit and the Butte area ....................................
    [Show full text]
  • Not for Publication United States Court of Appeals
    NOT FOR PUBLICATION FILED DEC 20 2018 UNITED STATES COURT OF APPEALS MOLLY C. DWYER, CLERK FOR THE NINTH CIRCUIT U.S. COURT OF APPEALS CYNTHIA CARDARELLI PAINTER, No. 17-55901 individually and on behalf of other members of the general public similarly situated, D.C. No. 2:17-cv-02235-SVW-AJW Plaintiff-Appellant, v. MEMORANDUM* BLUE DIAMOND GROWERS, a California corporation and DOES, 1-100, inclusive, Defendants-Appellees. Appeal from the United States District Court for the Central District of California Stephen V. Wilson, District Judge, Presiding Argued and Submitted December 3, 2018 Pasadena, California Before: D.W. NELSON and WARDLAW, Circuit Judges, and PRATT,** District Judge. * This disposition is not appropriate for publication and is not precedent except as provided by Ninth Circuit Rule 36-3. ** The Honorable Robert W. Pratt, United States District Judge for the Southern District of Iowa, sitting by designation. Cynthia Painter appeals the district court’s order dismissing her complaint with prejudice on grounds of preemption and failure to state a claim pursuant to Federal Rule of Civil Procedure 12(b)(6). On behalf of a putative class, Painter claims that Blue Diamond Growers (“Blue Diamond”) mislabeled its almond beverages as “almond milk” when they should be labeled “imitation milk” because they substitute for and resemble dairy milk but are nutritionally inferior to it. See 21 C.F.R. § 101.3(e)(1). We have jurisdiction under 28 U.S.C. § 1291 and review the district court’s dismissal de novo. Durnford v. MusclePharm Corp., 907 F.3d 595, 601 (9th Cir.
    [Show full text]
  • Get Reactive in System 96!
    Get Reactive in System 96! Uroboros has created two unique glass formulas for System 96 that are designed to create an interface color, or a reac on, when melted against certain other colors. This occurs when ions from the two adjacent glasses migrate and mingle when the gl asses become hot and ß uid. Given the right glass chemistry, the comingled ions form a very thin colored line, or reac on. Since our formulas react to create a no ceably reddish hue we named them Red Reac ves: as in Red Reac ve Transparent, and Red Reac ve Opal. The primary ingredient needed in a glass to generate a reac on color with our Reac ve glass is Copper. Copper is present in many blue and blue-green glass colors, but in some cases in too low a concentra on to create a no ceable reac on. For simplicity, all System 96 colors have been graded for their poten al to react into three categories: Strong, Medium, and Mild. See them all listed in the chart on the back of this page. You will Þ nd that the intensity of the reac on color will get stronger with longer, ho er, or repeat Þ rings. This is because the copper ions have more me to mingle with their friendly reac ve partners in the adjacent glass. The chart rankings are based on a typical single Þ ring cycle. You could get a Medium reac on from a color graded as Mild by Þ ring it ho er, or Þ ring mul ple mes.
    [Show full text]
  • 2015 AFMS Endowment Fund Drawing
    2015 AFMS Endowment Fund Drawing The 2014 Endowment Fund Drawing took place in Tulsa, Oklahoma. We had some very nice donations for prizes, and a lot of people stepped up and bought tickets to support the AFMS Endowment Fund. Thank you for your support. And thank you to those who picked up prizes to deliver at the banquet in Tulsa. That helped save the cost of mailing the items. We have received the following donations for the 2015 Endowment Fund Drawing, which will be held on October 24, 2015, at the awards banquet in Austin, Texas. 1.Copper piece and stock certificate donated by Pam Hecht. Estimated value is $65. MWF 2. Howelite and onyx agate necklace and earrings. Donated by Sharon Rogow, crafted by Betsy Oberheim. Estimated value is $75. CFMS 2015 AFMS Endowment Fund Drawing Page 1 of 11 10-11-2015 3. A large agatized coral head donated by the Suncoast Gem and Mineral Society. It was from an old collection of Withlacoochee River coral donated by a member who passed some years ago. The value is estimated to be at least $100. SFMS (This one is larger than the one given last year.) 4. Phareodus encaustus (fossil fish) from the Eocene Period, Green River formation, Kemmerer, Wyoming. This was donated by J.C. and Donna Moore with an approximate value of $65. MWF #5 - is a Tampa Bay Coral pair donated by Barbara Sky, MWF Uniform Rules Chairman. The pair is about six inches long and two and a half inches wide. The estimated value is $50.
    [Show full text]
  • Black Diamond Pegmatite Custer County, South Dakota
    Diamond-drilling Exploration of the Beecher No. 3- Black Diamond Pegmatite Custer County, South Dakota GEOLOGICAL SURVEY BULLETIN 1162-E Diamond-drilling Exploration of the Beecher No. 3- Black Diamond Pegmatite Custer County, South Dakota By J. A. REDDEN CONTRIBUTIONS TO ECONOMIC GEOLOGY GEOLOGICAL SURVEY BULLETIN 1162-E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Abstract___________._______________________.__ El Introduction.___________________________________ ________ 1 Description of pegmatite units_____________________ _____.-__ 2 Structural geology_________________________________________________ 9 Economic appraisal of the exploration____________________________ 10 References. ___ __________________________ 11 ILLUSTRATION Page PLATE 1. Outline map and sections, Beecher No. 3-Black Diamond peg- matite______________________________________ In pocket TABLE Page TABLE 1. Diamond-drill logs, Black Diamond pegmatite.____________ E3 m CONTRIBUTIONS TO ECONOMIC GEOLOGY DIAMOND-DRILLING EXPLORATION OF THE BEECHER NO. 3-BLACK DIAMOND PEGMATITE, CUSTER COUNTY, SOUTH DAKOTA By J. A. REDDEN ABSTRACT Diamond-drilling at the Beecher No. 3-Black Diamond pegmatite, Ouster County, S. Dak., has provided information that modifies and supplements findings reported previously (Redden, 1959). Two zones not exposed at the surface were found during the drilling: a quartz-albite-perthite-muscovite-pegmatite zone and a quartz-albite-perthite-spodumene pegmatite zone. Previous concepts of the structure near the surface require no significant change, but the new data make possible a greatly improved interpretation of the structure at depth. The most notable change is the recognition of a narrow constriction in the pegmatite at a depth of 60 to 100 feet.
    [Show full text]
  • The Use of Raman Spectroscopy in the Characterization of Variscite Provenance: the Gavà Case
    Chapitre III : Apport des méthodes d’analyses à l’étude de la diffusion des productions The use of Raman spectroscopy in the characterization of variscite provenance: the Gavà case Joan Carlos Melgarejo, Laia Arqués, Cristina Villanova-de-Benavent, Tariq Jahwari, Lisard Torró, Josep Bosch Argilagós, Montgarri Castillo-Oliver, Marc Campeny, Sandra Amores, Aleu Andreazini, Saleh Lehbib, Antoni Camprubí Abstract. The Gavà phosphate deposit, mined during the Neolithic, was produced by weathering processes affecting primary apatite beds. It exhibits a neat vertical zoning, related to chemical gradients during weathering. Strengite, yellowish Al-rich strengite and ferroan variscite are found at the top, pale- green variscite at the intermediate levels, and green variscite in depth. Fe values are very low in the greenish samples, as well as Cr and V. Raman spectrums of the Gavà variscite show differences with samples from other occurrences worldwide. Moreover, some spectral differences can also be observed in the Raman spectra of variscite coming from different depths in the deposit. Raman spectroscopy can be an efficient tool to discriminate not only samples from different geographical localities, but also from its original position in a given deposit. Key-words: variscite, Raman, microprobe, veins, supergene. Résumé. Le gîte de phosphates de Gavà, exploité au Néolithique, s’est formé par des processus de météorisation qui auraient affecté des strates primaires d’apatite. Ce gîte a une zonation chimique verticale, qui aurait été produite par des gradations chimiques lors de la météorisation. La partie haute du gîte contient de la strengite, de l’Al-strengite et de la Fe-variscite jaunâtres ; les niveaux intermédiaires contiennent de la variscite verdâtre et les niveaux plus profonds, de la variscite verte.
    [Show full text]
  • A Survey of the Gemstone Resources of China
    A SURVEY OF THE GEMSTONE RESOURCES OF CHINA By Peter C. Keller and Wang Fuquan The People's Republic of China has recently hina has historically been a land of great mystery, placed a high priority on identifying and C with natural resources and cultural treasures that, developing its gemstone resources. Initial until recently, were almost entirely hidden from the out- exploration by teams of geologists side world. From the point of view of the geologist and throughout China has identified many gemologist, one could only look at known geological maps deposits with significant potential, of this huge country and speculate on the potential impact including amher, cinnabar, garnets, blue sapphires, and diamonds. Small amounts of China would have on the world's gem markets if its gem ruby have' qlso been found. Major deposits resources were ever developed to their full potential. of nephriteyade as well as large numbers of During the past few years, the government of the Peo- gem-bearing pegmatite dilces have been ple's Republic of China (P.R.C.)has opened its doors to the identified.Significant deposits of peridot outside world in a quest for information and a desire for are crirrently being exploited from Hebei scientific and cultural cooperation. It was in this spirit of Province. Lastly, turqrloise rivaling the cooperation that a week-long series of lectures on gem- finest Persian material has been found in stones and their origins was presented by the senior author large quantities in Hubei and Shaanxi and a colleague to over 100 geologists from all over China Provinces.
    [Show full text]
  • Turquoise: the Cerrillos Mineral Gem
    A Living History Museum Turquoise: The Cerrillos Mineral Gem The mines of Cerrillos, New Mexico produce a particularly beautiful blue/ green variety of turquoise, so stunning in fact that they have been mined for roughly the last 3,000 years! Chemically, it is a phosphate of aluminum carrying small quantities of copper and iron and a green mineral, variscite. These give the gemstone its color as well as its value and beauty. This is the only phosphate that is considered a precious stone. Ancestral Puebloans first started mining the Cerrillos hills circa 900 BCE, and it’s been mined ever since. This “gem” of a mineral has been found across the state, and archaeological evidence shows it’s been mined and fashioned into ornaments and jewelry for centuries, with remnants found at one of the most ancient sites in the state, Chetro Ketl at Chaco Canyon. Southwest indigenous groups call turquoise chalchihuitl, as did the ancient peoples of Mexico and Central America who used the same word to describe jade or green turquoise. One of the hills still being mined in Cerrillos still bears the name, Mount Chalchihuitl. Combined with shell and coral from the California coast acquired in trade, turquoise jewelry itself became a valued commodity. Spanish settlers didn’t have much interest in turquoise as they were looking for what they considered a more important prize, namely gold and silver. In fact, outside of local indigenous groups, other cultural groups weren’t much interested in it and it didn’t really gain popularity with the American cultural at large until the 1890s.
    [Show full text]