The Birth of Childhood This Pattern of Growth Evolved

Total Page:16

File Type:pdf, Size:1020Kb

The Birth of Childhood This Pattern of Growth Evolved NEWSFOCUS on November 14, 2008 Given that we are unique among mam- mals, researchers have been probing how The Birth of Childhood this pattern of growth evolved. They have long scrutinized the few, fragile skulls and Unlike other apes, humans depend on their parents for a long period skeletons of ancient children and have now after weaning. But when—and why—did our long childhood evolve? developed an arsenal of tools to better gauge how childhood has changed over the www.sciencemag.org Mel was just 3.5 years old when his mother children from Kathmandu to Rio de Janeiro past 3 million years. Researchers are died of pneumonia in 1987 in Tanzania. He do not survive on their own unless they are at scanning skulls and teeth of every known had still been nursing and had no siblings, least 6. “There’s no society where children juvenile with electron microscopes, so his prospects were grim. He begged can feed themselves after weaning,” says micro–computed tomography scans, or weakly for meat, and although adults gave anthropologist Kristen Hawkes of the Uni- powerful synchrotron x-rays and applying him scraps, only a 12-year-old named versity of Utah in Salt Lake City. By con- state-of-the-art methods to create three- Spindle shared his food regularly, protected trast, “chimpanzees don’t have childhoods. dimensional virtual reconstructions of the him, and let him sleep with him at night. They are independent soon after weaning,” skulls of infants and the pelvises of mothers. Downloaded from When Spindle took off for a says anthropologist Barry Bogin They’re analyzing life histories in traditional month, another adolescent, Pax, of Loughborough University in cultures to help understand the advantages came to Mel’s rescue, giving Online Leicestershire, U.K. of the human condition. In addition, some sciencemag.org him fruit and a place to sleep Humans are also the only ani- new fossils are appearing. On page 1089 of Hear more until Spindle returned. Mel sur- about childhood’s mals that stretch out the teenage this issue, researchers report the first nearly vived to age 10. beginning in a podcast years, having a final growth complete pelvis of a female Homo erectus, Fortunately for Mel, he was with author Ann Gibbons. spurt and delaying reproduction which offers clues to the prenatal growth of an orphan chimpanzee living in until about 6 years after puberty. this key human species. the Gombe Stream National Park rather On average, women’s first babies arrive at All of this is creating some surprises. than a small child living in the slums of a age 19, with a worldwide peak of first babies One direct human ancestor, whose skeleton big city. With only sporadic care from older at age 22.5. This lengthy period of develop- looks much like our own, turns out to have children, a 3-year-old human orphan would ment—comprised of infancy, juvenile years, grown up much faster than we do. The life not have survived. and adolescence—is a hallmark of the human histories of our closest evolutionary Mel’s story illustrates the uniqueness of condition; researchers have known since the cousins, the Neandertals, remain controver- one facet of human life: Unlike our close 1930s that we take twice as long as chim- sial, but some researchers suspect that they cousins the chimpanzees, we have a pro- panzees to reach adulthood. Even though we may have had the longest childhoods of all. longed period of development after wean- are only a bit bigger than chimpanzees, we The new lines of evidence are helping ing, when children depend on their parents mature and reproduce a decade later and live researchers close in on the time when child- to feed them, until at least age 6 or 7. Street 2 to 3 decades longer, says Bogin. hood began to lengthen. “Evidence suggests GEOGRAPHIC; M. NEWMAN/LPI/GETTY IMAGES; PHOTOS.COM; BRIAN WOOD CREDITS (LEFT TO RIGHT): SARAH LEEN AND BECKY HALE/NATIONAL 1040 14 NOVEMBER 2008 VOL 322 SCIENCE www.sciencemag.org Published by AAAS NEWSFOCUS Changing face of childhood. Childhood has more than doubled in length in modern humans as com- Female age at pared to chimpanzees and the Dikika baby australop- first breeding ithecine (reconstructed in lower left). Delaying child- Childhood Age at (years) Average Age at birth allows for bigger, stronger mothers who can give eruption of (estimated by maximum weaning first molar 3rd molar eruption life span birth more frequently, as seen for example in tradi- Stages (years) (years) in fossils) (years) tional hunter-gatherer societies (upper right). Chimpanzees, Pan troglodytes 4.0 4.0 11.5 45 that much of what makes our life history Lucy, Australopithecus afarensis 4.0? 4.0? 11.5 45 unique took shape during the evolution of the genus Homo and not before,” says Homo erectus ? 4.5 14.5 (est.) 60? (est.) anthropologist Holly Smith of the Univer- Modern humans, Homo sapiens 2.5 6.0 19.3 70 sity of Michigan, Ann Arbor. Milestones. Key events show that modern humans live slower and die later than our ancestors did. Live fast, die young Back in 1925, Australian anatomist Raymond immune from those risks, given that there are tors to share many key elements of the mod- Dart announced the discovery of that rarest of 6.6 billion of us on the planet. “When did we ern human body plan, with a brain consider- rare specimens, the skull of an early hominin escape those constraints? When did we ably larger than that of earlier hominins. And child. Dart estimated that the australop- extend our childhood?” asks biological unlike the petite australopithecines, this ithecine he called the Taung baby had been anthropologist Steven Leigh of the University Turkana youth was big: He weighed 50 kilo- about 6 years old when it died about 2 million of Illinois, Urbana-Champaign. grams, stood 163 centimeters tall, and years ago, because its first permanent molar The Taung baby and the other australop- looked like he was 13 years old, based on had erupted. As modern parents know, the ithecine children, including the relatively modern human standards. Yet two independ- first of the baby teeth fall out and the first per- recent discovery of a stunning fossil of a ent tooth studies suggested ages from 8 or manent molars appear at about age 6. Dart 3-year-old Australopithecus afarensis girl 9 to 10.5 years old. assumed that early hominins—the group from Dikika, Ethiopia, show that it happened Now a fresh look at the skeleton con- on November 14, 2008 made up of humans and our ancestors but not after the australopithecines. So researchers cludes that, despite the boy’s size, he was other apes—matured on much the same have zeroed in on early Homo, which closer to 8 years old when he died. Dean and schedule as we do, an assumption held for appeared in Africa about 2 million years ago. Smith make this case in a paper in press in an 60 years. Growing up slowly was seen as a Unfortunately, there are only a few jaw edited volume, The First Humans: Origin of defining character of the human lineage. the Genus Homo. The skeleton and tooth Then in 1984, anatomists Christopher microstructure of the boy and new data on Dean and Timothy Bromage tested a new other members of his species suggest that he method to calculate the chronological ages attained more of his adult height and mass www.sciencemag.org of fossil children in a lab at University Col- earlier than modern human children do. lege London (UCL). Just as botanists add up Today, “you won’t find an 8-year-old boy tree rings to calculate the age of a tree, they with body weight, height, and skeletal age counted microscopic lines on the surface of that are so much older,” says Dean. teeth that are laid down weekly as humans He and Smith concluded that the boy did grow. The pair counted the lines on teeth of not experience a “long, slow period of australopithecine children about as mature growth” after he was weaned but grew up ear- as the Taung child and were confounded: lier, more like a chimpanzee. They estimate Downloaded from These hominin children were only about the species’ age at first reproduction at about 3.5 years old rather than 6. They seemed to 14.5, based on the eruption of its third molar, be closer to the chimpanzee pattern, in which in both humans and chimpanzees which the first permanent molar erupts at erupts at about the age they first reproduce. about age 3.5. “We concluded that [the aus- This 8-year-old Turkana Boy was probably tralopithecines] were more like living great more independent than a 13-year-old modern apes in their pace of development than mod- human, the researchers say, suggesting that ern humans,” says Dean. H. erectus families were quite different from Their report in Nature in 1985 shook the ours and did not stay together as long. field and focused researchers on the key The new, remarkably complete female questions of when and why our ancestors Big for his age. The 8-year-old Turkana Boy, recon- pelvis described in this issue, however, sug- adopted the risky strategy of delaying repro- structed here, grew up faster than modern humans do. gests that life history changes had begun in duction. Many other slow-growing, large- H. erectus. Researchers led by Sileshi bodied animals, such as rhinos, elephants, bits of early Homo infants and young chil- Semaw of the Stone Age Institute at Indiana and chimpanzees, are now threatened with dren to nail down their ages.
Recommended publications
  • Homo Erectus Infancy and Childhood the Turning Point in the Evolution of Behavioral Development in Hominids
    10 Homo erectus Infancy and Childhood The Turning Point in the Evolution of Behavioral Development in Hominids Sue Taylor Parker In man, attachment is mediated by several different sorts of behaviour of which the most obvious are crying and calling, babbling and smiling, clinging, non-nutritional sucking, and locomotion as used in approach, following and seeking. —John Bowlby, Attachment The evolution of hominid behavioral ontogeny can be recon - structed using two lines of evidence: first, comparative neontological data on the behavior and development of living hominoid species (humans and the great apes), and second, comparative paleontolog- ical and archaeological evidence associated with fossil hominids. (Although behavior rarely fossilizes, it can leave significant traces.) 1 In this chapter I focus on paleontological and neontological evi - dence relevant to modeling the evolution of the following hominid adaptations: (1) bipedal locomotion and stance; (2) tool use and tool making; (3) subsistence patterns; (4) growth and development and other life history patterns; (5) childbirth; (6) childhood and child care; and (7) cognition and cognitive development. In each case I present a cladistic model for the origins of the characters in question. 2 Specifically, I review pertinent data on the following widely recog - nized hominid genera and species: Australopithecus species (A. afarensis , A. africanus , and A. robustus [Paranthropus robustus]) , early Homo species (Australopithecus gahri , Homo habilis , and Homo rudolfensis) , and Middle Pleistocene Homo species (Homo erectus , Homo ergaster , and others), which I am calling erectines . Copyrighted Material www.sarpress.org 279 S UE TAYLOR PARKER Table 10.1 Estimated Body Weights and Geological Ages of Fossil Hominids _______________________________________________________________________ Species Geologic Age Male Weight Female Weight (MYA) (kg) (kg) _______________________________________________________________________ A.
    [Show full text]
  • Turkana Boy: a 1.5-Million-Year-Old Skeleton
    Turkana Boy: A 1.5-Million-year-old Skeleton The Nariokotome site. Fossil hunters scouring the inhospitable terrain west of Lake Turkana in Kenya in 1984 were lured to the place by the promise of shade and a supply of underground water, not knowing that one of them would discover the almost entire skeleton of an early human. Beating the Odds Chances are stacked against the survival and recovery of the bones of early humans. For a start, they were rare creatures on the African landscape, and they did not bury their dead. Their corpses, even of those who did not succumb to predators, were quickly destroyed by scavengers and trampling animals, and the remaining bones crumbled through weathering and entanglement by vegetation. Occasionally, however, pieces of bone and, particularly, teeth survived long enough to be covered by sediments that protected them from the ravages of the open veld. Over time, minerals from the sediments seeped in and replaced their decaying organic materials until they turned to stone and became the fossil remains of once-living organisms. Then they wait — until their final resting place is exposed by erosion or excavation to the sharp eyes of a paleoanthropologist, a scientist who studies human evolution. The recovery of even a partial early human skeleton is rare; usually the remains are so fragmentary that simply trying to identify them can fuel lively debates among scientists.. Hitting the Jackpot However, luck was on the side of the paleoanthropologists who had pitched camp beside the sandy bed of the Nariokotome River some 3 miles (5 kilometers) west of Lake Turkana in northern Kenya one August day in 65 CHAPTER 2: NATURAL DEATHS RIGHT Working under the hot African sun, the excavation team Identify carefully sifts through the sediments at Nariokotome to KNM-WT recover almost all the bones of a skulls, he 1.5-million-year-old early human: position c only his feet and a few other pieces ancestor: were not found.
    [Show full text]
  • Early Members of the Genus Homo -. EXPLORATIONS: an OPEN INVITATION to BIOLOGICAL ANTHROPOLOGY
    EXPLORATIONS: AN OPEN INVITATION TO BIOLOGICAL ANTHROPOLOGY Editors: Beth Shook, Katie Nelson, Kelsie Aguilera and Lara Braff American Anthropological Association Arlington, VA 2019 Explorations: An Open Invitation to Biological Anthropology is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted. ISBN – 978-1-931303-63-7 www.explorations.americananthro.org 10. Early Members of the Genus Homo Bonnie Yoshida-Levine Ph.D., Grossmont College Learning Objectives • Describe how early Pleistocene climate change influenced the evolution of the genus Homo. • Identify the characteristics that define the genus Homo. • Describe the skeletal anatomy of Homo habilis and Homo erectus based on the fossil evidence. • Assess opposing points of view about how early Homo should be classified. Describe what is known about the adaptive strategies of early members of the Homo genus, including tool technologies, diet, migration patterns, and other behavioral trends.The boy was no older than 9 when he perished by the swampy shores of the lake. After death, his slender, long-limbed body sank into the mud of the lake shallows. His bones fossilized and lay undisturbed for 1.5 million years. In the 1980s, fossil hunter Kimoya Kimeu, working on the western shore of Lake Turkana, Kenya, glimpsed a dark colored piece of bone eroding in a hillside. This small skull fragment led to the discovery of what is arguably the world’s most complete early hominin fossil—a youth identified as a member of the species Homo erectus. Now known as Nariokotome Boy, after the nearby lake village, the skeleton has provided a wealth of information about the early evolution of our own genus, Homo (see Figure 10.1).
    [Show full text]
  • Homo Erectus: a Bigger, Faster, Smarter, Longer Lasting Hominin Lineage
    Homo erectus: A Bigger, Faster, Smarter, Longer Lasting Hominin Lineage Charles J. Vella, PhD August, 2019 Acknowledgements Many drawings by Kathryn Cruz-Uribe in Human Career, by R. Klein Many graphics from multiple journal articles (i.e. Nature, Science, PNAS) Ray Troll • Hominin evolution from 3.0 to 1.5 Ma. (Species) • Currently known species temporal ranges for Pa, Paranthropus aethiopicus; Pb, P. boisei; Pr, P. robustus; A afr, Australopithecus africanus; Ag, A. garhi; As, A. sediba; H sp., early Homo >2.1 million years ago (Ma); 1470 group and 1813 group representing a new interpretation of the traditionally recognized H. habilis and H. rudolfensis; and He, H. erectus. He (D) indicates H. erectus from Dmanisi. • (Behavior) Icons indicate from the bottom the • first appearance of stone tools (the Oldowan technology) at ~2.6 Ma, • the dispersal of Homo to Eurasia at ~1.85 Ma, • and the appearance of the Acheulean technology at ~1.76 Ma. • The number of contemporaneous hominin taxa during this period reflects different Susan C. Antón, Richard Potts, Leslie C. Aiello, 2014 strategies of adaptation to habitat variability. Origins of Homo: Summary of shifts in Homo Early Homo appears in the record by 2.3 Ma. By 2.0 Ma at least two facial morphs of early Homo (1813 group and 1470 group) representing two different adaptations are present. And possibly 3 others as well (Ledi-Geraru, Uraha-501, KNM-ER 62000) The 1813 group survives until at least 1.44 Ma. Early Homo erectus represents a third more derived morph and one that is of slightly larger brain and body size but somewhat smaller tooth size.
    [Show full text]
  • Homo Erectus Years Ago Australopithecus Sediba Homo Habilis Homo Rudolfensis
    Dr. Briana Pobiner Smithsonian Institution “The human family tree: meet your ancestors” February 3, 2014 George Mason University Osher Lifelong Learning Institute Course: The History of Life, Part 2 Milestones in the 10,000 years ago Evolution of Humans 32,000 years ago 800,000 years ago 2.6 million years ago 6 million years ago 90,000 years ago 4 million years ago 1.8 million years ago 200,000 years ago You are here. Today Homo group Paranthropus group 1 Million years ago 2 Million years ago 3 Million years ago 4 Million years ago Ardipithecus group Australopithecus group 5 Million years ago 6 Million years ago Past You are here. Homo sapiens Today Homo neanderthalensis Homo floresiensis Homo group Paranthropus group Homo heidelbergensis 1 Paranthropus boisei Million Homo erectus years ago Australopithecus sediba Homo habilis Homo rudolfensis 2 Australopithecus africanus Million years ago Paranthropus robustus Australopithecus afarensis 3 Million Paranthropus aethiopicus years ago Australopithecus garhi 4 Ardipithecus ramidus Million years ago Ardipithecus group Australopithecus group 5 Australopithecus anamensis Million years ago Sahelanthropus tchadensis 6 Ardipithecus kadabba Million years ago Orrorin tugenensis Past Today 1 Million years ago 2 Million years ago 3 Million Ardipithecus group years ago 4 Ardipithecus ramidus The earliest humans are our closest link to other primates. They evolved in Africa Million years ago and took the first steps towards walking upright. 5 Million years ago Sahelanthropus tchadensis Ardipithecus kadabba 6 Million years ago Orrorin tugenensis Past Sahelanthropus tchadensis Name Means: Sahel ape-man from Chad Nickname: “Toumai” When Found: 2001 Who Found: M.
    [Show full text]
  • In the Beginning Was… the Monkey!
    E no princípio... era o macaco! WALTER A. NEVES Introdução ONFORME TENTAREI demonstrar neste artigo, muito já sabemos sobre a evolução de nossa linhagem, a dos hominíneos1 (Figura 1). Mais ainda, Ctentarei demonstrar como é inquestionável o fato de sermos, como to- das as demais criaturas do planeta, resultado de um processo natural de modi- ficação ao longo do tempo; no nosso caso, a partir de um grande símio. Em outras palavras, tentarei, da maneira mais didática que consiga, convencer os leitores de que o homem, inexoravelmente, veio mesmo do macaco, mas por curvas extremamente sinuosas. Não é menos verdade, porém, que muita coisa ainda precisamos aprender sobre os detalhes desse processo e de como e por que viemos a ser o que somos. Décadas de pesquisas em campo e em laboratório ainda serão necessárias para que a comunidade científica possa disponibilizar para todo o mundo, dentro e fora da academia, um quadro detalhado do que ocorreu conosco e com nossos ancestrais nos últimos sete milhões de anos, quando nossa linhagem evolutiva se separou do ancestral comum que compartilhamos com os chimpanzés. Nunca é demais lembrar que os chimpanzés de hoje resultaram também de um processo evolutivo de sete milhões de anos. Prova disso é que, a partir dos chimpanzés comuns, diferenciou-se, há cerca de 2,5 milhões de anos, uma outra linhagem, ainda viva, conhecida como bonobos ou chimpanzés pigmeus. Para aqueles que como eu se dedicam ao estudo da evolução humana, é muito comum ouvir dos colegas e dos alunos, pelos corredores acadêmicos, que basta um novo fóssil ser encontrado na África para que tudo o que conhecemos sobre nossos antepassados se modifique completamente.
    [Show full text]
  • Introduction to Anthropology
    Introduction to Anthropology ANTH 101 Professor Kurt Reymers, Ph.D. Artist: Richard Strauss Song: Also Spracht Zarathustra Movie: 2001: A Space Odyssey (YouTube) C. The First Hominin 1a. Like all living organisms, human beings evolved to become the species it is today, a species with very unique characteristics compared to other living things. What makes human beings particularly unique is the size and functions of the human brain. 1 C. The First Hominin C. The First Hominin 1b. Human survival is attributable to the evolution of brain development. (Evolutionary Phylogeny) (Early Homo Evolution-text) see: ArchaeologyInfo.com (UCSB cranial comparison) Early brain development led to the use of fire, tools (ArchInfo Skull Page) and weapons, the creation of simple shelters and fashioning of basic clothing. Comparative Anatomy Modern Homo sapiens Archaic Homo sapiens Neanderthal Homo erectus Homo habilis Australopithecus Preanthropus 2 C. The First Hominin 1c. Genus: Australopithecus (Hominoid = Ape / Hominid = Human (plural: Hominin) Before the genus Homo emerged, the genus Australopithecus roamed in Africa (~3 to 4 mya). It is widely thought that Australopithecenes first developed “bipedalism”, or the ability to walk upright, (although recent discoveries of an earlier genus, Ardipithecus, challenge this theory). Fig. 8.1 Illustration of basic body shape differences between A. afarensis (left) and H. erectus (right) highlighting features discussed in the text that are derived in H. erectus and which would improve endurance running performance. Features in parentheses are as yet unknown (in the foot) or hypothetical reconstructions (e.g., Achilles tendon length). Note that shoulder position (indicated with an * ) in H. erectus is unresolved (Modified from Bramble and Lieberman, 2004) C.
    [Show full text]
  • E46f51f57f.Pdf
    n unanticipated moment of inspiration led to the idea that a perfectly reproduced skull of an endangered Aspecies could further understanding of that species. It also led to the recognition that to do so, the reproduction had to capture the original in exquisite detail. That is how our mission was defined two decades ago. The very first Bone Clones® was a male gorilla skull. Now, twenty years later, there are several hundred Bone Clones® animal skulls, skeletons, eggs, claws, talons and individual bony parts of all sorts – representing extinct, endangered, protected, and plentiful species. With Bone Clones® leading the way, naturalist educa- tors and the public came to prefer replicas/casts to natural bone, and Bone Clones® became, and remains, the pre- ferred brand. Our sixteenth product was the skull of an adult human male. Very quickly we realized that a single Bone Clones® human skull would be insufficient to represent the diversity of, and interest in, human anatomy. One realization led to another and another, and soon we were casting a multiplic- ity of human skulls. That was just the skull … what about the rest of the human body? So, we produced one human skeleton, then another and another, and a juvenile skeleton and then another and another. A series of evolutionary steps landed us with a var- ied selection of primate, modern human, and fossil hominin replicas surpassing the size of our zoological product line. This year, for the first time, we are printing separate cata- logs – one covering our zoological line of products, and another covering human and non-human primates.
    [Show full text]
  • A Reevaluation of the Phylogenetic Tree for the Genus Homo: a Reclassification Based on Contemporary Evidence Amrutha Srinivasan
    TC 660H/TC 359T Plan II Honors Program The University of Texas at Austin Supervisor __________________________________________ Second Reader ABSTRACT Author: Title: Supervising Professors: Acknowledgements I would like to thank my thesis supervisor, Dr. Howard Ochman, and my second reader, Dr. Justin Havird, for all their support and feedback during the course of writing this thesis. Additionally I would like to thank the Plan 2 Honors program for providing this valuable learning opportunity. 1 Table of Contents Part One: Introduction ......................................................................................................... 3 Background and Current Situation.................................................................................. 3 Examples of fossil reclassification in the genus Homo ................................................. 7 The case for reevaluation of the phylogenetic tree for the genus Homo...................... 9 The Thesis Question........................................................................................................11 Overview of the methods ................................................................................................11 Part 2: Dating Methods........................................................................................................13 Relative Dating.................................................................................................................13 Absolute Dating ...............................................................................................................14
    [Show full text]
  • Outline 22: Hominid Fossil Record
    Outline 22: Hominid Fossil Record Human ancestors A.=Australopithicus Assumed direct lineage to modern humans Babcock textbook Collecting hominid fossils in East Africa Using Stratigraphy and Radiometric Dating of ash beds to date hominid fossils A Hominid Jawbones from Ethiopia Sahelanthropus tchadensis, 6.5 MY old Sahelanthropus tchadensis, 6.5 MY old Gorilla – female on left, male on right; note the sexual dimorphism Orrorin tugenensis – the sum total of specimens Ardipithecus ramidus, 2009 Australopithecus anamensis The Australopithecines • Ardipithecus: oldest definite bipedal ancestor, over 4 M.Y. old • Australopithecus: the gracile australopithecines • Paranthropus: the robust australopithecines Fossil Species • Ardipithecus ramidus: 4.4 MY, teeth, jaws and bone fragments suggest it is a hominid, not a pongid. • Australopithecus afarensis: 3.8-3.0 MY based on good fossils. Clearly a bipedal animal based on bones and fossil footprints. Bipedal Footprints of Australopithecus in Lithified Volcanic Ash 4 MY old from Tanzania. Found by Mary Leakey. Australopithecus couple making footprints in volcanic ash Jawbones of Australopithecus afarensis Fossil remains of “Lucy”, the most complete specimen of Australopithecus afarensis. An adult skull, A. afarensis Pelvis of Australopithecus afarensis Reconstruction of Australopithecus afarensis Face-to-face with A. afarensis A troop of A. afarensis feeding on tubers in the forest. A. afarensis family unit crossing the savannah. Fossil Species • Australopithecus africanus: 2.8-2.5 MY • Robust australopithecines: Paranthropus aethiopicus: 2.6-2.2 MY P. robustus: 2.0-1.2 MY P. boisei: 2.6-1.0 MY The Taung Child, A. africanus Skull of Paranthropus boisei Paranthropus aethiopicus Paranthropus aethiopicus Justus Erus found the fossil Kenyanthropus platyops, 3.5 MY old from Kenya Kenyanthropus rudolfensis or Homo rudolfensis? Fossil Species • Homo habilis: 2.5-1.6 MY • H.
    [Show full text]
  • Cranial Morphology of Homo Erectus
    CranialCranial MorphologyMorphology ofof HomoHomo erectuserectus Alveolar prognathism Larger teeth than moderns Supraorbital torus Low forehead Postorbital constriction Occipital bun Thick cranial bones No chin Cranial capacity: 800-1100 cc (gradual increase) Africa 1.9 mya TheThe careercareer ofof HomoHomo erectuserectus China and Java 1.6 mya Europe after 1 mya Java, 35,000 years? Acheulean tools after 1.5 mya, fire after 1.3 mya IfIf II OnlyOnly HadHad aa BrainBrain .. .. .. What does it take? StayingStaying coolcool PROBLEM: Most mammals cannot remain active in tropical daytime Brain cooling presents extra challenge SOLUTIONS: Global cooling at time of Homo emergence Triple benefit of bipedal posture Sweat on hairless body 250 times more effective Altered arrangement of blood vessels cooling brain EnergyEnergy needsneeds ofof anan expandingexpanding brainbrain 20% energy for 2% of body mass Gut vs. brain – Both expensive – Mutually exclusive Reducing gut size – Depends on diet Meat? MeatMeat andand thethe BrainBrain Homo brain grows at fetal rate after birth Energetics of nursing – Baby higher on food chain – 10:1 efficiency drop Maternal nutrition Significance of meat AlternativeAlternative Hypothesis:Hypothesis: TubersTubers Abundant Digging sticks Nutritious if cooked Social structure? DidDid AustralopithecusAustralopithecus eateat meat?meat? Stable isotope analysis of South African africanus fossils indicate C4 plants – Meat from grazing animals? A. garhi from Ethiopia: tools and cut bones KNM-ER
    [Show full text]
  • Dmanisi: a Taxonomic Revolution Joshua L
    PURE Insights Volume 4 Article 4 2015 Dmanisi: A Taxonomic Revolution Joshua L. Henderson Western Oregon University, [email protected] Follow this and additional works at: https://digitalcommons.wou.edu/pure Part of the Archaeological Anthropology Commons, and the Biological and Physical Anthropology Commons Recommended Citation Henderson, Joshua L. (2015) "Dmanisi: A Taxonomic Revolution," PURE Insights: Vol. 4 , Article 4. Available at: https://digitalcommons.wou.edu/pure/vol4/iss1/4 This Article is brought to you for free and open access by the Student Scholarship at Digital Commons@WOU. It has been accepted for inclusion in PURE Insights by an authorized editor of Digital Commons@WOU. For more information, please contact [email protected]. Dmanisi: A Taxonomic Revolution Abstract Over the past two decades, five different skulls have been found in the Dmanisi site located in the Republic of Georgia. These skulls are all very different in cranial features, but they are also some of the most complete and well preserved hominin skulls ever discovered. There is a major concern with these skulls, and with concern also comes controversy. We know that Homo erectus migrated from Africa into Eurasia. That is why some paleoanthropologists believe that, despite the cranial differences, the skulls found at the Dmanisi site all belong to Homo erectus. They claim that skeletal variations are common in a single species in multiple geographical locations. The opposing theory is that the remains seem to have both characteristics of Homo habilis and Homo erectus. They propose a new species called Homo georgicus, that fits between Homo habilis and Homo erectus.
    [Show full text]