Advances in Protein Structure Prediction and Design

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Protein Structure Prediction and Design REVIEWS TECHNOLOGIES AND TECHNIQUES Advances in protein structure prediction and design Brian Kuhlman 1,2* and Philip Bradley 3,4* Abstract | The prediction of protein three-dimensional structure from amino acid sequence has been a grand challenge problem in computational biophysics for decades, owing to its intrinsic scientific interest and also to the many potential applications for robust protein structure prediction algorithms, from genome interpretation to protein function prediction. More recently , the inverse problem — designing an amino acid sequence that will fold into a specified three-dimensional structure — has attracted growing attention as a potential route to the rational engineering of proteins with functions useful in biotechnology and medicine. Methods for the prediction and design of protein structures have advanced dramatically in the past decade. Increases in computing power and the rapid growth in protein sequence and structure databases have fuelled the development of new data-intensive and computationally demanding approaches for structure prediction. New algorithms for designing protein folds and protein– protein interfaces have been used to engineer novel high-order assemblies and to design from scratch fluorescent proteins with novel or enhanced properties, as well as signalling proteins with therapeutic potential. In this Review , we describe current approaches for protein structure prediction and design and highlight a selection of the successful applications they have enabled. The stunning diversity of molecular functions per- These advances in protein structure prediction and formed by naturally evolved proteins is made possible by design have been fuelled by technological breakthroughs their finely tuned three-dimensional structures, which as well as by a rapid growth in biological databases. are in turn determined by their genetically encoded Protein-modelling algorithms (BOx 1) are computation- amino acid sequences. A predictive understanding of the ally demanding both to develop and to apply. The rapid relationship between amino acid sequence and protein increase in computing power available to researchers structure would therefore open up new avenues, both for (both CPU-based and, increasingly, GPU-based com- the prediction of function from genome sequence data puting power) facilitates rapid benchmarking of new and also for the rational engineering of novel protein algorithms and enables their application to larger mole- 1Department of Biochemistry functions through the design of amino acid sequences cules and molecular assemblies. At the same time, and Biophysics, University of with specific structures. The past decade has seen dra- next-generation sequencing has fuelled a dramatic North Carolina, Chapel Hill, matic improvements in our ability to predict and design increase in protein sequence databases as genomic NC, USA. the three-dimensional structures of proteins, with and metagenomic sequencing efforts have expanded10. 2Lineberger Comprehensive potentially far-reaching implications for medicine and Advances in software and automation have increased the Cancer Center, University of our understanding of biology. New machine-learning pace of experimental structure determination, speeding North Carolina, Chapel Hill, NC, USA. algorithms have been developed that analyse the pat- the growth of the database of experimentally determined 11 3Computational Biology terns of correlated mutations in protein families, to protein structures (the Protein Data Bank (PDB)) , which Program, Fred Hutchinson predict structurally interacting residues from sequence now contains close to 150,000 macromolecular structures. Cancer Research Center, information alone1,2. Improved protein energy functions3,4 Deep-learning algorithms12 that have revolutionized image Seattle, WA, USA. have for the first time made it possible to start with an processing and speech recognition are now being adopted 4Institute for Protein Design, approximate structure prediction model and move it by protein modellers seeking to take advantage of these University of Washington, closer to the experimentally determined structure by expanded sequence and structural databases. Seattle, WA, USA. an energy-guided refinement process5,6. Advances in In this Review, we highlight a selection of recent *e-mail: bkuhlman@ email.unc.edu; pbradley@ protein conformational sampling and sequence optimi- breakthroughs that these technological advances have fredhutch.org zation have permitted the design of novel protein struc- enabled. We describe current approaches to the pre- 7,8 https://doi.org/10.1038/ tures and complexes , some of which show promise diction and design of protein structures, focusing pri- s41580-019-0163-x as therapeutics9. marily on template-free methods that do not require an NATURE REVIEWS | MOLECULAR CELL BIOLOGY VOLUME 20 | NOVEMBER 2019 | 681 REVIEWS Box 1 | Navigating protein energy landscapes Protein conformational energy landscapes are complex, high-dimensional surfaces with many local minima. Navigating these landscapes in order to locate low-energy basins for prediction and design requires efficient sampling methods and accurate energy functions. In gradient-based optimization approaches (see the figure, upper left panel), the derivatives of the energy function with respect to the flexible degrees of freedom (e.g. the atomic coordinates or backbone torsion angles) are calculated in order to proceed in the direction in which the energy decreases most rapidly. Gradient-based optimization is effective at finding the nearest local minimum in the energy landscape, but it will not generally locate the global minimum. Monte Carlo sampling approaches employ randomly selected conformational moves and occasional uphill steps to escape local minima (see the figure, lower panels). In Metropolis Monte Carlo44, sampling moves are accepted (green arrows) or rejected (red arrows) on the basis of the change in energy: downhill moves that decrease the energy are accepted with probability 1, whereas uphill moves (dashed arrows) are accepted with a probability P that exponentially decreases as a function of the energy change. Examples of the move sets used for Monte Carlo simulations include fragment-replacement moves, in which a continuous backbone segment in the current conformation is replaced with an alternative conformation from a fragment library, and side-chain rotamer substitutions. A popular alternative to Monte Carlo sampling is molecular dynamics simulation (see the figure, upper right panel), in which the conformational sampling is dictated by Newton’s laws of motion applied to the potential energy function of the molecular system. Given a starting set of atomic positions and velocities, the force acting on each atom is calculated by taking the gradient of the potential energy, and a resulting acceleration is derived from Newton’s second law (F = ma). A very small step forwards in time is taken (typically of the order of a few femtoseconds), and new positions and velocities are calculated on the basis of the size of the time step and the old positions, velocities and accelerations. With an accurate energy function and sufficiently small time steps, a long molecular-dynamics simulation provides broad sampling of the energy landscape and also gives a realistic picture of how individual molecules evolve over time. The challenge of modelling approaches based on molecular dynamics is that anywhere from millions to trillions of time steps must be conducted to reach biologically relevant time scales, requiring high-performance software and, in some cases, even special-purpose supercomputers170,171. Exploring the energy landscape Molecular dynamics Gradient-based minimization Start F = ma gy Force field calculations Start Protein energy functions Finish for each atom determine Ener time progression in v = dx/dt Functions that correspond femtosecond steps to a mathematical model Nearest energy minimum of the molecular forces that Finish determine protein structures and interactions. The choice Conformation of an energy function defines a map from structures onto energy values, referred to as Metropolis Monte Carlo Monte Carlo moves an energy landscape, which can guide structure prediction P = 0.03 and design simulations. Typical ΔE = 2.1 P = 0.58 protein energy functions are P = 1 linear combinations of multiple gy P = 1 Start P = 0.07 terms, each term capturing a ΔE = 0.33 Ener distinct energetic contribution ΔE = 1.6 Global P = 1 (van der Waals interactions, minimum electrostatics, desolvation), Finish Fragment Rotamer with the weights and atomic replacement substitution Conformation parameters for these terms chosen by a parameterization procedure that seeks to optimize the agreement experimentally determined structure as a template. The in the shape of the energy landscape of the polypeptide: between the quantities strengths and weaknesses of these modelling approaches, the native state is the one with the lowest free energy16,17. predicted from the energy as well as their current and potential applications, will be This hypothesis forms the basis for a general approach to function and the corresponding values derived from discussed. Finally, we comment on the broader practi- protein structure prediction that combines sampling of experiments or from quantum cal implications of these developments for the fields of alternative conformations with scoring to rank them by chemistry calculations on small biology and medicine. energy
Recommended publications
  • An Effective Computational Method Incorporating Multiple Secondary
    Old Dominion University ODU Digital Commons Computer Science Faculty Publications Computer Science 2017 An Effective Computational Method Incorporating Multiple Secondary Structure Predictions in Topology Determination for Cryo-EM Images Abhishek Biswas Old Dominion University Desh Ranjan Old Dominion University Mohammad Zubair Old Dominion University Stephanie Zeil Old Dominion University Kamal Al Nasr See next page for additional authors Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs Part of the Biochemistry Commons, Computer Sciences Commons, Molecular Biology Commons, and the Statistics and Probability Commons Repository Citation Biswas, Abhishek; Ranjan, Desh; Zubair, Mohammad; Zeil, Stephanie; Al Nasr, Kamal; and He, Jing, "An Effective Computational Method Incorporating Multiple Secondary Structure Predictions in Topology Determination for Cryo-EM Images" (2017). Computer Science Faculty Publications. 81. https://digitalcommons.odu.edu/computerscience_fac_pubs/81 Original Publication Citation Biswas, A., Ranjan, D., Zubair, M., Zeil, S., Al Nasr, K., & He, J. (2017). An effective computational method incorporating multiple secondary structure predictions in topology determination for cryo-em images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14(3), 578-586. doi:10.1109/tcbb.2016.2543721 This Article is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Authors Abhishek Biswas, Desh Ranjan, Mohammad Zubair, Stephanie Zeil, Kamal Al Nasr, and Jing He This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/computerscience_fac_pubs/81 HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author IEEE/ACM Manuscript Author Trans Comput Manuscript Author Biol Bioinform.
    [Show full text]
  • Side-Chain Liquid Crystal Polymers (SCLCP): Methods and Materials. an Overview
    Materials 2009, 2, 95-128; doi:10.3390/ma2010095 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Review Side-chain Liquid Crystal Polymers (SCLCP): Methods and Materials. An Overview Tomasz Ganicz * and Włodzimierz Stańczyk Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza 112, 90- 363 Łódź, Poland; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel. +48-42-684-71-13; Fax: +48-42-684-71-26 Received: 5 February 2009; in revised form: 3 March 2009 / Accepted: 9 March 2009 / Published: 11 March 2009 Abstract: This review focuses on recent developments in the chemistry of side chain liquid crystal polymers. It concentrates on current trends in synthetic methods and novel, well defined structures, supramolecular arrangements, properties, and applications. The review covers literature published in this century, apart from some areas, such as dendritic and elastomeric systems, which have been recently reviewed. Keywords: Liquid crystals, side chain polymers, polymer modification, polymer synthesis, self-assembly. 1. Introduction Over thirty years ago the work of Finkelmann and Ringsdorf [1,2] gave important momentum to synthesis of side chain liquid crystal polymers (SCLCPs), materials which combine the anisotropy of liquid crystalline mesogens with the mechanical properties of polymers. Although there were some earlier attempts [2], their approach of decoupling the motions of a polymer main chain from a mesogen, thus allowed side chain moieties to build up long range ordering (Figure 1). They were able to synthesize polymers with nematic, smectic and cholesteric phases via free radical polymerization of methacryloyl type monomers [3].
    [Show full text]
  • The Role of Side-Chain Branch Position on Thermal Property of Poly-3-Alkylthiophenes
    Polymer Chemistry The Role of Side-chain Branch Position on Thermal Property of Poly-3-alkylthiophenes Journal: Polymer Chemistry Manuscript ID PY-ART-07-2019-001026.R2 Article Type: Paper Date Submitted by the 02-Oct-2019 Author: Complete List of Authors: Gu, Xiaodan; University of Southern Mississippi, School of Polymer Science and Engineering Cao, Zhiqiang; University of Southern Mississippi, School of Polymer Science and Engineering Galuska, Luke; University of Southern Mississippi, School of Polymer Science and Engineering Qian, Zhiyuan; University of Southern Mississippi, School of Polymer Science and Engineering Zhang, Song; University of Southern Mississippi, School of Polymer Science and Engineering Huang, Lifeng; University of Southern Mississippi, School of Polymers and High Performance Materials Prine, Nathaniel; University of Southern Mississippi, School of Polymer Science and Engineering Li, Tianyu; Oak Ridge National Laboratory; University of Tennessee Knoxville He, Youjun; Oak Ridge National Laboratory Hong, Kunlun; Oak Ridge National Laboratory, Center for Nanophase Materials Science; Oak Ridge National Laboratory, Center for Nanophase Materials Science Page 1 of 13 PleasePolymer do not Chemistryadjust margins ARTICLE The Role of Side-chain Branch Position on Thermal Property of Poly-3-alkylthiophenes Received 00th January 20xx, a a a a a a Accepted 00th January 20xx Zhiqiang Cao, Luke Galuska, Zhiyuan Qian, Song Zhang, Lifeng Huang, Nathaniel Prine, Tianyu Li,b, c Youjun He,b Kunlun Hong,*b, c and Xiaodan Gu*a DOI: 10.1039/x0xx00000x Thermomechanical properties of conjugated polymers (CPs) are greatly influenced by both their microstructures and backbone structures. In the present work, to investigate the effect of side-chain branch position on the backbone’s mobility and molecular packing structure, four poly (3-alkylthiophene-2, 5-diyl) derivatives (P3ATs) with different side chains, either branched and linear, were synthesized by a quasi-living Kumada catalyst transfer polymerization (KCTP) method.
    [Show full text]
  • Protein Structure & Folding
    6 Protein Structure & Folding To understand protein folding In the last chapter we learned that proteins are composed of amino acids Goal as a chemical equilibrium. linked together by peptide bonds. We also learned that the twenty amino acids display a wide range of chemical properties. In this chapter we will see Objectives that how a protein folds is determined by its amino acid sequence and that the three-dimensional shape of a folded protein determines its function by After this chapter, you should be able to: the way it positions these amino acids. Finally, we will see that proteins fold • describe the four levels of protein because doing so minimizes Gibbs free energy and that this minimization structure and the thermodynamic involves both making the most favorable bonds and maximizing disorder. forces that stabilize them. • explain how entropy (S) and enthalpy Proteins exhibit four levels of structure (H) contribute to Gibbs free energy. • use the equation ΔG = ΔH – TΔS The structure of proteins can be broken down into four levels of to determine the dependence of organization. The first is primary structure, the linear sequence of amino the favorability of a reaction on acids in the polypeptide chain. By convention, the primary sequence is temperature. written in order from the amino acid at the N-terminus (by convention • explain the hydrophobic effect and its usually on the left) to the amino acid at the C-terminus. The second level role in protein folding. of protein structure, secondary structure, is the local conformation adopted by stretches of contiguous amino acids.
    [Show full text]
  • DNA Glycosylase Exercise - Levels 1 & 2: Answer Key
    Name________________________ StarBiochem DNA Glycosylase Exercise - Levels 1 & 2: Answer Key Background In this exercise, you will explore the structure of a DNA repair protein found in most species, including bacteria. DNA repair proteins move along DNA strands, checking for mistakes or damage. DNA glycosylases, a specific type of DNA repair protein, recognize DNA bases that have been chemically altered and remove them, leaving a site in the DNA without a base. Other proteins then come along to fill in the missing DNA base. Learning objectives We will explore the relationship between a protein’s structure and its function in a human DNA glycosylase called human 8-oxoguanine glycosylase (hOGG1). Getting started We will begin this exercise by exploring the structure of hOGG1 using a molecular 3-D viewer called StarBiochem. In this particular structure, the repair protein is bound to a segment of DNA that has been damaged. We will first focus on the structure hOGG1 and then on how this protein interacts with DNA to repair a damaged DNA base. • To begin using StarBiochem, please navigate to: http://mit.edu/star/biochem/. • Click on the Start button Click on the Start button for StarBiochem. • Click Trust when a prompt appears asking if you trust the certificate. • In the top menu, click on Samples à Select from Samples. Within the Amino Acid/Proteins à Protein tab, select “DNA glycosylase hOGG1 w/ DNA – H. sapiens (1EBM)”. “1EBM” is the four character unique ID for this structure. Take a moment to look at the structure from various angles by rotating and zooming on the structure.
    [Show full text]
  • GROMACS: Fast, Flexible, and Free
    GROMACS: Fast, Flexible, and Free DAVID VAN DER SPOEL,1 ERIK LINDAHL,2 BERK HESS,3 GERRIT GROENHOF,4 ALAN E. MARK,4 HERMAN J. C. BERENDSEN4 1Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, S-75124 Uppsala, Sweden 2Stockholm Bioinformatics Center, SCFAB, Stockholm University, SE-10691 Stockholm, Sweden 3Max-Planck Institut fu¨r Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany 4Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands Received 12 February 2005; Accepted 18 March 2005 DOI 10.1002/jcc.20291 Published online in Wiley InterScience (www.interscience.wiley.com). Abstract: This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simula- tions. The package includes about 100 utility and analysis programs.
    [Show full text]
  • Improved Prediction of Protein Side-Chain Conformations with SCWRL4 Georgii G
    proteins STRUCTURE O FUNCTION O BIOINFORMATICS Improved prediction of protein side-chain conformations with SCWRL4 Georgii G. Krivov,1,2 Maxim V. Shapovalov,1 and Roland L. Dunbrack Jr.1* 1 Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111 2 Department of Applied Mathematics, Moscow Engineering Physics Institute (MEPhI), Kashirskoe Shosse 31, Moscow 115409, Russian Federation INTRODUCTION ABSTRACT The side-chain conformation prediction problem is an integral Determination of side-chain conformations is an component of protein structure determination, protein structure important step in protein structure prediction and protein design. Many such methods have prediction, and protein design. In single-site mutants and in closely been presented, although only a small number related proteins, the backbone often changes little and structure pre- 1 are in widespread use. SCWRL is one such diction can be accomplished by accurate side-chain prediction. In method, and the SCWRL3 program (2003) has docking of ligands and other proteins, taking into account changes remained popular because of its speed, accuracy, in side-chain conformation is often critical to accurate structure pre- and ease-of-use for the purpose of homology dictions of complexes.2–4 Even in methods that take account of modeling. However, higher accuracy at compara- changes in backbone conformation, one step in the process is recal- ble speed is desirable. This has been achieved in culation of side-chain conformation or ‘‘repacking.’’5 Because many a new program SCWRL4 through: (1) a new backbone conformations may be sampled in model refinements, backbone-dependent rotamer library based on side-chain prediction must also be very fast.
    [Show full text]
  • The Future of Protein Secondary Structure Prediction Was Invented by Oleg Ptitsyn
    biomolecules Review The Future of Protein Secondary Structure Prediction Was Invented by Oleg Ptitsyn 1, 1, 1 2 1,3 Daniel Rademaker y, Jarek van Dijk y, Willem Titulaer , Joanna Lange , Gert Vriend and Li Xue 1,* 1 Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc, 6525 GA Nijmegen, The Netherlands; [email protected] (D.R.); [email protected] (J.v.D.); [email protected] (W.T.); [email protected] (G.V.) 2 Bio-Prodict, 6511 AA Nijmegen, The Netherlands; [email protected] 3 Baco Institute of Protein Science (BIPS), Mindoro 5201, Philippines * Correspondence: [email protected] These authors contributed equally to this work. y Received: 15 May 2020; Accepted: 2 June 2020; Published: 16 June 2020 Abstract: When Oleg Ptitsyn and his group published the first secondary structure prediction for a protein sequence, they started a research field that is still active today. Oleg Ptitsyn combined fundamental rules of physics with human understanding of protein structures. Most followers in this field, however, use machine learning methods and aim at the highest (average) percentage correctly predicted residues in a set of proteins that were not used to train the prediction method. We show that one single method is unlikely to predict the secondary structure of all protein sequences, with the exception, perhaps, of future deep learning methods based on very large neural networks, and we suggest that some concepts pioneered by Oleg Ptitsyn and his group in the 70s of the previous century likely are today’s best way forward in the protein secondary structure prediction field.
    [Show full text]
  • Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
    processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi
    [Show full text]
  • Proteasomes on the Chromosome Cell Research (2017) 27:602-603
    602 Cell Research (2017) 27:602-603. © 2017 IBCB, SIBS, CAS All rights reserved 1001-0602/17 $ 32.00 RESEARCH HIGHLIGHT www.nature.com/cr Proteasomes on the chromosome Cell Research (2017) 27:602-603. doi:10.1038/cr.2017.28; published online 7 March 2017 Targeted proteolysis plays an this process, both in mediating homolog ligases, respectively, as RN components important role in the execution and association and in providing crossovers that impact crossover formation [5, 6]. regulation of many cellular events. that tether homologs and ensure their In the first of the two papers, Ahuja et Two recent papers in Science identify accurate segregation. Meiotic recom- al. [7] report that budding yeast pre9∆ novel roles for proteasome-mediated bination is initiated by DNA double- mutants, which lack a nonessential proteolysis in homologous chromo- strand breaks (DSBs) at many sites proteasome subunit, display defects in some pairing, recombination, and along chromosomes, and the multiple meiotic DSB repair, in chromosome segregation during meiosis. interhomolog interactions formed by pairing and synapsis, and in crossover Protein degradation by the 26S pro- DSB repair drive homolog association, formation. Similar defects are seen, teasome drives a variety of processes culminating in the end-to-end homolog but to a lesser extent, in cells treated central to the cell cycle, growth, and dif- synapsis by a protein structure called with the proteasome inhibitor MG132. ferentiation. Proteins are targeted to the the synaptonemal complex (SC) [3]. These defects all can be ascribed to proteasome by covalently ligated chains SC-associated focal protein complexes, a failure to remove nonhomologous of ubiquitin, a small (8.5 kDa) protein.
    [Show full text]
  • Chapter 13 Protein Structure Learning Objectives
    Chapter 13 Protein structure Learning objectives Upon completing this material you should be able to: ■ understand the principles of protein primary, secondary, tertiary, and quaternary structure; ■use the NCBI tool CN3D to view a protein structure; ■use the NCBI tool VAST to align two structures; ■explain the role of PDB including its purpose, contents, and tools; ■explain the role of structure annotation databases such as SCOP and CATH; and ■describe approaches to modeling the three-dimensional structure of proteins. Outline Overview of protein structure Principles of protein structure Protein Data Bank Protein structure prediction Intrinsically disordered proteins Protein structure and disease Overview: protein structure The three-dimensional structure of a protein determines its capacity to function. Christian Anfinsen and others denatured ribonuclease, observed rapid refolding, and demonstrated that the primary amino acid sequence determines its three-dimensional structure. We can study protein structure to understand problems such as the consequence of disease-causing mutations; the properties of ligand-binding sites; and the functions of homologs. Outline Overview of protein structure Principles of protein structure Protein Data Bank Protein structure prediction Intrinsically disordered proteins Protein structure and disease Protein primary and secondary structure Results from three secondary structure programs are shown, with their consensus. h: alpha helix; c: random coil; e: extended strand Protein tertiary and quaternary structure Quarternary structure: the four subunits of hemoglobin are shown (with an α 2β2 composition and one beta globin chain high- lighted) as well as four noncovalently attached heme groups. The peptide bond; phi and psi angles The peptide bond; phi and psi angles in DeepView Protein secondary structure Protein secondary structure is determined by the amino acid side chains.
    [Show full text]
  • Chapter 4 the Three-Dimensional Structure of Proteins
    Chapter 4 The Three-Dimensional Structure of Proteins Multiple Choice Questions 1. Answer: D All of the following are considered “weak” interactions in proteins, except: A) hydrogen bonds. B) hydrophobic interactions. C) ionic bonds. D) peptide bonds. E) van der Waals forces. 2. Answer: D In an aqueous solution, protein conformation is determined by two major factors. One is the formation of the maximum number of hydrogen bonds. The other is the: A) formation of the maximum number of hydrophilic interactions. B) maximization of ionic interactions. C) minimization of entropy by the formation of a water solvent shell around the protein. D) placement of hydrophobic amino acid residues within the interior of the protein. E) placement of polar amino acid residues around the exterior of the protein. 3. 3 Answer: A In the diagram below, the plane drawn behind the peptide bond indicates the: A) absence of rotation around the C—N bond because of its partial double-bond character. B) plane of rotation around the C—N bond. C) region of steric hindrance determined by the large C=O group. D) region of the peptide bond that contributes to a Ramachandran plot. E) theoretical space between –180 and +180 degrees that can be occupied by the and angles in the peptide bond. 4. Answer: D Which of the following best represents the backbone arrangement of two peptide bonds? A) C—N—C—C—C—N—C—C B) C—N—C—C—N—C C) C—N—C—C—C—N D) C—C—N—C—C—N Chapter 4 The Three-Dimensional Structure of Proteins E) C—C—C—N—C—C—C 5.
    [Show full text]