Design and Implementation of Search Awareness Cues in Explicit Collaborative Information Seeking

Total Page:16

File Type:pdf, Size:1020Kb

Design and Implementation of Search Awareness Cues in Explicit Collaborative Information Seeking Design and Implementation of Search Awareness Cues in Explicit Collaborative Information Seeking A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Humanities 2017 Husain AlArayedh Manchester Business School Table of Contents List of Figures ............................................................................................................................... 6 List of Tables ................................................................................................................................ 8 Abstract ..................................................................................................................................... 10 Declaration ................................................................................................................................ 11 Copyright Statement .................................................................................................................. 11 Dedication ................................................................................................................................. 12 Acknowledgments ..................................................................................................................... 12 List of Abbreviations .................................................................................................................. 13 Word Count ............................................................................................................................... 13 Chapter 1. Introduction .............................................................................................................. 14 1.1 Research Domain ........................................................................................................................ 14 1.2 Significance and Opportunity ...................................................................................................... 20 1.3 Research Overview ..................................................................................................................... 24 1.3.1 Research Question ............................................................................................................... 25 1.3.2 Research Objectives ............................................................................................................. 26 1.3.3 Research Design Process ...................................................................................................... 27 1.4 Thesis Structure .......................................................................................................................... 28 Chapter 2. Literature Review ...................................................................................................... 30 2.1 Information Seeking and Retrieval (IS&R) .................................................................................. 30 2.1.1 Situating IS&R and Related Definitions ................................................................................ 31 2.1.2 Information Seeking Models and Forms .............................................................................. 33 2.1.3 Search User Interfaces (SUI) ................................................................................................ 37 2.2 Collaboration ............................................................................................................................... 40 2.2.1 Processes of Collaboration ................................................................................................... 41 2.2.2 Computer-Supported Cooperative Work (CSCW) ................................................................ 46 2.3 Collaborative Information Seeking (CIS) ..................................................................................... 48 2.3.1 Situating CIS ......................................................................................................................... 48 2.3.2 CIS Models and Taxonomies ................................................................................................ 52 2.4 CIS Aspects .................................................................................................................................. 54 2.4.1 Awareness ............................................................................................................................ 57 2.4.2 Communication .................................................................................................................... 60 2 2.4.3 User Interface (UI) ................................................................................................................ 61 2.4.4 Division of Labour (DoL) ....................................................................................................... 63 2.4.5 Roles ..................................................................................................................................... 64 2.4.6 Collaborative Grounding ...................................................................................................... 65 2.4.7 Algorithmic Mediation ......................................................................................................... 66 2.5 Implementation of Awareness Cues and Mechanisms in CIS ..................................................... 67 2.5.1 Search Activities ................................................................................................................... 68 2.5.2 Timelines .............................................................................................................................. 73 2.5.3 Ratings and Annotations ...................................................................................................... 75 Chapter 3. Methodology ............................................................................................................ 78 3.1 Iterative and Incremental Approach ........................................................................................... 78 3.2 Design Science Research (DSR) ................................................................................................... 79 3.2.1 DSR Process Model .............................................................................................................. 80 3.2.2 DSR Philosophical Stance ..................................................................................................... 83 3.3 Methodological Approach .......................................................................................................... 84 Chapter 4. Design and Implementation of SearchAware v1 ......................................................... 85 4.1 SearchAware v1 Overview .......................................................................................................... 85 4.1.1 Design Objectives ................................................................................................................. 86 4.1.2 Design Guidelines ................................................................................................................. 88 4.2 Interface ...................................................................................................................................... 90 4.2.1 Input Features ...................................................................................................................... 93 4.2.2 Informational Features ........................................................................................................ 94 4.2.3 Control Features .................................................................................................................. 94 4.2.4 Further Collaboration and Awareness Cues ........................................................................ 94 4.3 Mashup Implementation ............................................................................................................ 95 4.3.1 Social Network: Twitter ....................................................................................................... 97 4.3.2 Mendeley ............................................................................................................................. 98 4.3.3 Microsoft Academic Search ................................................................................................. 98 4.3.4 Data Exchange Format: JSON ............................................................................................... 99 4.4 Architecture and Backend ........................................................................................................... 99 3 Chapter 5. User Study .............................................................................................................. 103 5.1 Objective ................................................................................................................................... 103 5.2 Study Method ........................................................................................................................... 104 5.3 Usage Results ............................................................................................................................ 105 5.4 Reflections................................................................................................................................. 107 5.5 Discussion .................................................................................................................................. 109 Chapter 6.
Recommended publications
  • Rpa Demystified
    RPA in Action for Healthcare A Challenging Council Merger DECEMBER-JANUARY 2018 RPA DEMYSTIFIED OPEN EMAIL COPY PASTE REPEAT Print Post Approved: 100002740 Ensuring the Failure of Your Knowledge Management Efforts A records manager’s job is never done..with EzeScan! Ready To Help: 1300 EZESCAN (1300 393 722 ) www.ezescan.com.au Finance looks to a new path to digital According the new Finance Discussion Paper, “In early 2018, Finance undertook a 12-week Demonstration of Concept (the record-keeping nirvana Demonstration) to test the concept of automating records capture and categorisation via machine learning and semantic data technologies. Through the Demonstration, it was concluded that while the Government is best placed to describe its functions, industry is working towards automation and would be best placed to provide digital records management systems that would be compatible with the government developed Australian Government Records Interoperability Framework (AGRIF). One industry vendor responded, “I think this means they have decided it is all too hard and could one or more of you vendors do it for us at your cost but to our theoretical and incomplete design? “I guess it will be one of those government projects that goes on More than three years into its multi-million dollar quest to for years and years costing a fortune and then is finally cancelled revolutionise digital record-keeping practices across Federal because technology has passed it by.” government, Australia’s Department of Finance has announced There is also industry concern that the co-design approach another shift in direction and a “review” of the current (and this whole project overall) puts a disproportionately heavy moratorium on new investment in records management burden on SMEs.
    [Show full text]
  • OSINT) Analyst Overtly Passive / Covertly Active Surveillance / Reconnaissance Observation / Exploration Eye / Spy
    Open Source Intelligence (OSINT) Analyst Overtly Passive / Covertly Active Surveillance / Reconnaissance Observation / Exploration Eye / Spy PREFACE This deskside/pocket smartbook contains information to assist you, the open source intelligence analyst, in carrying out your research responsibilities in a Intelligence Oversightmanner that first of all adhere to intelligence oversight and follow the guide lines of AR 381-10, Executive Order 12333, and unit standard operating procedures (SOP). The second is to practice and implement effective operational security (OPSEC) measures during data and information collection activities online. A fine line exists between collection and acquisition, and examples will be pointed out throughout the handbook. This handout is not written specifically for the military active or passive OSINT Analyst but rather as an all-purpose guide for anyone doing research. The one big advantage for the passive OSINT Analyst is that it does not require interaction with the mark. Therefore, it poses little risk since it does not alert the target to the presence of the analyst. If a technique violates Intelligence Oversight and OPSEC, then common sense must take center stage. For those in the civilian community (law enforcement, journalists, researchers, etc.), you are bound by a different set of rules and have more latitude. One important thing to keep in mind is that when threats are mentioned the majority tend to think they are military in nature. We think of Iran, North Korea, and other countries with a military capability. That is not the case. Threats can be the lone wolf types, a disgruntled worker, someone calling in a bomb threat to a hospital, etc.
    [Show full text]
  • Roll Your Own Search Results with Google's New Searchwiki
    866-536-8614 | Contact Us www.peakpositions.com Roll Your Own Search Results With Google's New SearchWiki. In an attempt to offer a more customized search experience, and to stay ahead of competitors, Google will soon be rolling out its SearchWiki feature to everyone using its services while logged into a Google account. The feature, which has been in testing with select users over the last few months, will allow people to shift around, annotate, add, and delete search results to their liking. "Have you ever wanted to mark up Google search results?" asked a post on The Official Google Blog. "Maybe you're an avid hiker and the trail map site you always go to is in the 4th or 5th position and you want to move it to the top. Or perhaps it's not there at all and you'd like to add it. Or maybe you'd like to add some notes about what you found on that site and why you thought it was useful. Starting today you can do all this and tailor Google search results to best meet your needs." SearchWiki will actually live up to its name and act as a wiki so that users can see notes made by other users, and view what pages others have added or deleted. As to what the point of the SearchWiki is, well, Google isn't saying just yet. Google is known for its secretive, magical PageRank system that promotes important search results while demoting others, and PageRank already has some degree of human input on the Google end.
    [Show full text]
  • Professional Search in Pharmaceutical Research
    Professional Search in Pharmaceutical Research Alex Kohn München 2009 Professional Search in Pharmaceutical Research Alex Kohn Dissertation an der Fakultät für Mathematik, Informatik und Statistik der Ludwig‐Maximilians‐Universität München vorgelegt von Alex Kohn München, den 24.11.2009 Erstgutachter: Prof. Dr. François Bry (Ludwig‐Maximilians‐Universität München) Zweitgutachter: Prof. Dr. Steffen Staab (Universität Koblenz‐Landau) Tag der mündlichen Prüfung: 19.01.2010 Abstract In the mid 90s, visiting libraries – as means of retrieving the latest literature – was still a common necessity among professionals. Nowadays, professionals simply access information by ‘googling’. Indeed, the name of the Web search engine market leader “Google” became a synonym for searching and retrieving information. Despite the increased popularity of search as a method for retrieving relevant information, at the workplace search engines still do not deliver satisfying results to professionals. Search engines for instance ignore that the relevance of answers (the satisfaction of a searcher’s needs) depends not only on the query (the information request) and the document corpus, but also on the working context (the user’s personal needs, education, etc.). In effect, an answer which might be appropriate to one user might not be appropriate to the other user, even though the query and the document corpus are the same for both. Personalization services addressing the context become therefore more and more popular and are an active field of research. This is only one of several challenges encountered in ‘professional search’: How can the working context of the searcher be incorporated in the ranking process; how can unstructured free‐text documents be enriched with semantic information so that the information need can be expressed precisely at query time; how and to which extent can a company’s knowledge be exploited for search purposes; how should data from distributed sources be accessed from into one‐single‐entry‐point.
    [Show full text]
  • List Created By: Jonathan Kidder (Wizardsourcer.Com) Contact
    List created by: Jonathan Kidder (WizardSourcer.com) Contact Finding Extensions: Adorito: Email Lookup for LinkedIn. ​ Aeroleads Prospect Finder: Find Prospects and Send them to AeroLeads. ​ AmazingHiring: Search for social media profiles across the web. This tool helps ​ find personal contact information and so much more. Clearbit Connect: Find contact information on social media profiles. ​ Connectifier: Search for social media profiles and contact information across the ​ web. (Recently acquired by LinkedIn). Connectifier Social Links: Find social media profiles on individual LinkedIn ​ profiles. ContactOut: Find anyone's email and phone number on LinkedIn. ​ Evercontact: Is the highest-rated Contact Management App on Google Apps. ​ Hiretual: A sourcing tool that offers contact information and so much more. ​ Hunter: An extension that helps find corporate email addresses on LinkedIn ​ profiles. Improver: Find contact information from social media profiles. ​ Lead Generator: Get private emails of LinkedIn profiles and check their ​ willingness to change a job. Leadiq.io: Browse LinkedIn Profiles, AngelList Profiles, or grab LinkedIn search ​ results and import into Google Sheets. Lusha: Find contact information on individual LinkedIn profiles. ​ ManyContacts: Check any email address & discover Social Profiles. ​ MightySourcer: Helps find contact info. ​ People.Camp: Social Media Sourcing and Application/Lead Tracking Software. ​ People Finder: Find leads, get emails, phone numbers and other contact data. ​ Save and share your LinkedIn connections. People Search: Find contact information and resumes on social media profiles. ​ Prophet II: Find contact information from social media profiles. ​ SeekOut: Find contact information from social media profiles. ​ Sellhack: Sales Helper - Social profiles add on to gather additional info about ​ leads. SignalHire: Find contact information on individual social media profiles.
    [Show full text]
  • Recherche D'information Sur Le
    Recherche d’information sur le web (RIW) et moteurs de recherche : le cas des lycéens Kien Quach Tat To cite this version: Kien Quach Tat. Recherche d’information sur le web (RIW) et moteurs de recherche : le cas des lycéens. Education. École normale supérieure de Cachan - ENS Cachan, 2011. Français. NNT : 2011DENS0068. tel-00719199 HAL Id: tel-00719199 https://tel.archives-ouvertes.fr/tel-00719199 Submitted on 19 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’ECOLE NORMALE SUPERIEURE DE CACHAN Présentée par Kien QUACH TAT pour obtenir le grade de DOCTEUR DE L’ECOLE NORMALE SUPERIEURE DE CACHAN Domaine : SCIENCES DE L’EDUCATION Sujet de la thèse : RECHERCHE D’INFORMATION SUR LE WEB ET MOTEURS DE RECHERCHE : LE CAS DES LYCEENS Composition du jury Rapporteurs : M. BARON Georges-Louis , Professeur des Universités Mme SIMONNOT Brigitte , Professeur des Universités Examinateurs : Mme GRANDBASTIEN Monique , Professeur Emérite Mme DROT-DELANGE Béatrice , Enseignant-Chercheur M. BLONDEL François-Marie , Ingénieur de recherche M. BRUILLARD Eric , Professeur des Universités (directeur) Laboratoire : UMR Sciences Tecniques Éducation Formation (ENS CACHAN/INRP) 61, avenue du Président Wilson, 94235 CACHAN CEDEX, France Remerciements Tout d’abord, je voudrais remercier chaleureusement mon directeur de la thèse, Professeur des universités Éric Bruillard pour son accueil, ses judicieux conseils, sa disponibilité et sa proposition de chemin de la recherche.
    [Show full text]
  • Optimizing Click-Through in Online Rankings for Partially Anonymous Consumers∗
    Optimizing Click-through in Online Rankings for Partially Anonymous Consumers∗ Babur De los Santosy Sergei Koulayevz November 15, 2014 First Version: December 21, 2011 Abstract Consumers incur costly search to evaluate the increasing number of product options avail- able from online retailers. Presenting the best alternatives first reduces search costs associated with a consumer finding the right product. We use rich data on consumer click-stream behavior from a major web-based hotel comparison platform to estimate a model of search and click. We propose a method of determining the hotel ordering that maximizes consumers' click-through rates (CTRs) based on partial information available to the platform at that time of the con- sumer request, its assessment of consumers' preferences, and the expected consumer type based on request parameters from the current visit. Our method has two distinct advantages. First, rankings are targeted to anonymous consumers by relating price sensitivity to request param- eters, such as the length of stay, number of guests, and day of the week of the stay. Second, we take into account consumer response to new product ordering through the use of search refinement tools, such as sorting and filtering of product options. Product ranking and search actions together shape the consideration set from which clicks are made. We find that predicted CTR under our proposed ranking are almost double those under the online platform's default ranking. Keywords: consumer search, hotel industry, popularity rankings, platform,
    [Show full text]
  • Download Download
    International Journal of Management & Information Systems – Fourth Quarter 2011 Volume 15, Number 4 History Of Search Engines Tom Seymour, Minot State University, USA Dean Frantsvog, Minot State University, USA Satheesh Kumar, Minot State University, USA ABSTRACT As the number of sites on the Web increased in the mid-to-late 90s, search engines started appearing to help people find information quickly. Search engines developed business models to finance their services, such as pay per click programs offered by Open Text in 1996 and then Goto.com in 1998. Goto.com later changed its name to Overture in 2001, and was purchased by Yahoo! in 2003, and now offers paid search opportunities for advertisers through Yahoo! Search Marketing. Google also began to offer advertisements on search results pages in 2000 through the Google Ad Words program. By 2007, pay-per-click programs proved to be primary money-makers for search engines. In a market dominated by Google, in 2009 Yahoo! and Microsoft announced the intention to forge an alliance. The Yahoo! & Microsoft Search Alliance eventually received approval from regulators in the US and Europe in February 2010. Search engine optimization consultants expanded their offerings to help businesses learn about and use the advertising opportunities offered by search engines, and new agencies focusing primarily upon marketing and advertising through search engines emerged. The term "Search Engine Marketing" was proposed by Danny Sullivan in 2001 to cover the spectrum of activities involved in performing SEO, managing paid listings at the search engines, submitting sites to directories, and developing online marketing strategies for businesses, organizations, and individuals.
    [Show full text]
  • Redalyc.Los Videojuegos: Conectar Alumnos Para Aprender
    Revista Electrónica Sinéctica E-ISSN: 1665-109X [email protected] Instituto Tecnológico y de Estudios Superiores de Occidente México Valderrama Ramos, José Antonio Los videojuegos: conectar alumnos para aprender Revista Electrónica Sinéctica, núm. 39, julio-diciembre, 2012, pp. 1-15 Instituto Tecnológico y de Estudios Superiores de Occidente Jalisco, México Disponible en: http://www.redalyc.org/articulo.oa?id=99826889003 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto LOS VIDEOJUEGOS: CONECTAR ALUMNOS PARA APRENDER José Antonio Valderrama Ramos Currículo: maestro en Comunicación de la Ciencia y la Cultura del ITESO. Docente en la pre- paratoria Univa. Sus líneas de investigación abordan el uso de nuevas tecnologías digitales en la educación (como la Web 2.0) y la relación videojuegos-educación. Recibido: 7 de febrero de 2012. Aceptado para su publicación: 13 de junio de 2012. Como citar este artículo: Valderrama, J. A. (julio-diciembre, 2012). Los video- juegos: conectar alumnos para aprender. Sinéctica, 39. Recuperado de http:// www.sinectica.iteso.mx/index.php?cur=39&art=39_07 Resumen Este artículo explora la utilidad que presentan los videojuegos comerciales ac- tuales para educar a los jugadores y ayudarlos a adquirir habilidades necesa- rias para desempeñarse mejor en nuestra sociedad. Aborda el problema de la educación formal, la cual no está respondiendo a la situación de complejidad de nuestro entorno y usa el paradigma del pensamiento complejo y siete sabe- res para la educación propuestas por Edgar Morin.
    [Show full text]
  • Inclusiva-Net Nuevas Dinámicas Artísticas En Modo Web 2
    Inclusiva-net Nuevas dinámicas artísticas en modo web 2 Primer encuentro Inclusiva-net Dirigido por Juan Martín Prada Julio, 2007. MEDIALAB-PRADO · Madrid www.medialab-prado.es ISBN: 978-84-96102-35-4 Edita: Área de las Artes. Dirección General de Promoción y Proyectos Culturales. Madrid. 2007 © de esta edición electrónica 2007: Ayuntamiento de Madrid © Textos e imágenes: los autores ÍNDICE Prefacio Juan Martín Prada 5 La “Web 2.0” como nuevo contexto para las prácticas artísticas Juan Martín Prada 6 Isubmit, Youprofile, WeRank La deconstrucción del mito de la Web 2.0 Geert Lovink 23 Telepatía colectiva 2.0 (Teoría de las multitudes interconectadas) José Luis Brea 39 Deslices de un avatar: prestidigitación y praxis artística en Second Life Mario-Paul Martínez Fabre y Tatiana Sentamans 55 Escenarios emergentes en las prácticas sociales y artísticas con tecnologías móviles Efraín Foglia 82 El artista como generador de swarmings. Cuestionando la sociedad red Carlos Seda 93 Procesos culturales en red Perspectivas para una política cultural digital Ptqk (Maria Perez) 110 Fósiles y monstruos: comunidades y redes sociales artísticas en el Estado Español Lourdes Cilleruelo 126 Tempus Fugit Cuando arte y tecnología encuentran a la persona equivocada Raquel Herrera 138 Impacto de las tecnologías web 2.0 En la comunicación cultural Javier Celaya 149 “No List Available” Web 2.0 para rescatar a los museos libios del olvido institucional. Prototipo para el Museo Jamahiriya de Trípoli lamusediffuse 158 “Arquitecturapública”: El concurso de arquitectura
    [Show full text]
  • Splay: a Toolkit for the Design and Evaluation of Large Scale Distributed Systems
    UNIVERSITÉ DE NEUCHÂTEL Splay: A toolkit for the design and evaluation of Large Scale Distributed Systems Thèse présentée le 27 juin 2014 à la Faculté des Sciences de l’Université de Neuchâtel pour l’obtention du grade de docteur ès sciences par Lorenzo Leonini acceptée sur proposition du jury: Prof. Pascal Felber Université de Neuchâtel directeur de thèse Prof. Peter Kropf Université de Neuchâtel rapporteur Dr Etienne Rivière Université de Neuchâtel rapporteur Prof. Vivien Quéma INP, Grenoble rapporteur Prof. Spyros Voulgaris VU University, Amsterdam rapporteur Faculté des sciences Secrétariat-décanat de Faculté Rue Emile-Argand 11 2000 Neuchâtel - Suisse Tél: + 41 (0)32 718 2100 E-mail: [email protected] IMPRIMATUR POUR THESE DE DOCTORAT La Faculté des sciences de l'Université de Neuchâtel autorise l'impression de la présente thèse soutenue par Monsieur Lorenzo LEONINI Titre: “Splay: A toolkit for the design and evaluation of Large Scale Distributed Systems” sur le rapport des membres du jury composé comme suit: • Prof. Pascal Felber, Université de Neuchâtel, directeur de thèse • Prof. Peter Kropf, Université de Neuchâtel • Dr Etienne Rivière, Université de Neuchâtel • Prof. Vivien Quéma, INP, Grenoble, France • Prof. Spyros Voulgaris, VU University, Amsterdam, Pays-Bas Neuchâtel, le 30 avril 2014 Le Doyen, Prof. P. Kropf Imprimatur pour thèse de doctorat www.unine.ch/sciences To my family. Acknowledgements First, I would like to thank my adviser, Prof. Pascal Felber, for all his guiding, advice, understanding and for our many shared sporting activities during my PhD studies. I would also like to thank Dr. Etienne Rivière for our collaboration and all the nice moments spent together.
    [Show full text]
  • OSINT Handbook September 2020
    OPEN SOURCE INTELLIGENCE TOOLS AND RESOURCES HANDBOOK 2020 OPEN SOURCE INTELLIGENCE TOOLS AND RESOURCES HANDBOOK 2020 Aleksandra Bielska Noa Rebecca Kurz, Yves Baumgartner, Vytenis Benetis 2 Foreword I am delighted to share with you the 2020 edition of the OSINT Tools and Resources Handbook. Once again, the Handbook has been revised and updated to reflect the evolution of this discipline, and the many strategic, operational and technical challenges OSINT practitioners have to grapple with. Given the speed of change on the web, some might question the wisdom of pulling together such a resource. What’s wrong with the Top 10 tools, or the Top 100? There are only so many resources one can bookmark after all. Such arguments are not without merit. My fear, however, is that they are also shortsighted. I offer four reasons why. To begin, a shortlist betrays the widening spectrum of OSINT practice. Whereas OSINT was once the preserve of analysts working in national security, it now embraces a growing class of professionals in fields as diverse as journalism, cybersecurity, investment research, crisis management and human rights. A limited toolkit can never satisfy all of these constituencies. Second, a good OSINT practitioner is someone who is comfortable working with different tools, sources and collection strategies. The temptation toward narrow specialisation in OSINT is one that has to be resisted. Why? Because no research task is ever as tidy as the customer’s requirements are likely to suggest. Third, is the inevitable realisation that good tool awareness is equivalent to good source awareness. Indeed, the right tool can determine whether you harvest the right information.
    [Show full text]