Nonlinear Stability and Numerical Simulations for a Reaction–Diffusion

Total Page:16

File Type:pdf, Size:1020Kb

Nonlinear Stability and Numerical Simulations for a Reaction–Diffusion IJNSNS 2021; aop Florinda Capone*, Maria Francesca Carfora, Roberta De Luca and Isabella Torcicollo Nonlinear stability and numerical simulations for a reaction–diffusion system modelling Allee effect on predators https://doi.org/10.1515/ijnsns-2020-0015 Received January 17, 2020; accepted May 31, 2021; published online August 5, 2021 Abstract: A reaction–diffusion system governing the prey–predator interaction with Allee effect onthe predators, already introduced by the authors in a previous work is reconsidered with the aim of showing destabilization mechanisms of the biologically meaning equilibrium and detecting some aspects for the eventual oscillatory pattern formation. Extensive numerical simulations, depicting such complex dynamics, are shown. In order to complete the stability analysis of the coexistence equilibrium, a nonlinear stability result is shown. Keywords: Alleeeffect;nonlinearstability;predator–prey;reaction–diffusion;Routh–Hurwitz;Turing–Hopf instabilities. 1 Introduction Ecological systems are characterized by the interaction between species and their natural environment. An important type of interaction which influences dynamics of all species is predation. Thus predator–prey models have been in the focus of ecological science since the early days of this discipline. It has turned out that predator–prey systems can show different dynamical behaviors (steady states, oscillations, chaos) depending on the value of model parameters. In predator–prey interactions, a crucial role is played by the cooperation which can help the survival of individuals. In fact, hunting cooperation, observed in many species (carnivores, birds, aquatic organisms, and spiders), implies, as a direct consequence, Allee effect in predators which allows these last to persist even if the prey population does not sustain them in the absence of hunting cooperation [1]. In many papers addressing population dynamics it is assumed that population is homogeneously distributed in the environment, leading to the formulation of ordinary differential equations (ODEs) systems [1–6]. If spatial domains are considered a spatial predator–prey system can be considered as a reaction–diffusion system. Reaction–diffusion systems have been studied in many fields as physics, *Corresponding author: Florinda Capone, Department of Mathematics and Applications ‘‘R.Caccioppoli’’, University of Naples Federico II, Via Cintia, Naples, Italy, E-mail: [email protected] Roberta De Luca, Department of Mathematics and Applications ‘‘R. Caccioppoli’’, University of Naples Federico II, Via Cintia, Naples, Italy, E-mail: [email protected] Maria Francesca Carfora and Isabella Torcicollo, Istituto per le Applicazioni del Calcolo ‘‘Mauro Picone’’, Via P. Castellino 111, CNR, Naples, Italy, E-mail: [email protected] (M.F. Carfora), [email protected] (I. Torcicollo) Open Access. © 2021 Florinda Capone et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License. 2 | F. Capone et al.: On a reaction–diffusion system modelling Allee effect on predators chemistry, biology, economy and from many points of view ([7–13]). In particular it has been shown that reaction–diffusion systems are capable of self organized pattern formation. These spatial patterns arise not from inhomogeneity of initial or boundary conditions, but purely from the dynamics of the system, i.e. from the interaction of nonlinear reactions of growth processes and diffusion (as shown already by Turing14 [ ]). In particular the formation of stationary spatial patterns is due to Turing instabilities. The simultaneous appearance of Turing instability, which leads to steady spatial structures, with Hopf instability, which gives rise to temporal oscillations, is of great interest because these bifurcations are responsible for the breaking of spatial and temporal symmetries, respectively. The focus of research of many authors has been shifted to the study of the formation of such a type of spatio-temporal patterns. It has been shown that spatio-temporal patterns are very likely to be found in the neighborhood of Turing–Hopf bifurcations [15–17]. In this kind of bifurcation the formation of inhomogeneous stationary patterns caused by Turing instabilities “interacts” with the appearance of oscillations due to a Hopf bifurcation. In [7], the classical Lotka–Volterra model with logistic growth for the prey including hunting cooperation proposed in [1] has been extended by assuming that both prey and predators can linearly spread in the environment. Linear stability analysis has been performed and conditions guaranteeing that a biological meaningful equilibrium, stable in the absence of diffusion, becomes unstable in the presence of diffusion (Turing instability) have been found. For this model, we showed some numerical simulations which highlight the impact of different choices for the diffusion coefficients on the dynamics of the two populations and in particular we explored the Turing patterns formation. In the present paper, which can be seen as an enrichment of [7], we analyze again the problem with the aim of showing destabilization mechanisms of the biologically meaning equilibrium and detecting aspects for the eventual oscillatory pattern formation. Moreover, in order to complete the stability analysis of the coexistence equilibrium, we show a nonlinear stability result. The plan of the paper is as follows. Section 2 introduces the mathematical model while a nonlinear stability result is performed in Section 3.InSection 4 linear stability/instability results, both when populations are homogeneously mixed in the environment and in the spatial dependent case, are presented and extensive numerical simulations, depicting the theoretical aspects reported in the manuscript, are showed. 2 Mathematical model In this paper we reconsider the predator–prey model proposed in [7] concerning hunting cooperation with Allee effect on the predators. Assuming that both prey and predators can (linearly) diffuse in the environment, the model, in nondimensional form, that we investigate is given by ( ) ⎧ n n , ⎪ = n 1 − − (1 + p)np + 1Δn ⎨ t k (1) p ⎪ = (1 + p)np − p + Δp, ⎩ t 2 where the nondimensional variables are e x n = N, p = P, t = m, X = , (2) m m A and r eK̄ am d = , k = ,= ,= i , i = 1, 2. (3) m m 2 i A2m In particular, N(X,)andP(X,) denote, respectively, the prey and predator densities; for any ∈ {N, P},:(X,) ∈Ω×ℝ+ → (X,) ∈ ℝ+ being Ω a bounded, connected, and open subset of ℝn (n = 2, 3) having the internal cone propriety; A is the diameter of Ω. The (positive) constants appearing in (1)–(3) have the following biological meaning: r is the per capita intrinsic growth rate of prey; K̄ is the carrying capacity of prey; e is the food conversion efficiency; m is the per capita mortality rate of predators; is the attack rate; F. Capone et al.: On a reaction–diffusion system modelling Allee effect on predators | 3 a is the predator cooperation in hunting rate; and di are the diffusion coefficients. We append the following initial-boundary conditions { ∇n ⋅ n = 0, ∇p ⋅ n = 0, on Ω×ℝ+. , , , , . (4) n(x 0) = n0(x) p(x 0) = p0(x) on Ω being n the outward unit normal to Ω. , The biologically meaningful constant equilibria of system (1) are: (1) E0 = (0 0) (null solution); (2) , ∗ ∗, ∗ E1 = (k 0) (prey-only equilibrium); (3) E = (n p ) (coexistence equilibrium), with 1 n∗ = (5) 1 + p∗ and p∗ given by the positive solution of the equation [7] k2x3 + 2kx2 + k(1 − )x + (1 − k) = 0. (6) In order to perform the stability analysis for the coexistence equilibrium E∗ we set X = n − n∗, Y = p − p∗. (7) System (1) becomes ( ) ( )( ) ( ) ( ) X a11 a12 X 1ΔX F1 , = + + (8) t Y a21 a22 Y 2ΔY F2 with ⎧ 1 + 2p∗ a =− , a =− , ⎪ 11 ∗ 12 ∗ ⎪ k(1 + p ) 1 + p p∗ ⎪a = (1 + p∗)p∗, a = , ⎨ 21 22 1 + p∗ (9) ⎪ X2 F =− − (1 + p∗)XY − Y(XY + n∗Y + p∗X), ⎪ 1 k ⎪ ∗ ∗ ∗ . ⎩F2 = (1 + p )XY + Y(XY + n Y + p X) To (8) we associate the boundary conditions ∇X ⋅ n =∇Y ⋅ n = 0, on Ω×ℝ+ (10) andwedenotebyW∗(Ω) the functional space defined by { } , , d W∗(Ω)= ∈ W1 2(Ω) ∩ W1 2(Ω): =0onΩ×R+ . dn Let < < < < < 0 = 0 1 2 ··· n ··· (11) be the eigenvalues of the operator −Δ on Ω with homogeneous Neumann boundary conditions. The linear system linked to (8) is given by X = X, (12) t where ( ) ( ) a11 + 1Δ a12 , X . = X = (13) a21 a22 + 2Δ Y For each i = 0, 1, 2, 3, …, is an eigenvalue of if and only if is an eigenvalue of the matrix (see [18]) ( ) a − a ̃ 11 i 1 12 . (14) i = a21 a22 − i 2 4 | F. Capone et al.: On a reaction–diffusion system modelling Allee effect on predators ̃ The characteristic equation of i is 2 , i − I1i i + I2i = 0 (15) , , ̃ with Iji (j = 1 2), the principal i− invariants: ⎧ 0 , ⎪I1i = I1 − i( 1 + 2) ∗ (16) ⎨ 2 2 − k p 1 0, ⎪I2i = 1 2 i + i + I2 ⎩ k(1 + p∗) 0, , where I j (j = 1 2), are the principal invariants in absence of diffusion, i.e. kp∗ − ⎧I0 = a + a = , ⎪ 1 11 22 ∗ k(1 + p[) ] ⎨ (17) ⎪I0 = a a − a a = p∗ − + 1 + 2p∗ . ⎩ 2 11 22 12 21 k(1 + p∗)2 The necessary and sufficient conditions guaranteeing that all the roots of (15) have negative real part are the Routh–Hurwitz conditions [19] < , > , , , , . I1i 0 I2i 0 ∀i = 0 1 2 … (18) 3 Nonlinear stability Setting , , X = 1U1 Y = 2U2 (19) , , being i (i = 1 2) two positive scalings to be suitably chosen, (8) can be written as ⎧ U1 1 ̃ , ⎪ = b11U1 + b12U2 + 1ΔU1 + F1 t 1 ⎨ (20) ⎪ U2 1 ̃ , ⎩ = b21U1 + b22U2 + 2ΔU2 + F2 t 2 with j , ̃ ( , ). (21) bij = aij Fi = Fi 1U1 2U2 i In this section we perform the nonlinear stability analysis of the coexistence equilibrium with respect to the norm [20] [ 1 0 ‖ ‖2 ‖ ‖2 ‖ ‖2 V = I (‖U ‖ + ‖U ‖ ) + ‖b U − b U ‖ 2 2 1 2 11 2 21 1 ] ‖ ‖2 .
Recommended publications
  • Mauro Picone Eimatematici Polacchi
    Matematici 21-05-2007 17:02 Pagina 3 ACCADEMIA POLACCA DELLE SCIENZE BIBLIOTECA E CENTRO0 DI STUDI A ROMA CONFERENZE 121 Mauro Picone e i Matematici Polacchi 1937 ~ 1961 a cura di Angelo Guerraggio, Maurizio Mattaliano, Pietro Nastasi ROMA 2007 Matematici 21-05-2007 17:02 Pagina 4 Pubblicato da ACCADEMIA POLACCA DELLE SCIENZE BIBLIOTECA E CENTRO DI STUDI A ROMA vicolo Doria, 2 (Palazzo Doria) 00187 Roma tel. +39 066792170 fax +39 066794087 e-mail: [email protected] www.accademiapolacca.it ISSN 0208-5623 © Accademia Polacca delle Scienze Biblioteca e Centro di Studi a Roma Matematici 21-05-2007 17:02 Pagina 5 indice ^ INTRODUZIONE EL˚BIETA JASTRZ¢BOWSKA MAURO PICONE: UN SINCERO AMICO ANGELO GUERRAGGIO,MAURIZIO DELLA POLONIA E DEI SUOI MATEMATICI MATTALIANO,PIETRO NASTASI MAURO PICONE E I MATEMATICI POLACCHI Matematici 21-05-2007 17:02 Pagina 7 INTRODUZIONE « ENIRE a parlare di matematica a Varsavia, è come portare vasi a Samo», scrisse Mauro Picone settant’anni fa (in una lettera a S. Ma- zurkiewicz del 10 dicembre 1937), facendo eco al proverbio po- Vlacco sull’inutilità di portare legna nel bosco. Quest’affermazione mostra in modo eloquente quanto all’epoca fosse rinomata in Italia la scuo- la matematica polacca, capeggiata da Wac∏aw Sierpiƒski. Era del resto ugualmente tenuta in grande considerazione anche nel resto del mondo, durante il ventennio tra le due guerre. Il presente volume delle Conferenze dell’Accademia Polacca delle Scien- ze di Roma contiene una documentazione eccezionale e di grande interesse riguardante gli stretti contatti intercorsi alla metà del secolo scorso tra i ma- tematici italiani – in particolare il loro più insigne rappresentante del tempo, il già ricordato Mauro Picone – e i matematici polacchi nel corso di quasi 25 anni.
    [Show full text]
  • La Scuola Di Giuseppe Peano
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino La Scuola di Giuseppe Peano This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/75035 since Publisher: Deputazione Subalpina di Storia Patria Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 06 October 2021 Erika Luciano, Clara Silvia Roero * LA SCUOLA DI GIUSEPPE PEANO Lungo tutto l’arco della sua vita universitaria, dal 1880 al 1932, Peano amò circondarsi di allievi, assistenti, colleghi e in- segnanti, cui chiedeva di prendere parte alle iniziative cultura- li o di ricerca che egli stava realizzando: la Rivista di Matema- tica, il Formulario, il Dizionario di Matematica, le Conferenze Matematiche Torinesi, l’Academia pro Interlingua e il periodi- co Schola et Vita. Non stupisce dunque che fin dagli anni No- vanta dell’Ottocento alcuni contemporanei, in lettere private o in sede di congressi internazionali e in articoli, facessero espli- citamente riferimento ad un preciso gruppo di ricercatori, qua- lificandolo come la ‘Scuola italiana’ o la ‘Scuola di Peano’. Dal- le confidenze di G. Castelnuovo a F. Amodeo, ad esempio, sappiamo che nel 1891 la cerchia dei giovani matematici, so- prannominata la Pitareide, che a Torino soleva riunirsi a di - scutere all’American Bar, si era frantumata in due compagini, * Desideriamo ringraziare Paola Novaria, Laura Garbolino, Giuseppe Semeraro, Margherita Bongiovanni, Giuliano Moreschi, Stefania Chiavero e Francesco Barbieri che in vario modo hanno facilitato le nostre ricerche ar- chivistiche e bibliografiche.
    [Show full text]
  • Archivio Mauro Picone
    ARCHIVIO MAURO PICONE INVENTARIO a cura di Paola Cagiano de Azevedo Roma 2016 Mauro Picone (Palermo, 2 maggio 1885 –Roma, 11 aprile 1977) è stato un matematico italiano, fondatore e direttore dell’Istituto per le Applicazioni del Calcolo (IAC). Originario della Sicilia lasciò con la famiglia l’Isola nel 1889, per trasferirsi prima ad Arezzo e successivamente a Parma. Nel 1903 fu ammesso alla Scuola Normale Superiore di Pisa dove frequenta le lezioni di Ulisse Dini e Luigi Bianchi e e dove conobbe Eugenio Lia Levi. Si laureò nel 1907 e nel 1913 si trasferì al Politecnico di Torino come assistente di Meccanica razionale e di Analisi con Guido Fubini. Restò a Torino fino alla prima guerra. Dopo l'impegno bellico, nel 1919 viene chiamato quale professore incaricato di Analisi a Catania, dove ritorna nel 1921 come titolare (dopo una breve parentesi a Cagliari). Successivamente, dopo una breve permanenza a Pisa nel 1924-25, passa prima a Napoli e quindi nel 1932 a Roma, dove resterà fino al collocamento a riposo nel 1960. L’esperienza bellica fu molto importante per Mauro Picone; per le sue conoscenze matematiche, fu infatti incaricato dal comandante Federico Baistrocchi, di calcolare le tavole di tiro per l'utilizzo delle artiglierie pesanti nelle zone montane. Prima di allora, le uniche tavole di tiro disponibili, quelle per zone pianeggianti, erano del tutto inadeguate alle nuove alture e causavano anche gravi danni (si pensi al “fuoco amico Picone ottenne i risultati richiesti adeguando le vecchie tavole di Francesco Siacci (1839-1907) alle complesse condizioni geografiche del Trentino. Per questi meriti nel 1917 fu promosso capitano d’artiglieria e nel 1918 gli fu conferita la Croce di guerra, seguita dalla Croix de guerre francese.
    [Show full text]
  • Gaetano Fichera (1922-1996)
    GAETANO FICHERA (1922-1996) Ana Millán Gasca Pubblicato in Lettera dall'Italia, XI, 43-44, 1996, pp. 114-115. Lo scorso 1° giugno è morto a Roma il matematico Gaetano Fichera, professore decano dell'Università di Roma “La Sapienza”, accademico Linceo e uno dei XL dell'Accademia Nazionale delle Scienze. Nato ad Arcireale, in provincia di Catania, l'8 febbraio 1922, presso l'Università di Catania iniziò giovanissimo, nel 1937, i suoi studi universitari, che continuò poi presso l'Università di Roma, dove si laureò brillantemente in matematica nel 1941. Questi anni di formazione furono guidati dal padre, Giovanni, professore di matematica e fisica nelle scuole medie superiori. Appena laureato, poiché molti giovani assistenti di matematica erano sotto le armi, fu nominato assistente incaricato presso la cattedra di Mauro Picone; ma subito dopo dovette ritornare a Catania per curare una grave malattia. Nel 1942 si arruolò anch'egli, e le vicende della guerra lo tennero lontano fino alla primavera del 1945. Ottenuta la libera docenza nel 1948, fra il 1949 e il 1956 fu professore all'Università di Trieste. A Trieste era nata la futura moglie Matelda Colautti, che egli sposò nel 1952. Nel 1956 si trasferì all'Università di Roma, dove ricoprì dapprima la cattedra di analisi matematica e poi quella di analisi superiore. Nei suoi più di cinquant'anni di attività egli ha dato un grande contributo alla ricerca e all'insegnamento superiore della matematica in Italia ed in particolare a Roma, presso l'Istituto Matematico “Guido Castelnuovo”. I suoi lavori di matematica pura e applicata, a partire dai suoi noti contributi alla teoria matematica dell'elasticità, sono stati apprezzati dai colleghi di tutto il mondo.
    [Show full text]
  • E Carlo Miranda (1912-1982), Uno Dei Suoi Primi Allievi Napoletani Assieme a Renato Caccioppoli, Gianfranco Cimmino E Giuseppe Scorza Dragoni1
    Presentazione Angelo Guerraggio*, Maurizio Mattaliano**, Pietro Nastasi*** Questo fascicolo delle Note è dedicato alle lettere scambiate in quasi quaranta anni tra Mauro Picone (1885-1977) e Carlo Miranda (1912-1982), uno dei suoi primi allievi napoletani assieme a Renato Caccioppoli, Gianfranco Cimmino e Giuseppe Scorza Dragoni1. Continua così il discorso iniziato da questi quaderni con il numero 8-9 del 2004 (“Renato Caccioppoli a 100 anni dalla nascita”) e proseguito con il numero 21- 22 del 2007 (“L’IAC e l’affaire Unesco: i documenti”). Le lettere qui raccolte sono quelle sopravvissute alla dispersione del ricco archivio storico dell’Istituto per le Applicazioni del Calcolo, creato da Picone a Roma nel 1932 come istituto del CNR e di cui il giovanissimo Miranda fu prima assistente e poi valente vice-direttore. Il carteggio si apre significativamente con la lettera a lui diretta il 14 ottobre 1932 da parte di Giovanni Magrini (primo segretario del CNR) con cui l’appena ventenne matematico napoletano apprende di essere stato nominato assistente del neonato Istituto di Calcolo del CNR proprio su proposta di Picone. È una carriera fulminante quella di Miranda. Napoletano, figlio di Giovanni che era stato negli anni ’20 rettore di quella Università, si era iscritto a Matematica a soli 15 anni! Si laurea “con lode e pubblicazione della tesi” il 17 luglio 1931, discutendo un lavoro2 diretto da Picone relativo alle equazioni integrali singolari e all’estensione al caso non simmetrico della teoria sviluppata da T. Carleman nel caso simmetrico. Scrive A. Avantaggiati nel suo ricordo: “il lavoro svolto per la tesi determinò in Miranda un deciso orientamento verso la teoria delle equazioni integrali, degli sviluppi in serie e delle loro applicazioni.
    [Show full text]
  • Alfio Quarteroni
    An interview with Alfio Quarteroni Conducted by Philip Davis on 22 June, 2004 Brown University, Providence, Rhode Island Interview conducted by the Society for Industrial and Applied Mathematics, as part of grant # DE-FG02-01ER25547 awarded by the US Department of Energy. Transcript and original tapes donated to the Computer History Museum by the Society for Industrial and Applied Mathematics © Computer History Museum Mountain View, California ABSTRACT: Professor Alfio Quarteroni discusses a range of topics in this interview with Phil Davis, including his work on finite elements, spectral methods, and domain decomposition. He began studying economic issues in a more professional school before switching over to study mathematics. Quarteroni received his Ph.D. from University of Pavia in Italy, completing a thesis on finite methods under Franco Brezzi. He finished it up in Paris, at the Laboratoire d'Analyse Numérique (now called the Laboratorie Jacques-Louis Lions), where he was encouraged to begin studying spectral methods. Professor Enrico Magenes, who dominated mathematics at Pavia, also exerted a strong influence on Quarteroni. Quarteroni observes how numerical methods have gone from obscure, rarely-used tools to common ones, although they are still not popular in some quarters of the engineering community. Quarteroni notes that low-order methods such as finite elements and higher- order methods such as spectral methods seem to be merging. Numerical methods are necessarily tied to experimental data. One of the challenges, especially in the airplane industry, is multi-objective optimization involving various fields of mathematics and physics. Quarteroni later became interested in domain decomposition, an area that became important with the rise of parallel computing but which are now important in a variety of fields, including the design of racing yachts.
    [Show full text]
  • Ennio De Giorgi 1928--1996
    murat.qxp 8/13/97 9:00 AM Page 1095 Ennio De Giorgi (1928–1996) Jacques-Louis Lions and François Murat Ennio De Giorgi died in Pisa on October 25, Rome. Unabashed by R. Caccioppoli’s great fame, 1996. E. De Giorgi did not hesitate to speak up at the end of the lecture and to suggest alternative solutions. E. De Giorgi was born in 1928 in Lecce, a city of According to Eduardo Vesentini, who also was a Puglia (southern Italy) with which he always main- young researcher at the time and who was at- tained deep ties. He received his laurea, the tending the lecture, R. Caccioppoli instantly rec- diploma which marks the end of the Italian un- ognized the exceptional character of E. De Giorgi’s dergraduate curriculum, in Rome in 1950. He began proposal. his research work in 1951 at the Istituto per le Ap- The word “exceptional” comes up again and plicazioni del Calcolo (Institute for the Applications again when talking with anyone who had the op- of Calculus) in Rome. The Institute was then di- portunity of meeting E. De Giorgi. Let his work rected by Mauro Picone, and E. De Giorgi became speak for itself. one of his assistants. Professor and student were indeed an odd match: the former, a classicist, Minimal Surfaces and Geometric Measure dressed with rigor and elegance; the latter, un- Theory orthodox, already wearing his strange beret. But From the very beginning of his research activity, M. Picone, a seasoned observer of the develop- E. De Giorgi was interested in geometric measure ment of science, knew how to spot talent: he soon theory.
    [Show full text]
  • Key Moments in the History of Numerical Analysis
    Key Moments in the History of Numerical Analysis Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA http://www.mathcs.emory.edu/ benzi ∼ Outline Part I: Broad historical outline • 1. The prehistory of Numerical Analysis 2. Key moments of 20th Century Numerical Analysis Part II: The early history of matrix iterations • 1. Iterative methods prior to about 1930 2. Mauro Picone and Italian applied mathematics in the Thirties 3. Lamberto Cesari's work on iterative methods 4. Gianfranco Cimmino and his method 5. Cimmino's legacy PART I Broad historical outline The prehistory of Numerical Analysis In contrast to more classical fields of mathematics, like Analysis, Number Theory or Algebraic Geometry, Numerical Analysis (NA) became an independent mathematical disci- pline only in the course of the 20th Century. This is perhaps surprising, given that effective methods of computing approximate numerical solutions to mathematical problems are already found in antiquity (well before Euclid!), and were especially prevalent in ancient India and China. While algorithmic mathematics thrived in ancient Asia, classical Greek mathematicians showed relatively little interest in it and cultivated Ge- ometry instead. Nevertheless, Archimedes (3rd Century BCE) was a master calculator. The prehistory of Numerical Analysis (cont.) Many numerical methods studied in introductory NA courses bear the name of great mathematicians including Newton, Euler, Lagrange, Gauss, Jacobi, Fourier, Chebyshev, and so forth. However, it should be kept in mind that well into the 19th Century, the distinction between mathematics and natural philosophy (including physics, chemistry, astronomy etc.) was almost non-existent. Scientific specialization is a modern phenomenon, and nearly all major mathematicians were also physicists and astronomers.
    [Show full text]
  • Fabio Augusto Milner
    FABIO AUGUSTO MILNER 1. DEGREES & QUALIFICATIONS Licenciado Ciencias Matemáticas University of Buenos Aires 1976 M.S. University of Chicago 1979 PhD University of Chicago 1983 2. ACADEMIC POSITIONS HELD Assistant Director Simon A. Levin Mathematical, Computational and August 2019- Modeling Sciences Center, ASU Assoc. Dean of Grad. Initiatives The College of Liberal Arts and Sciences, ASU July 2018- Visiting Professor Basque Center for Appl. Math. June-July 2017 Visiting Professor Basque Center for Appl. Math. November-December 2016 Visiting Professor University of Trento, Italy October 2014 Honors Faculty, Barrett College Arizona State University 2013- Affiliated Faculty, Teachers Coll. Arizona State University 2013- Director, Mathematics STEM Ed. Arizona State University 2009- Director, First Year Mathematics Arizona State University 2008- Professor of Mathematics, Appl. Arizona State University 2008- Math. and Math. Education University Management Team Arizona State University 2008- Visiting Professor University of Trento, Italy June-July 2006 Visiting Professor University of Bordeaux II, France May-June 2006 Professor University of Puerto Rico Mayagüez, Puerto Rico Jan.-July 2004 Visiting Professor University of Trento, Italy Jan.-July 2003 Visiting Professor University of Palermo, Argentina July 2001 Visiting Professor University of Trento, Italy May-June 2001 Visiting Professor Nankai University, China May 2000 Visiting Professor University of Bordeaux II, France June 1998 Visiting Professor University of Trento, Italy Dec. 1996
    [Show full text]
  • Olivetti's New Canaan Electronic Laboratory
    Design Research Society DRS Digital Library DRS Biennial Conference Series DRS2018 - Catalyst Jun 25th, 12:00 AM Olivetti’s New Canaan Electronic Laboratory: when design meets computing ROCHA João University of Évora Follow this and additional works at: https://dl.designresearchsociety.org/drs-conference-papers Citation João, R. (2018) Olivetti’s New Canaan Electronic Laboratory: when design meets computing, in Storni, C., Leahy, K., McMahon, M., Lloyd, P. and Bohemia, E. (eds.), Design as a catalyst for change - DRS International Conference 2018, 25-28 June, Limerick, Ireland. https://doi.org/10.21606/drs.2018.656 This Research Paper is brought to you for free and open access by the Conference Proceedings at DRS Digital Library. It has been accepted for inclusion in DRS Biennial Conference Series by an authorized administrator of DRS Digital Library. For more information, please contact [email protected]. Olivetti’s New Canaan Electronic Laboratory: when design meets computing ROCHA João University of Évora [email protected] doi: 10.21606/drs.2018. 656 The development of computer technology and its application by architectural research centres is a recent area of study. Initial research focused on the early work in design and computation that took place in university centres, their key figures and the theoretical and practical advances. Within this context, this paper aims to unveil the historical role played by the Olivetti Company and its Electronics Research Laboratory in New Canaan, US in shaping the first fully transistorized computer in the world and also in inaugurating multidisciplinary design research within the field. Founded in 1952, the laboratory worked closely with its main headquarters in Italy, introducing many technological innovations into the design process for new Olivetti electronic products.
    [Show full text]
  • On Francesco G. Tricomi's Heritage: Archive and Miscellany
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino On Francesco G. Tricomi's heritage: Archive and miscellany This is a pre print version of the following article: Original Citation: Availability: This version is available http://hdl.handle.net/2318/1797798 since 2021-08-23T16:33:10Z Published version: DOI:10.1016/j.hm.2021.05.001 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 03 October 2021 JID:YHMAT AID:3069 /SCO [m3SC+YHMAT; v1.346] P.1 (1-13) Available online at www.sciencedirect.com ScienceDirect Historia Mathematica ••• (••••) •••–••• www.elsevier.com/locate/yhmat Notes and Sources On Francesco G. Tricomi’s heritage: Archive and miscellany Erika Luciano University of Turin, Torino, Italy Abstract After providing a summarised biographical and scientific profile of F.G. Tricomi, we describe the structure and contents of his archive and miscellany, which jointly represent a documentary heritage of great historical importance, as well as one of the major patrimonies of the Department of Mathematics ‘G. Peano’ at the University of Turin. © 2021 Elsevier Inc. All rights reserved. Sommario Dopo aver sinteticamente illustrato il profilo biografico e scientifico di F.G. Tricomi, si descrivono la struttura e la consistenza del suo archivio e della sua miscellanea, che rappresentano un fondo documentario di notevole valore storico, e al contempo uno dei patrimoni più importanti del Dipartimento di Matematica ‘G.
    [Show full text]
  • Arxiv:1911.05066V2 [Math.AP]
    The Picone identity: A device to get optimal uniqueness results and global dynamics in Population DynamicsI Sergio Fern´andez-Rinc´on∗ Institute of Interdisciplinary Mathematics, Department of Mathematical Analysis and Applied Mathematics, Complutense University, Madrid 28040, Spain Juli´anL´opez-G´omez Institute of Interdisciplinary Mathematics, Department of Mathematical Analysis and Applied Mathematics, Complutense University, Madrid 28040, Spain Abstract This paper infers from a generalized Picone identity the uniqueness of the stable positive solution for a class of semilinear equations of superlinear indefinite type, as well as the uniqueness and global attractivity of the coexistence state in two generalized diffusive pro- totypes of the symbiotic and competing species models of Lotka{Volterra. The optimality of these uniqueness theorems reveals the tremendous strength of the Picone identity. Keywords: Picone identity, superlinear indefinite problems, diffusive symbiotic models, diffusive competitive models, uniqueness of coexistence states, global dynamics 2010 MSC: Primary 35M12, 35J61, 35J57, Secondary 35K57, 35B09, 35Q92 1. Introduction Mauro Picone was born in Palermo, Sicily, on the 2nd of May of 1885 and passed away on April 11th 1977 at Rome. After completing his Degree at the Scuola Normale Superiore in 1907, he remained in Pisa as an assistant of U. Dini until 1913. Then, he moved to the Technical University of Turin as an assistant of G. Fubini, where he stayed until he served as an officer in the World War I. It was during
    [Show full text]