<<

Solar Powered The True All Electric Aircraft

Hannes Ross, IBR , www.solarimpulse.com 1 EWADE, Mai 2009, Sevilla Fly aroung the World with a Solar

1. , Basics 2. Flying Power, Basics 3. Solar Powered AC History 4. Technology Status 5. Manned Solar Powered AC, Solarimpulse 6. Summary

Hannes Ross, IBR , www.solarimpulse.com 2 EWADE, Mai 2009, Sevilla Earth Population: More than 6 Billion in 2006

10,0 8,0 Today 6,0

Milliarden 4,0 2,0 0,0 Hannes Ross, IBR , www.solarimpulse.com1800 1850 1900 1950 2000 2050 3 EWADE, Mai 2009, Sevilla Solar Cells on Roof‘s

Hannes Ross, IBR , www.solarimpulse.com 4 EWADE, Mai 2009, Sevilla „Renewable“ Energy: A Requirement for Mankind

Solar Powered Space Craft

Hannes Ross, IBR , www.solarimpulse.com 5 EWADE, Mai 2009, Sevilla Primary Energy Collection Parameters

Earth Rotational Axis Radiation (W/m²), Oberpfaffenhofen

1000

Sun light 800 Summer

600

400 Lattitude, Winter Time of the year, 200 Time of the day, Altitude (Clouds, humidity), 4 8 12 16 20 24 Cell Temperature Day Time (hrs) Source: B.Keidel Cell Orientation Dissertation

Hannes Ross, IBR , www.solarimpulse.com 6 EWADE, Mai 2009, Sevilla Collection

Theoretical Limit of SC efficiency: ~28 %, monocristaline Silizium ~29 % Gallium Arsenid Energy (W) Collected ~20% for high tech application

~14 % for ground based systems (e.g.solar roof) Cost Energy collected is proportional to solar cell area!

Solar Cell Area (m²)

Hannes Ross, IBR , www.solarimpulse.com 7 EWADE, Mai 2009, Sevilla Contents

1. Solar Power, Basics 2. Flying Power, Basics 3. Solar Powered AC History 4. Technology Status and Challenges 5. Manned Solar Powered AC, SI 6. Summary

Hannes Ross, IBR , www.solarimpulse.com 8 EWADE, Mai 2009, Sevilla Available Solar Power

Solar constant 1300W/m² extraterrestrial At flight altitudes approx. 1000W/m² noon peak ]

² 1000 900

[W/m Solar Power Collection 800 700

surface Required: 600 Potential Energy,Battery 500 400

on horizontal 300 200 Average Solar Power ~260 W/m² 100 radiation 0 0 3 6 9 12 15 18 21 24 h sunrise to sunset

Hannes Ross, IBR , www.solarimpulse.com 9 EWADE, Mai 2009, Sevilla Wing Loading and Power Loading For Horizontal Flight

Power = Drag *Velocity ¾¾®P =D*V r KKKDrag ¾¾®D =CD* 2 *V ^2*S 2 W 1 KKKVelocity ¾¾®V =2 * * r S CL r P =CD* 2 *V ^3*S P 2 æW ö CD =2 *ç ÷^3/ 2* S r è S ø CL^3/ 2

W æ P ö æ r ö CL = ç ÷^ (2 / 3)*ç ÷^ (1/ 3)* S è S ø è 2 ø CD^ (2/ 3)

Hannes Ross, IBR , www.solarimpulse.com 10 EWADE, Mai 2009, Sevilla Power Train Schematic And Typical Losses/Efficiencies

Solar Cells, 20% Converter 98,5%

Electric Lines 99,5% MPPT Motor 93% ~95%

Propeller 77% Battery Batteries 96.5% Manager 99,5% Other consumers

From solar energy to = 89% losses!!

MPPT= Maximum Power Point Tracker

Hannes Ross, IBR , www.solarimpulse.com 11 EWADE, Mai 2009, Sevilla Design Space Wingloading, kg/m² 9,00 L/D=37 Design Point 35

33 8,00 31

29

7,00 Max. Solarpower available

Aspect Ratio 6,00 0,02 0,025 0,03 0,035 Hannes Ross, IBR , Solarwww.solarimpulse.com Power, KW/m² 12 EWADE, Mai 2009, Sevilla Contents

1. Solar Power, Basics 2. Flying Power, Basics 3. Solar Powered AC History 4. Technology Status and Challenges 5. Manned Solar Powered AC, SI 6. Summary

Hannes Ross, IBR , www.solarimpulse.com 13 EWADE, Mai 2009, Sevilla First Unmanned Solar Powered AC Ray Bouchers „Sunrise1“, 1974

Hannes Ross, IBR , www.solarimpulse.com 14 EWADE, Mai 2009, Sevilla Gossamer Condor by P. McReady

Hannes Ross, IBR , www.solarimpulse.com 15 EWADE, Mai 2009, Sevilla Solar Aircraft History

Solar Challenger 1981 Sunseeker 1990 Unmanned Helios McReady

2001 262 km, 5 hrs, E. Raymond Aerovironment 2.5 KW 400 km 30’000 m, 21 KW 1980 1990 2000

Solair 1 1983 Icare 2 1996 Günter Rochelt

Voit-Nitschmann > 5 hrs, 2.2 KW 350 km, 3.5 KW Hannes Ross, IBR , www.solarimpulse.com 16 EWADE, Mai 2009, Sevilla Unmanned Solar Aircraft

NASA's Environmental Research Aircraft and Sensor Technology (ERAST) Program

75m Wingspan

Hannes Ross, IBR , www.solarimpulse.com 17 EWADE, Mai 2009, Sevilla First 48 hour flight of an UAV, 2005

Alan Cocconi, So Long El Mirage Dry Lake in California

Hannes Ross, IBR , www.solarimpulse.com 18 EWADE, Mai 2009, Sevilla 26 August 2008 The ZEPHYR(~30kg) flew for 82 hours 37 minutes, beating the current official world record for unmanned flight, set by Global Hawk in 2001 at 30 hours 24 minutes.

Hannes Ross, IBR , www.solarimpulse.com 19 EWADE, Mai 2009, Sevilla Contents

1. Solar Power, Basics 2. Flying Power, Basics 3. Solar Powered AC History 4. Technology Status and Challenges 5. Manned Solar Powered AC, SI 6. Summary

Hannes Ross, IBR , www.solarimpulse.com 20 EWADE, Mai 2009, Sevilla Relative Massbreakdown Related to Maximum TOGW

100%

90%

80%

70%

60% Payload+Fuel Equipment/Systems 50% Propulsion 40% Structure

30%

20% Solar Powered AC need a 10% • Superlight structure 0% • a very efficient Passenger Military Jet Solar propulsion system Jet Powered

Hannes Ross, IBR , www.solarimpulse.com 21 EWADE, Mai 2009, Sevilla Technological Challenges For manned ac with flight time >24 hr’s

Propulsion • high specific power solar array >20% • high specific energy batteries > 200 Wh/kg • high efficiency electric motors • high efficiency propeller • thermal control systems for batteries, engines •Structures • lightweight composite structures • acceptable aero-elastic characteristics Systems with Low Power Consumption • FCS, ECS, Communication, Navigation,

Hannes Ross, IBR , www.solarimpulse.com 22 EWADE, Mai 2009, Sevilla

Stand 2008 22 20

2004 2006 2008 Source: ZAE Bayern

Hannes Ross, IBR , www.solarimpulse.com 23 EWADE, Mai 2009, Sevilla Lithium-Ion Battery Development

US$/Wh Wh/l

Wh/kg

Source: www.battery university.com

Hannes Ross, IBR , www.solarimpulse.com 24 EWADE, Mai 2009, Sevilla Electrical System Schematic

Power Bus, 270 V MPPT MPPT MPPT + - + - + - - +

MMS

Ground Connector DC/ AC Motor INV.

Battery Temperatur Management System Prop.Lage

Solar Cell DC/DC Inverter Modules 28V system

Hannes Ross, IBR , www.solarimpulse.com 25 EWADE, Mai 2009, Sevilla Solar Power Generator Typical Data

Solar cell Size: 125mm x 125 mm à ~ 60 cells/m² ! for a solar area of 200m² --> ~12 000 cells ! Voltage: output varies with cell temperature and load ~0,6 V

Mass: 0,480 kg/m² à 96 kg /200m²

Structural Flexibility: adapt to wing deformation, no load pick-up

Solar Cell Arrangement 60 Module cordwise , 320 Cell/String = spanwise

Maximum Powerpoint Tracker (MPPT= electronic control unit): 1 MPPT can control up to 4 modules à ~36 MPPT‘s for 200m²

Hannes Ross, IBR , www.solarimpulse.com 26 EWADE, Mai 2009, Sevilla Battery Characteristics Typical Data

Voltage: 4,2 V , 3.2 V fully discharged Specific energy: ~ >200 Wh/kg Number in Battery Pack: 290 (Max Voltage)/4,2 = 70 units Total Battery Capacity for an aircraft: 86 kWh

Battery pack for Antares Sailplane Total Battery Mass: à 436 kg Battery Unit Capacity, Mass and Volume: variable, àmanufacturer Temperature: 15°C < T < 35°C, requires monitoring & conditioning

Hannes Ross, IBR , www.solarimpulse.com 27 EWADE, Mai 2009, Sevilla Electrical Motors

• High efficiency • Low weight (higher RPMàtransmission system), low volume • Good RPM controllability • Operational between -50°C to 110° C

• Type’s – DC – Asynchron – Synchron – Transversalflow

Motor for Antares Sailplane 42 KW, Propeller diameter 2m Hannes Ross, IBR , www.solarimpulse.com 28 EWADE, Mai 2009, Sevilla Structural Design

• Specific wing mass ~ 2kg/m² • No statistical data available!! • Ground handling is a tricky

Primary materials: • Carbon Fibre Composites, • Foam, • (Transparent) plastic skin/foil Structural concepts • Tubular- / Box - Spar • Sandwich • Grid structure

Hannes Ross, IBR , www.solarimpulse.com 29 EWADE, Mai 2009, Sevilla Helios, normal wing bending at 1g

Hannes Ross, IBR , www.solarimpulse.com 30 EWADE, Mai 2009, Sevilla Helios Accident

High Aspect Ratio and low wing loading result in high wing spanàelastic structure

Hannes Ross, IBR , www.solarimpulse.com 31 EWADE, Mai 2009, Sevilla Contents

1. Solar Power, Basics 2. Flying Power, Basics 3. Solar Powered AC History 4. Technology Status and Challenges 5. Manned Solar Powered AC: The Project 6. Summary

Hannes Ross, IBR , www.solarimpulse.com 32 EWADE, Mai 2009, Sevilla 18.08.1932: Der schweizerische Physiker Auguste Piccard (1884-1962) erreicht mit seinem Ballon »FNRS« eine Höhe von 16.940 m und dringt damit in die Stratosphäre vor. Piccard und der Physiker M. Cosyns sitzen dabei in einer kugelförmigen Druckkabine. Die Forscher führen Strahlungsmessungen durch und beweisen die Ungefährlichkeit des Aufenthaltes in größeren Höhen für Menschen in Druckkabinen - eine wichtige Erkenntnis für den Luftverkehr.

Hannes Ross, IBR , www.solarimpulse.com 33 EWADE, Mai 2009, Sevilla Am 23. Januar 1960 tauchte der Amerikaner mit dem Schweizer Jacques Piccard in die "Challenger- Tiefe", knapp 400 Kilometer südwestlich der Pazifik-Insel Guam. Mit knapp 11.000 Metern ist sie einer der Kandidaten für den tiefsten Punkt der Erde. Das Fahrzeug, ein Bathyscaph namens "Trieste", hatte Piccard gemeinsam mit seinem Vater Auguste im Jahre 1953 entwickelt und 1959 an die US-Navy verkauft. Als die Navy ein Jahr später zum Tiefen-Rekord ausholte, übertrug sie Don Walsh das Kommando.

Hannes Ross, IBR , www.solarimpulse.com 34 EWADE, Mai 2009, Sevilla March 1999

Bertrand Piccard decided to launch into a new futuristic enterprise: to fly round the world in a solar-powered aeroplane

Hannes Ross, IBR , www.solarimpulse.com 35 EWADE, Mai 2009, Sevilla Solar Impulse Program Initiated 2001 by and André Borschberg Objective: Develop a manned solar powered aircraft which can fly around the world with solarpower only

Feasibility Study 2002-2003

Approach:

Develop a „Demonstrator“ aircraft to show a 24hr energy neutral day and night Cycle à HB-SIA

Develop the „Record“ aircraft, capable of crossing Atlantic, Pacific in 4 to 5 day`s and Hannesfly around Ross, the IBR world, in 5 to 6 legswww.solarimpulse.com 36 EWADE, Mai 2009, Sevilla Mission Profile

3 Max cruise altitude Altitude 4

2 1 Min night altitude 5

0 24 1. Fly at minimum night altitude 2. Climb 3. Cruise at at max altitude,if power is available 4. Descent at available power 5. Fly at minimum night altitude

Hannes Ross, IBR , www.solarimpulse.com 37 EWADE, Mai 2009, Sevilla Relative Flight Power Required and Solarpower generated=f(Altitude)

1,9 1,8

1,7 Power Required Solar Power Available 1,6

1,5

1,4

1,3 Relative Values 1,2 Flying at low altitude 1,1 requires less energy 1 0 2 4 6 8 10 12 Altitude (km) Hannes Ross, IBR , www.solarimpulse.com 38 EWADE, Mai 2009, Sevilla Typical Configuration

• Conventional configuration • Main weight in wing (partially span loaded aircraft) • Ultra low wing loading (~ 8 kg/m2) • Design optimized for : low power loading, high aerodynamic and propulsion efficiencies • Carbon epoxy HM & HT ultra light primary structures

Hannes Ross, IBR , www.solarimpulse.com 39 EWADE, Mai 2009, Sevilla Design/Scaling Program

Requirements

Assumptions Design Experience Creativity Baseline aircraft

Design data

Performance Iteration

Require ments no met?

Yes

Hannes Ross, IBR , www.solarimpulse.com 40 EWADE, Mai 2009, Sevilla Mission Parameter (1)

Alt*5 [km] Altitude SOLP [Kw] PBAT [Kw] Solarpower PTOT [Kw]

Power required Battery Power

0 4 8 12 16 20 24 Daytime Hannes Ross, IBR , www.solarimpulse.com 41 EWADE, Mai 2009, Sevilla Daytime Refined Baseline, W/S=8.05, AR=18.36 Mission Parameter (2) 300

Alt*10 [km] Collected Solar Energy 250 SOLENAC [Kwh] ENBATAC [Kwh] ENTOTAC [Kwh] Required ENWASTEAC [Kwh] 200 Flight Energy

150 Battery energy 100

Energy (KWh), 10 ALT(km) 50 Altitude

0 0 4 8 12 16 20 24

Hannes Ross, IBR , www.solarimpulse.comDaytimeDaytime(h) (h) 42 EWADE, Mai 2009, Sevilla Design Space

2200 W/S=10kg/m² 9 8 7 No Design Solutions 2000 Optimum design: Correct Increasing AR 1800 • wing size= Solar power, energy 6 • wing shape: Span/AR • battery size, battery mass Unbalanced solutions: 1600 Too much

Weight (kg), • Wing area=Solar energy 1400 Wrong •AR/span • Battery capacity/weight 1200 100 150 200 250 300 Wing Area

Hannes Ross, IBR , www.solarimpulse.com 43 EWADE, Mai 2009, Sevilla Optimum Design Solutions

2,5 AR(relative) 2 Span (Relative) Weight (Relative) 1,5

1 Weight, Span, AR

0,5 0,6 0,8 1 1,2 1,4 Wing Area

Hannes Ross, IBR , www.solarimpulse.com 44 EWADE, Mai 2009, Sevilla Take-off Weight and Wingloading

2000 Man-Powered Solar Powered, Manned

Solar Powered, Unmanned Solar 1500 Battery Powered, Manned Impulse Sailplane, Manned

1000 40 20 15 10 8 6 W/S=4kg/m² ETA Helios

Antares 500 Icare Take-off Weight, kg 2

0 0 50 100 150 200 250 Wing Area, m² Hannes Ross, IBR , www.solarimpulse.com 45 EWADE, Mai 2009, Sevilla SI Prototype Aircraft HB-SIA

© Solar Impulse/EPFL Claudio Leonardi

Hannes Ross, IBR , www.solarimpulse.com 46 EWADE, Mai 2009, Sevilla © Solar Impulse/EPFL Claudio Leonardi

Hannes Ross, IBR , www.solarimpulse.com 47 EWADE, Mai 2009, Sevilla Test Fixture for 10m Wingbox

Source. SOLAR iMPULSE

Hannes Ross, IBR , www.solarimpulse.com 48 EWADE, Mai 2009, Sevilla Example: Horizontal Stabilizer Test article of 2.6m*1.7m

Source. SOLAR iMPULSE

Hannes Ross, IBR , www.solarimpulse.com 49 EWADE, Mai 2009, Sevilla Example: Horizontal Stabilizer Test article of 2.6m*1.7m

Current 3.5kg

Source. SOLAR iMPULSE

Hannes Ross, IBR , www.solarimpulse.com 50 EWADE, Mai 2009, Sevilla Cockpit Structure:

CFC sandwich and foam shell

© Solar Impulse/Stéphane Gros

Hannes Ross, IBR , www.solarimpulse.com 51 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 52 EWADE, Mai 2009, Sevilla Gongola Structure and Engine

© Solar Impulse/Stéphane Gros

Hannes Ross, IBR , www.solarimpulse.com 53 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 54 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 55 EWADE, Mai 2009, Sevilla © Solar Impulse/Stéphane Gros © Solar Impulse/Stéphane Gros

Hannes Ross, IBR , www.solarimpulse.com 56 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 57 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 58 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 59 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 60 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 61 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 62 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 63 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 64 EWADE, Mai 2009, Sevilla Cockpit

Hannes Ross, IBR , www.solarimpulse.com 65 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 66 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 67 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 68 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 69 EWADE, Mai 2009, Sevilla Hannes Ross, IBR , www.solarimpulse.com 70 EWADE, Mai 2009, Sevilla Where shall we fly? (21 June)

1,05

1,00

0,95

0,90

0,85

Relative acumulated energy, Dubai=1 Latitude, deg 0,80 0 20 40 60 80 100

Hannes Ross, IBR , www.solarimpulse.com 71 EWADE, Mai 2009, Sevilla © Solar Impulse/EPFL Claudio Leonardi

Hannes Ross, IBR , www.solarimpulse.com 72 EWADE, Mai 2009, Sevilla Solar Impulse, Cockpit Mock-up, Record Aircraft

© Solar Impulse

Hannes Ross, IBR , www.solarimpulse.com 73 EWADE, Mai 2009, Sevilla Current design: Record Aircraft

© Solar Impulse

Hannes Ross, IBR , www.solarimpulse.com 74 EWADE, Mai 2009, Sevilla Program Schedule

It is a long term project:

2003 Feasibility study at the EPFL de Lausanne in 2003 Announcement of challenge on 28 November 2004-2006 Concept Development 2007-2009 Design and manufacturing of a prototype, 2009, June Unveiling of Prototype, initial test flights 2010 36 hour record flight 2009-2011 Design and Construction of the final 2012 Missions of several days, crossing of the Atlantic and tentative tour of the world completing in five stages

Hannes Ross, IBR , www.solarimpulse.com 75 EWADE, Mai 2009, Sevilla Conclusions

The development of a manned solar powered aircraft capable of staying aloft for more than 24 hours is still a big challenge: It requires

• an aircraft with very large physical dimensions, (area and wing span)

• Ultra light structural design with high stiffness

• Solar cells with very high efficiency (> 20%)

• Batteries with very high specific energy capacity (>200 Wh/kg)

• Very light and efficient electrical engine

• Minimum equipment mass and electrical consumption

Hannes Ross, IBR , www.solarimpulse.com 76 EWADE, Mai 2009, Sevilla With Solar Power around the world:

© Solar Impulse/EPFL Claudio Leonardi

Hannes Ross, IBR , www.solarimpulse.com 77 EWADE, Mai 2009, Sevilla The Core Team

With Solar Power around the world:

© Solar Impulse We want to do it!

Hannes Ross, IBR , www.solarimpulse.com 78 EWADE, Mai 2009, Sevilla Program Founders

André Borschberg Bertrand Piccard Luiggino Torrigiani © Solar Impulse

Hannes Ross, IBR , www.solarimpulse.com 79 EWADE, Mai 2009, Sevilla Main Partners

Official Partners

Official Supporters

Official Suppliers

Scientific and aeronautical partnerships

Hannes Ross, IBR , www.solarimpulse.com 80 EWADE, Mai 2009, Sevilla E N D

Hannes Ross, IBR , www.solarimpulse.com 81 EWADE, Mai 2009, Sevilla