Texture Builder Plugin for Cambam
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Making a Game Character Move
Piia Brusi MAKING A GAME CHARACTER MOVE Animation and motion capture for video games Bachelor’s thesis Degree programme in Game Design 2021 Author (authors) Degree title Time Piia Brusi Bachelor of Culture May 2021 and Arts Thesis title 69 pages Making a game character move Animation and motion capture for video games Commissioned by South Eastern Finland University of Applied Sciences Supervisor Marko Siitonen Abstract The purpose of this thesis was to serve as an introduction and overview of video game animation; how the interactive nature of games differentiates game animation from cinematic animation, what the process of producing game animations is like, what goes into making good game animations and what animation methods and tools are available. The thesis briefly covered other game design principles most relevant to game animators: game design, character design, modelling and rigging and how they relate to game animation. The text mainly focused on animation theory and practices based on commentary and viewpoints provided by industry professionals. Additionally, the thesis described various 3D animation and motion capture systems and software in detail, including how motion capture footage is shot and processed for games. The thesis ended on a step-by-step description of the author’s motion capture cleanup project, where a jog loop was created out of raw motion capture data. As the topic of game animation is vast, the thesis could not cover topics such as facial motion capture and procedural animation in detail. Technologies such as motion matching, machine learning and range imaging were also suggested as topics worth covering in the future. -
A Guide to Harvard Academics
The 49 A Guide to Harvard Academics 2016-2017 This guide is not the College’s advising resource of record. For the most accurate and up-to-date information on concentration and secondary field requirements, please consult the undergraduate Handbook for Students. Table of Contents Welcome to Harvard .........................................................................................................................4 Fields of Concentration and the 49 Book.......................................................................................5 How to Read the Fields of Concentration in the Handbook for Students.................................6 Academic Advising at Harvard........................................................................................................7 The Advising Relationship ...............................................................................................................8 Building Your Board of Advisors ...................................................................................................9 First-Year Advising ............................................................................................................................10 Sophomore Advising .........................................................................................................................11 Concentration Advising ....................................................................................................................12 Additional Advising Resources .......................................................................................................13 -
Openscad User Manual (PDF)
OpenSCAD User Manual Contents 1 Introduction 1.1 Additional Resources 1.2 History 2 The OpenSCAD User Manual 3 The OpenSCAD Language Reference 4 Work in progress 5 Contents 6 Chapter 1 -- First Steps 6.1 Compiling and rendering our first model 6.2 See also 6.3 See also 6.3.1 There is no semicolon following the translate command 6.3.2 See Also 6.3.3 See Also 6.4 CGAL surfaces 6.5 CGAL grid only 6.6 The OpenCSG view 6.7 The Thrown Together View 6.8 See also 6.9 References 7 Chapter 2 -- The OpenSCAD User Interface 7.1 User Interface 7.1.1 Viewing area 7.1.2 Console window 7.1.3 Text editor 7.2 Interactive modification of the numerical value 7.3 View navigation 7.4 View setup 7.4.1 Render modes 7.4.1.1 OpenCSG (F9) 7.4.1.1.1 Implementation Details 7.4.1.2 CGAL (Surfaces and Grid, F10 and F11) 7.4.1.2.1 Implementation Details 7.4.2 View options 7.4.2.1 Show Edges (Ctrl+1) 7.4.2.2 Show Axes (Ctrl+2) 7.4.2.3 Show Crosshairs (Ctrl+3) 7.4.3 Animation 7.4.4 View alignment 7.5 Dodecahedron 7.6 Icosahedron 7.7 Half-pyramid 7.8 Bounding Box 7.9 Linear Extrude extended use examples 7.9.1 Linear Extrude with Scale as an interpolated function 7.9.2 Linear Extrude with Twist as an interpolated function 7.9.3 Linear Extrude with Twist and Scale as interpolated functions 7.10 Rocket 7.11 Horns 7.12 Strandbeest 7.13 Previous 7.14 Next 7.14.1 Command line usage 7.14.2 Export options 7.14.2.1 Camera and image output 7.14.3 Constants 7.14.4 Command to build required files 7.14.5 Processing all .scad files in a folder 7.14.6 Makefile example 7.14.6.1 Automatic -
Seamless Texture Mapping of 3D Point Clouds
Seamless Texture Mapping of 3D Point Clouds Dan Goldberg Mentor: Carl Salvaggio Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology Rochester, NY November 25, 2014 Abstract The two similar, quickly growing fields of computer vision and computer graphics give users the ability to immerse themselves in a realistic computer generated environment by combining the ability create a 3D scene from images and the texture mapping process of computer graphics. The output of a popular computer vision algorithm, structure from motion (obtain a 3D point cloud from images) is incomplete from a computer graphics standpoint. The final product should be a textured mesh. The goal of this project is to make the most aesthetically pleasing output scene. In order to achieve this, auxiliary information from the structure from motion process was used to texture map a meshed 3D structure. 1 Introduction The overall goal of this project is to create a textured 3D computer model from images of an object or scene. This problem combines two different yet similar areas of study. Computer graphics and computer vision are two quickly growing fields that take advantage of the ever-expanding abilities of our computer hardware. Computer vision focuses on a computer capturing and understanding the world. Computer graphics con- centrates on accurately representing and displaying scenes to a human user. In the computer vision field, constructing three-dimensional (3D) data sets from images is becoming more common. Microsoft's Photo- synth (Snavely et al., 2006) is one application which brought attention to the 3D scene reconstruction field. Many structure from motion algorithms are being applied to data sets of images in order to obtain a 3D point cloud (Koenderink and van Doorn, 1991; Mohr et al., 1993; Snavely et al., 2006; Crandall et al., 2011; Weng et al., 2012; Yu and Gallup, 2014; Agisoft, 2014). -
Makerbot in the Classroom
COMPILED BY MAKERBOT EDUCATION Copyright © 2015 by MakerBot® www.makerbot.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. The information in this document concerning non-MakerBot products or services was obtained from the suppliers of those products or services or from their published announcements. Specific questions on the capabilities of non-MakerBot products and services should be addressed to the suppliers of those products and services. ISBN: 978-1-4951-6175-9 Printed in the United States of America First Edition 10 9 8 7 6 5 4 3 2 1 Compiled by MakerBot Education MakerBot Publishing • Brooklyn, NY TABLE OF CONTENTS 06 INTRODUCTION TO 3D PRINTING IN THE CLASSROOM 08 LESSON 1: INTRODUCTION TO 3D PRINTING 11 MakerBot Stories: Education 12 MakerBot Stories: Medical 13 MakerBot Stories: Business 14 MakerBot Stories: Post-Processing 15 MakerBot Stories: Design 16 LESSON 2: USING A 3D PRINTER 24 LESSON 3: PREPARING FILES FOR PRINTING 35 THREE WAYS TO MAKE 36 WAYS TO DOWNLOAD 40 WAYS TO SCAN 46 WAYS TO DESIGN 51 PROJECTS AND DESIGN SOFTWARE 52 PROJECT: PRIMITIVE MODELING WITH TINKERCAD 53 Make Your Own Country 55 Explore: Modeling with Tinkercad 59 Investigate: Geography and Climates 60 Create: -
A Recommended Workflow Methodology in the Creation of An
Manson et al. BMC Medical Imaging (2015) 15:44 DOI 10.1186/s12880-015-0088-6 TECHNICAL ADVANCE Open Access A recommended workflow methodology in the creation of an educational and training application incorporating a digital reconstruction of the cerebral ventricular system and cerebrospinal fluid circulation to aid anatomical understanding Amy Manson1,2, Matthieu Poyade2 and Paul Rea1* Abstract Background: The use of computer-aided learning in education can be advantageous, especially when interactive three-dimensional (3D) models are used to aid learning of complex 3D structures. The anatomy of the ventricular system of the brain is difficult to fully understand as it is seldom seen in 3D, as is the flow of cerebrospinal fluid (CSF). This article outlines a workflow for the creation of an interactive training tool for the cerebral ventricular system, an educationally challenging area of anatomy. This outline is based on the use of widely available computer software packages. Methods: Using MR images of the cerebral ventricular system and several widely available commercial and free software packages, the techniques of 3D modelling, texturing, sculpting, image editing and animations were combined to create a workflow in the creation of an interactive educational and training tool. This was focussed on cerebral ventricular system anatomy, and the flow of cerebrospinal fluid. Results: We have successfully created a robust methodology by using key software packages in the creation of an interactive education and training tool. This has resulted in an application being developed which details the anatomy of the ventricular system, and flow of cerebrospinal fluid using an anatomically accurate 3D model. -
Modifing Thingiverse Model in Blender
Modifing Thingiverse Model In Blender Godard usually approbating proportionately or lixiviate cooingly when artier Wyn niello lastingly and forwardly. Euclidean Raoul still frivolling: antiphonic and indoor Ansell mildew quite fatly but redipped her exotoxin eligibly. Exhilarating and uncarted Manuel often discomforts some Roosevelt intimately or twaddles parabolically. Why not built into inventor using thingiverse blender sculpt the model window Logo simple metal, blender to thingiverse all your scene of the combined and. Your blender is in blender to empower the! This model then merging some models with blender also the thingiverse me who as! Cam can also fits a thingiverse in your model which are interchangeably used software? Stl files software is thingiverse blender resize designs directly from the toolbar from scratch to mark parts of the optics will be to! Another method for linux blender, in thingiverse and reusable components may. Svg export new geometrics works, after hours and drop or another one of hobbyist projects its huge user community gallery to the day? You blender model is thingiverse all models working choice for modeling meaning you can be. However in blender by using the product. Open in blender resize it original shape modeling software for a problem indeed delete this software for a copy. Stl file blender and thingiverse all the stl files using a screenshot? Another one modifing thingiverse model in blender is likely that. If we are in thingiverse object you to modeling are. Stl for not choose another source. The model in handy later. The correct dimensions then press esc to animation and exporting into many brands and exported file with the. -
Metadefender Core V4.17.3
MetaDefender Core v4.17.3 © 2020 OPSWAT, Inc. All rights reserved. OPSWAT®, MetadefenderTM and the OPSWAT logo are trademarks of OPSWAT, Inc. All other trademarks, trade names, service marks, service names, and images mentioned and/or used herein belong to their respective owners. Table of Contents About This Guide 13 Key Features of MetaDefender Core 14 1. Quick Start with MetaDefender Core 15 1.1. Installation 15 Operating system invariant initial steps 15 Basic setup 16 1.1.1. Configuration wizard 16 1.2. License Activation 21 1.3. Process Files with MetaDefender Core 21 2. Installing or Upgrading MetaDefender Core 22 2.1. Recommended System Configuration 22 Microsoft Windows Deployments 22 Unix Based Deployments 24 Data Retention 26 Custom Engines 27 Browser Requirements for the Metadefender Core Management Console 27 2.2. Installing MetaDefender 27 Installation 27 Installation notes 27 2.2.1. Installing Metadefender Core using command line 28 2.2.2. Installing Metadefender Core using the Install Wizard 31 2.3. Upgrading MetaDefender Core 31 Upgrading from MetaDefender Core 3.x 31 Upgrading from MetaDefender Core 4.x 31 2.4. MetaDefender Core Licensing 32 2.4.1. Activating Metadefender Licenses 32 2.4.2. Checking Your Metadefender Core License 37 2.5. Performance and Load Estimation 38 What to know before reading the results: Some factors that affect performance 38 How test results are calculated 39 Test Reports 39 Performance Report - Multi-Scanning On Linux 39 Performance Report - Multi-Scanning On Windows 43 2.6. Special installation options 46 Use RAMDISK for the tempdirectory 46 3. -
DVD-Ofimática 2014-07
(continuación 2) Calizo 0.2.5 - CamStudio 2.7.316 - CamStudio Codec 1.5 - CDex 1.70 - CDisplayEx 1.9.09 - cdrTools FrontEnd 1.5.2 - Classic Shell 3.6.8 - Clavier+ 10.6.7 - Clementine 1.2.1 - Cobian Backup 8.4.0.202 - Comical 0.8 - ComiX 0.2.1.24 - CoolReader 3.0.56.42 - CubicExplorer 0.95.1 - Daphne 2.03 - Data Crow 3.12.5 - DejaVu Fonts 2.34 - DeltaCopy 1.4 - DVD-Ofimática Deluge 1.3.6 - DeSmuME 0.9.10 - Dia 0.97.2.2 - Diashapes 0.2.2 - digiKam 4.1.0 - Disk Imager 1.4 - DiskCryptor 1.1.836 - Ditto 3.19.24.0 - DjVuLibre 3.5.25.4 - DocFetcher 1.1.11 - DoISO 2.0.0.6 - DOSBox 0.74 - DosZip Commander 3.21 - Double Commander 0.5.10 beta - DrawPile 2014-07 0.9.1 - DVD Flick 1.3.0.7 - DVDStyler 2.7.2 - Eagle Mode 0.85.0 - EasyTAG 2.2.3 - Ekiga 4.0.1 2013.08.20 - Electric Sheep 2.7.b35 - eLibrary 2.5.13 - emesene 2.12.9 2012.09.13 - eMule 0.50.a - Eraser 6.0.10 - eSpeak 1.48.04 - Eudora OSE 1.0 - eViacam 1.7.2 - Exodus 0.10.0.0 - Explore2fs 1.08 beta9 - Ext2Fsd 0.52 - FBReader 0.12.10 - ffDiaporama 2.1 - FileBot 4.1 - FileVerifier++ 0.6.3 DVD-Ofimática es una recopilación de programas libres para Windows - FileZilla 3.8.1 - Firefox 30.0 - FLAC 1.2.1.b - FocusWriter 1.5.1 - Folder Size 2.6 - fre:ac 1.0.21.a dirigidos a la ofimática en general (ofimática, sonido, gráficos y vídeo, - Free Download Manager 3.9.4.1472 - Free Manga Downloader 0.8.2.325 - Free1x2 0.70.2 - Internet y utilidades). -
Cour Art of Illusion
© Club Informatique Pénitentiaire avril 2016 Initiation au dessin 3D avec "Art Of Illusion" Sommaire OBJECTIFS ET MOYENS. ..................................................... 2 LES MATERIAUX. ................................................................ 30 PRESENTATION GENERALE DE LA 3D.......................... 2 Les matériaux uniformes ..................................... 30 La 3D dans la vie quotidienne. .............................. 2 Les matériaux procéduraux................................. 30 Les Outils disponibles. ........................................... 2 LES LUMIERES..................................................................... 31 PRESENTATION GENERALE DE "ART OF ILLUSION"3 Les lumières ponctuelles. .................................... 31 L'aide. ................................................................... 3 Les lumières directionnelles ................................ 32 L'interface. ............................................................ 4 Les lumières de type "spot"................................. 32 Le système de coordonnées................................... 6 Exemples de lumières.......................................... 33 LES OBJETS ............................................................................. 9 LES CAMERAS. ..................................................................... 34 Les primitives. ....................................................... 9 Les filtres sur les caméras.................................... 35 Manipulation des objets. ................................... -
Basic Implementation and Measurements of Plane Detection
Basic Implementation and Measurements of Plane Detection in Point Clouds A project of the 2017 Robotics Course of the School of Information Science and Technology (SIST) of ShanghaiTech University https://robotics.shanghaitech.edu.cn/teaching/robotics2017 Chen Chen Wentao Lv Yuan Yuan School of Information and School of Information and School of Information and Science Technology Science Technology Science Technology [email protected] [email protected] [email protected] ShanghaiTech University ShanghaiTech University ShanghaiTech University Abstract—In practical robotics research, plane detection is an Corsini et al.(2012) is working on dealing with the problem important prerequisite to a wide variety of vision tasks. FARO is of taking random samples over the surface of a 3D mesh another powerful devices to scan the whole environment into describing and evaluating efficient algorithms for generating point cloud. In our project, we are working to apply some algorithms to convert point cloud data to plane mesh, and then different distributions. In this paper, the author we propose path planning based on the plane information. Constrained Poisson-disk sampling, a new Poisson-disk sam- pling scheme for polygonal meshes which can be easily I. Introduction tweaked in order to generate customized set of points such as In practical robotics research, plane detection is an im- importance sampling or distributions with generic geometric portant prerequisite to a wide variety of vision tasks. Plane constraints. detection means to detect the plane information from some Kazhdan and Hoppe(2013) is talking about poisson surface basic disjoint information, for example, the point cloud. In this reconstruction, which can create watertight surfaces from project, we will use point clouds from FARO devices which oriented point sets. -
3D Printing Forum - Kraftwurx - Kraftwürx 3D Printing Generated: 23 September, 2021, 14:35
3D Printing Forum - Kraftwurx - Kraftwürx 3D Printing Generated: 23 September, 2021, 14:35 25 Free 3D modeling softwares Posted by Waldo - 2011/11/08 14:23 _____________________________________ I thought this link may come in handy to a few designers out there. 25 Free Modeling Softwares ============================================================================ Re:25 Free 3D modeling softwares Posted by admin - 2011/11/08 18:51 _____________________________________ Blender A free and open source 3D modeling and animation application which can be used for modeling, UV unwrapping, texturing, rigging, water simulations, skinning, animating, rendering, particle and other simulations, non-linear editing, compositing, and creating interactive 3D applications. K-3D K-3D is free-as-in-freedom 3D modeling and animation software. It features a plugin-oriented procedural engine for all of its content, making K-3D a very versatile and powerful package. K-3D excels at polygonal modeling, and includes basic tools for NURBS, patches, curves and animation. Art of Illusion Art of Illusion is a free, open source 3D modelling and rendering studio. Some of the highlights include subdivision surface based modelling tools, skeleton based animation, and a graphical language for designing procedural textures and materials. SOFTIMAGE|XSI Mod Tool A free 3D modeling and animation software for aspiring game developers and modders. The Mod Tool is a free version of XSI for non commercial game creation. It is made for everyone needing a powerful 3D application to make and mod games. The Mod Tool plugs into all the major game engines and development frameworks for next-generation games, casual games, mods for existing titles and even Flash-based 3D games.