By Stuart Thornton

Total Page:16

File Type:pdf, Size:1020Kb

By Stuart Thornton R E S O U R C E L I B R A R Y A RT I C L E Case Study: Koobi Fora Research Project A case study that illustrates the Koobi Fora Research Project’s amazing finds in the field of paleontology. G R A D E S 6 - 12+ S U B J E C T S Geology For the complete article with media resources, visit: http://www.nationalgeographic.org/article/case-study-koobi-fora-research-project/ By Stuart Thornton Wednesday, May 16, 2012 National Geographic Explorer-in-Residence and paleontologist Meave Leakey works in the remote Lake Turkana region of Kenya and Ethiopia. She, her husband, Richard, her daughter Louise, and a team of scientists have been researching fossils in the Koobi Fora area of the Lake Turkana Basin for more than 30 years. Koobi Fora is a ridge of sedimentary rock on the eastern shore of Lake Turkana, Kenya. The Koobi Fora Research Project (KFRP), initiated in 1968, forms the backbone of the Turkana Basin Institute (TBI). Almost 10,000 fossils have been discovered in Koobi Fora, more than 350 from ancient hominin species. The investigation of the evolution of human beings and hominin relatives is the primary—although not the only—scientific goal of the KFRP. “The continued research in the Turkana Basin will further the global understanding of human origins and the context in which it occurred through the recovery and investigation of new fossil material from deposits in northern Kenya,” according to the project’s mission statement. Geography Located in northern Kenya, the Turkana Basin is a 70,000-square-kilometer (27,027-square-mile) region that is home to Lake Turkana, the most saline lake in East Africa and the largest desert lake in the world. The area includes three national parks: Sibiloi National Park, South Island National Park, and Central Island National Park. Lake Turkana, nicknamed the “Jade Sea” due to its striking color, is a major stopover for migrating waterfowl. The surrounding area is a major breeding ground for Nile crocodiles, hippopotamuses, and a range of venomous snakes. The basin surrounding Lake Turkana is arid and receives little rainfall outside the “long rain” season of March, April, and May. Due to the extreme climate conditions around Lake Turkana, there is a low human population in the basin. The people who live in the area are mostly small-scale farmers and pastoralists. The Turkana Basin has become known around the world for its amazing fossil deposits. In particular, the area has a wealth of hominin fossils that have contributed greatly to our understanding of human evolution. Assessment Even before the Koobi Fora Research Project began, the Turkana Basin was known for its fossils. A French expedition in 1902 and 1903 first discovered vertebrate fossils in the lower Omo Valley. (The Omo River flows south from Ethiopia into Lake Turkana.) During World War II, Allied troops stationed in southern Ethiopia collected fossils from the lake and its nearby hills. But it was a 1968 investigation of Lake Turkana—then known by its colonial name, Lake Rudolf —by paleontologist Richard Leakey that uncovered a cache of fossils that would lead to the start of the Koobi Fora Research Project. Flying over the region in a helicopter, Leakey noticed unusual rock formations on the eastern side of Lake Turkana. The features were thought to be igneous rock—hardened lava. To Leakey, however, the features appeared to be sedimentary rock, which is slow to accumulate and often preserves fossils. The 1968 expedition showed Leakey was right; the rocks turned out to be fossil-rich sediments. In addition to plant and animal fossils, Koobi Fora has yielded an array of hominin species: Homo habilis, Homo rudolfensis, Homo erectus, Paranthropus boisei, Paranthropus aethiopicus, Australopithecus anamensis, and Kenyanthropus platyops. The purpose of the Koobi Fora Research Project is nothing less than to uncover how we became human. “We are trying to find evidence of our ancestors in order to chart the evolutionary history of our species,” says Meave Leakey, who currently runs KFRP with her daughter and fellow Explorer-in-Residence, Louise. To fully understand how our species evolved, KFRP looks for clues to what the habitats of our ancient ancestors were like. “We ourselves have a very good field team who finds fossils, and we are trying to find actual fossil evidence of our ancestors,” Meave Leakey says. “But we are also interested obviously in the other fossils—the fossils of the fauna and of all the animals that lived alongside our ancestors—because from the evolution of these animals we can learn what may have happened during our own evolution, the evolution of our species.” Conflict Paleontologists, anthropologists, geologists, and other scientists involved with the Koobi Fora Research Project often have conflicting ideas about how things happened in the past. Following the scientific method, the project’s theories change and evolve as more research is conducted and the theories are tested by field work and new technologies. “Obviously there are many different ways of interpreting some of the evidence, and that’s why we are always looking for more, because we get closer and closer to the truth with the more evidence we find,” Leakey says. “Controversy is the word that is generally used when people come up with alternative theories, but that’s the way science progresses. It’s a normal process. People will interpret one set of evidence one way and other people another way. And then you find more evidence. And then you all come to an agreement, hopefully, in the end.” Two discoveries associated with the Turkana Basin are examples of conflict whose resolutions are being pursued through rigorous scientific inquiry and research. In 1984, TBI paleoanthropologists discovered “Turkana Boy,” a nearly complete 1.5 million-year- old skeleton of a hominin with proportions similar to our own. Turkana Boy is the most complete early human skeleton ever found. Despite Turkana Boy being one of the most- studied hominin fossils in history, paleoanthropologists still debate whether the specimen is Homo erectus or Homo ergaster. Other KFRP discoveries include species, such as Kenyanthropus platyops, found nowhere else in the world. There is only one K. platyops specimen, and it remains a source of scientific conflict. Some paleontologists—including Leakey—identify the skull as a unique genus (Kenyanthropus). Others say it is related to another branch of hominins, the australopithecines. Still others maintain it is not a unique species at all, but the deformed skull of a familiar hominin, Australopithecus afarensis. Stakeholders Since the Koobi Fora Research Project is attempting to understand human evolution, all of humanity could be affected by the project’s findings. Paleontologists and paleoanthropologists: Discovering and documenting the evolution of Homo sapiens sapiens, our own species, is one of the great scientific endeavors of the 20th and 21st centuries. Paleoanthropologists are continually searching for clues in the field, as well as reviewing earlier finds with new technology, to understand how H. sapiens sapiens evolved from earlier species. The project is important because it helps us understand our shared past and may help us realize how our species should proceed into the future. “If you believe as I do that understanding our past is important, then our work is important,” Leakey says. “We have discovered an enormous number of fossil human ancestors that were unknown before,” she continues. “We have demonstrated that the evolutionary past of humans is much like that of other animals. There were radiation and extinction events. Our part is really no different from other animals in that sense.” Archaeologists, geologists, climatologists, and other scientists: How early hominin species interacted with the environment and other species—and each other—is a major focus of the KFRP. Many other projects at the Turkana Basin Institute complement the work of the KFRP in this way. Archaeologists study tools and artifacts, such as fish hooks and pottery. Geologists study how the landmass of Eastern Africa developed, and how it is rifting now. Climatologists study the varied history of the Turkana Basin, following the expanding and receding shores of the ancient lake. Turkana Basin Region Residents: Meave Leakey notes that the Turkana Basin Institute trains the region’s residents about fossil finding, fossil preparation, fossil reconstruction, and even how to curate fossil exhibits. “We are trying very much to involve and educate the local people,” Leakey says. “And we are trying also to have the local people assisted by the work that we are doing.” Conflict Mitigation Any conflicting ideas or theories that emerge from the work of the Koobi Fora Research Project are resolved by scientists making more discoveries and conducting more research. “The KFRP has discovered and recovered the majority of the fossil collections, hominin and non-hominin, that are known from the lake basin,” Leakey says. “These are the basis of our knowledge of the fauna and of the evolution of the animals found in East Africa today. We continue to recover, as do others, new fossil discoveries and new information that enable us to test past hypotheses and make new ones. Sometimes we are wrong, but that is the way with science. Answers are built on what we know at any particular time. With new discoveries, past ideas and theories are adjusted and refined.” For instance, paleoclimatologists and paleobotanists working with the KFRP have uncovered significant faunal turnover between 5 million and 7 million years ago. The humid jungle habitat slowly gave way to more open environments. Grasslands became more prominent. This environmental change is now posited as one of the primary reasons hominin species became bipedal, or walking upright on two legs.
Recommended publications
  • Outcomes of the EU Horizon 2020 DAFNE PROJECT the Omo
    POLICY BRIEF October 2020 Outcomes of the EU Horizon 2020 DAFNE PROJECT The Omo-Turkana River Basin Progress towards cooperative frameworks KEY POLICY MESSAGES The OTB has reached a stage of pivotal importance for future development; the time to establish a cooperative framework on water governance is now. Transparency and accountability must be improved in order to facilitate the sharing of data and information, increasing trust and reducing the perception of risk. Benefit-sharing which extends beyond energy could enhance regional integration and improve sustainable development within the basin . THE OMO-TURKANA RIVER BASIN potential for hydropower and irrigation schemes that are, if scientifically and equitably managed, crucial to lift millions within and outside the basin out of extreme poverty; this has led to transboundary cooperation in recent years. This policy brief is derived from research conducted under the €5.5M four-year EU Horizon 2020 and Swiss funded ‘DAFNE’ project which concerns the promotion of integrated and adaptive water resources management, explicitly addressing the WEF Nexus and aiming to promote a sustainable economy in regions where new infrastructure and expanding The Omo-Turkana River Basin (OTB) – for the agriculture has to be balanced with social, purposes of the DAFNE Project – comprises of economic and environmental needs. The project two main water bodies: the Omo River in takes a multi- and interdisciplinary approach to Ethiopia and Lake Turkana which it drains into. the formation of a decision analytical While the Omo River lies entirely within Ethiopian territory, Lake Turkana is shared by framework (DAF) for participatory and both Kenya and Ethiopia, with the majority of integrated planning, to allow the evaluation of Lake Turkana residing within Kenya.
    [Show full text]
  • Homo Habilis
    COMMENT SUSTAINABILITY Citizens and POLICY End the bureaucracy THEATRE Shakespeare’s ENVIRONMENT James Lovelock businesses must track that is holding back science world was steeped in on surprisingly optimistic governments’ progress p.33 in India p.36 practical discovery p.39 form p.41 The foot of the apeman that palaeo­ ‘handy man’, anthropologists had been Homo habilis. recovering in southern Africa since the 1920s. This, the thinking went, was replaced by the taller, larger-brained Homo erectus from Asia, which spread to Europe and evolved into Nean­ derthals, which evolved into Homo sapiens. But what lay between the australopiths and H. erectus, the first known human? BETTING ON AFRICA Until the 1960s, H. erectus had been found only in Asia. But when primitive stone-chop­ LIBRARY PICTURE EVANS MUSEUM/MARY HISTORY NATURAL ping tools were uncovered at Olduvai Gorge in Tanzania, Leakey became convinced that this is where he would find the earliest stone- tool makers, who he assumed would belong to our genus. Maybe, like the australopiths, our human ancestors also originated in Africa. In 1931, Leakey began intensive prospect­ ing and excavation at Olduvai Gorge, 33 years before he announced the new human species. Now tourists travel to Olduvai on paved roads in air-conditioned buses; in the 1930s in the rainy season, the journey from Nairobi could take weeks. The ravines at Olduvai offered unparalleled access to ancient strata, but field­ work was no picnic in the park. Water was often scarce. Leakey and his team had to learn to share Olduvai with all of the wild animals that lived there, lions included.
    [Show full text]
  • Hands-On Human Evolution: a Laboratory Based Approach
    Hands-on Human Evolution: A Laboratory Based Approach Developed by Margarita Hernandez Center for Precollegiate Education and Training Author: Margarita Hernandez Curriculum Team: Julie Bokor, Sven Engling A huge thank you to….. Contents: 4. Author’s note 5. Introduction 6. Tips about the curriculum 8. Lesson Summaries 9. Lesson Sequencing Guide 10. Vocabulary 11. Next Generation Sunshine State Standards- Science 12. Background information 13. Lessons 122. Resources 123. Content Assessment 129. Content Area Expert Evaluation 131. Teacher Feedback Form 134. Student Feedback Form Lesson 1: Hominid Evolution Lab 19. Lesson 1 . Student Lab Pages . Student Lab Key . Human Evolution Phylogeny . Lab Station Numbers . Skeletal Pictures Lesson 2: Chromosomal Comparison Lab 48. Lesson 2 . Student Activity Pages . Student Lab Key Lesson 3: Naledi Jigsaw 77. Lesson 3 Author’s note Introduction Page The validity and importance of the theory of biological evolution runs strong throughout the topic of biology. Evolution serves as a foundation to many biological concepts by tying together the different tenants of biology, like ecology, anatomy, genetics, zoology, and taxonomy. It is for this reason that evolution plays a prominent role in the state and national standards and deserves thorough coverage in a classroom. A prime example of evolution can be seen in our own ancestral history, and this unit provides students with an excellent opportunity to consider the multiple lines of evidence that support hominid evolution. By allowing students the chance to uncover the supporting evidence for evolution themselves, they discover the ways the theory of evolution is supported by multiple sources. It is our hope that the opportunity to handle our ancestors’ bone casts and examine real molecular data, in an inquiry based environment, will pique the interest of students, ultimately leading them to conclude that the evidence they have gathered thoroughly supports the theory of evolution.
    [Show full text]
  • Homo Erectus Infancy and Childhood the Turning Point in the Evolution of Behavioral Development in Hominids
    10 Homo erectus Infancy and Childhood The Turning Point in the Evolution of Behavioral Development in Hominids Sue Taylor Parker In man, attachment is mediated by several different sorts of behaviour of which the most obvious are crying and calling, babbling and smiling, clinging, non-nutritional sucking, and locomotion as used in approach, following and seeking. —John Bowlby, Attachment The evolution of hominid behavioral ontogeny can be recon - structed using two lines of evidence: first, comparative neontological data on the behavior and development of living hominoid species (humans and the great apes), and second, comparative paleontolog- ical and archaeological evidence associated with fossil hominids. (Although behavior rarely fossilizes, it can leave significant traces.) 1 In this chapter I focus on paleontological and neontological evi - dence relevant to modeling the evolution of the following hominid adaptations: (1) bipedal locomotion and stance; (2) tool use and tool making; (3) subsistence patterns; (4) growth and development and other life history patterns; (5) childbirth; (6) childhood and child care; and (7) cognition and cognitive development. In each case I present a cladistic model for the origins of the characters in question. 2 Specifically, I review pertinent data on the following widely recog - nized hominid genera and species: Australopithecus species (A. afarensis , A. africanus , and A. robustus [Paranthropus robustus]) , early Homo species (Australopithecus gahri , Homo habilis , and Homo rudolfensis) , and Middle Pleistocene Homo species (Homo erectus , Homo ergaster , and others), which I am calling erectines . Copyrighted Material www.sarpress.org 279 S UE TAYLOR PARKER Table 10.1 Estimated Body Weights and Geological Ages of Fossil Hominids _______________________________________________________________________ Species Geologic Age Male Weight Female Weight (MYA) (kg) (kg) _______________________________________________________________________ A.
    [Show full text]
  • Curren T Anthropology
    Forthcoming Current Anthropology Wenner-Gren Symposium Curren Supplementary Issues (in order of appearance) t Humanness and Potentiality: Revisiting the Anthropological Object in the Anthropolog Current Context of New Medical Technologies. Klaus Hoeyer and Karen-Sue Taussig, eds. Alternative Pathways to Complexity: Evolutionary Trajectories in the Anthropology Middle Paleolithic and Middle Stone Age. Steven L. Kuhn and Erella Hovers, eds. y THE WENNER-GREN SYMPOSIUM SERIES Previously Published Supplementary Issues December 2012 HUMAN BIOLOGY AND THE ORIGINS OF HOMO Working Memory: Beyond Language and Symbolism. omas Wynn and Frederick L. Coolidge, eds. GUEST EDITORS: SUSAN ANTÓN AND LESLIE C. AIELLO Engaged Anthropology: Diversity and Dilemmas. Setha M. Low and Sally Early Homo: Who, When, and Where Engle Merry, eds. Environmental and Behavioral Evidence V Dental Evidence for the Reconstruction of Diet in African Early Homo olum Corporate Lives: New Perspectives on the Social Life of the Corporate Form. Body Size, Body Shape, and the Circumscription of the Genus Homo Damani Partridge, Marina Welker, and Rebecca Hardin, eds. Ecological Energetics in Early Homo e 5 Effects of Mortality, Subsistence, and Ecology on Human Adult Height 3 e Origins of Agriculture: New Data, New Ideas. T. Douglas Price and Plasticity in Human Life History Strategy Ofer Bar-Yosef, eds. Conditions for Evolution of Small Adult Body Size in Southern Africa Supplement Growth, Development, and Life History throughout the Evolution of Homo e Biological Anthropology of Living Human Populations: World Body Size, Size Variation, and Sexual Size Dimorphism in Early Homo Histories, National Styles, and International Networks. Susan Lindee and Ricardo Ventura Santos, eds.
    [Show full text]
  • Lake Turkana and the Lower Omo the Arid and Semi-Arid Lands Account for 50% of Kenya’S Livestock Production (Snyder, 2006)
    Lake Turkana & the Lower Omo: Hydrological Impacts of Major Dam & Irrigation Development REPORT African Studies Centre Sean Avery (BSc., PhD., C.Eng., C. Env.) © Antonella865 | Dreamstime © Antonella865 Consultant’s email: [email protected] Web: www.watres.com LAKE TURKANA & THE LOWER OMO: HYDROLOGICAL IMPACTS OF MAJOR DAM & IRRIGATION DEVELOPMENTS CONTENTS – VOLUME I REPORT Chapter Description Page EXECUTIVE(SUMMARY ..................................................................................................................................1! 1! INTRODUCTION .................................................................................................................................... 12! 1.1! THE(CONTEXT ........................................................................................................................................ 12! 1.2! THE(ASSIGNMENT .................................................................................................................................. 14! 1.3! METHODOLOGY...................................................................................................................................... 15! 2! DEVELOPMENT(PLANNING(IN(THE(OMO(BASIN ......................................................................... 18! 2.1! INTRODUCTION(AND(SUMMARY(OVERVIEW(OF(FINDINGS................................................................... 18! 2.2! OMO?GIBE(BASIN(MASTER(PLAN(STUDY,(DECEMBER(1996..............................................................19! 2.2.1! OMO'GIBE!BASIN!MASTER!PLAN!'!TERMS!OF!REFERENCE...........................................................................19!
    [Show full text]
  • Phytolith Analysed to Compare Changes in Vegetation Structure of Koobi Fora and Olorgesailie Basins Through the Mid- Pleistocene-Holocene Periods
    Phytolith analysed to Compare Changes in Vegetation Structure of Koobi Fora and Olorgesailie Basins through the Mid- Pleistocene-Holocene Periods. By KINYANJUI, Rahab N. Student number: 712138 Submitted on 28th February, 2017 Submitted the revised version on 22nd February, 2018 Declaration A thesis submitted to the Faculty of Science in fulfilment of the requirements for PhD degree. At School of Geosciences, Evolutionary Studies Institute (ESI) University of Witwatersrand, Johannesburg South Africa. I declare that this is my own unaided work and has not been submitted elsewhere for degree purposes KINYANJUI, Rahab N. Student No. 712138 ii Abstract Phytolith analyses to compare changes in vegetation structure of Koobi Fora and Olorgesailie Basins through Mid-Pleistocene-Holocene Periods. By Rahab N Kinyanjui (Student No: 712138) Doctor of Philosophy in Palaeontology University of Witwatersrand, South Africa School of Geological Sciences, Evolutionary Science Institute (GEOS/ESI) Supervisor: Prof Marion Bamford. The Koobi Fora and Olorgesailie Basins are renowned Hominin sites in the Rift Valley of northern and central Kenya, respectively with fluvial, lacustrine and tuffaceous sediments spanning the Pleistocene and Holocene. Much research has been done on the fossil fauna, hominins and flora with the aim of trying to understand when and how the hominins evolved, and how the environment impacted on their behaviour, land-use and distribution over time. One of the most important factors in trying to understand the hominin-environment relationship is firstly to reconstruct the environment. Important environmental factors are the climate, rate or degree of climate change, vegetation structure and resources, floral and faunal resources. Vegetation structure/composition is a key component of the environments and, it has been hypothesized the openness and/or closeness of vegetation structure played a key role in shaping the evolutionary history not only of man but also other mammals.
    [Show full text]
  • Lake Turkana National Parks - 2017 Conservation Outlook Assessment (Archived)
    IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Lake Turkana National Parks - 2017 Conservation Outlook Assessment (archived) IUCN Conservation Outlook Assessment 2017 (archived) Finalised on 26 October 2017 Please note: this is an archived Conservation Outlook Assessment for Lake Turkana National Parks. To access the most up-to-date Conservation Outlook Assessment for this site, please visit https://www.worldheritageoutlook.iucn.org. Lake Turkana National Parks عقوملا تامولعم Country: Kenya Inscribed in: 1997 Criteria: (viii) (x) The most saline of Africa's large lakes, Turkana is an outstanding laboratory for the study of plant and animal communities. The three National Parks serve as a stopover for migrant waterfowl and are major breeding grounds for the Nile crocodile, hippopotamus and a variety of venomous snakes. The Koobi Fora deposits, rich in mammalian, molluscan and other fossil remains, have contributed more to the understanding of paleo-environments than any other site on the continent. © UNESCO صخلملا 2017 Conservation Outlook Critical Lake Turkana’s unique qualities as a large lake in a desert environment are under threat as the demands for water for development escalate and the financial capital to build major dams becomes available. Historically, the lake’s level has been subject to natural fluctuations in response to the vicissitudes of climate, with the inflow of water broadly matching the amount lost through evaporation (as the lake basin has no outflow). The lake’s major source of water, Ethiopia’s Omo River is being developed with a series of major hydropower dams and irrigated agricultural schemes, in particular sugar and other crop plantations.
    [Show full text]
  • Turkana Boy: a 1.5-Million-Year-Old Skeleton
    Turkana Boy: A 1.5-Million-year-old Skeleton The Nariokotome site. Fossil hunters scouring the inhospitable terrain west of Lake Turkana in Kenya in 1984 were lured to the place by the promise of shade and a supply of underground water, not knowing that one of them would discover the almost entire skeleton of an early human. Beating the Odds Chances are stacked against the survival and recovery of the bones of early humans. For a start, they were rare creatures on the African landscape, and they did not bury their dead. Their corpses, even of those who did not succumb to predators, were quickly destroyed by scavengers and trampling animals, and the remaining bones crumbled through weathering and entanglement by vegetation. Occasionally, however, pieces of bone and, particularly, teeth survived long enough to be covered by sediments that protected them from the ravages of the open veld. Over time, minerals from the sediments seeped in and replaced their decaying organic materials until they turned to stone and became the fossil remains of once-living organisms. Then they wait — until their final resting place is exposed by erosion or excavation to the sharp eyes of a paleoanthropologist, a scientist who studies human evolution. The recovery of even a partial early human skeleton is rare; usually the remains are so fragmentary that simply trying to identify them can fuel lively debates among scientists.. Hitting the Jackpot However, luck was on the side of the paleoanthropologists who had pitched camp beside the sandy bed of the Nariokotome River some 3 miles (5 kilometers) west of Lake Turkana in northern Kenya one August day in 65 CHAPTER 2: NATURAL DEATHS RIGHT Working under the hot African sun, the excavation team Identify carefully sifts through the sediments at Nariokotome to KNM-WT recover almost all the bones of a skulls, he 1.5-million-year-old early human: position c only his feet and a few other pieces ancestor: were not found.
    [Show full text]
  • Early Members of the Genus Homo -. EXPLORATIONS: an OPEN INVITATION to BIOLOGICAL ANTHROPOLOGY
    EXPLORATIONS: AN OPEN INVITATION TO BIOLOGICAL ANTHROPOLOGY Editors: Beth Shook, Katie Nelson, Kelsie Aguilera and Lara Braff American Anthropological Association Arlington, VA 2019 Explorations: An Open Invitation to Biological Anthropology is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted. ISBN – 978-1-931303-63-7 www.explorations.americananthro.org 10. Early Members of the Genus Homo Bonnie Yoshida-Levine Ph.D., Grossmont College Learning Objectives • Describe how early Pleistocene climate change influenced the evolution of the genus Homo. • Identify the characteristics that define the genus Homo. • Describe the skeletal anatomy of Homo habilis and Homo erectus based on the fossil evidence. • Assess opposing points of view about how early Homo should be classified. Describe what is known about the adaptive strategies of early members of the Homo genus, including tool technologies, diet, migration patterns, and other behavioral trends.The boy was no older than 9 when he perished by the swampy shores of the lake. After death, his slender, long-limbed body sank into the mud of the lake shallows. His bones fossilized and lay undisturbed for 1.5 million years. In the 1980s, fossil hunter Kimoya Kimeu, working on the western shore of Lake Turkana, Kenya, glimpsed a dark colored piece of bone eroding in a hillside. This small skull fragment led to the discovery of what is arguably the world’s most complete early hominin fossil—a youth identified as a member of the species Homo erectus. Now known as Nariokotome Boy, after the nearby lake village, the skeleton has provided a wealth of information about the early evolution of our own genus, Homo (see Figure 10.1).
    [Show full text]
  • Later Stone Age Toolstone Acquisition in the Central Rift Valley of Kenya
    Journal of Archaeological Science: Reports 18 (2018) 475–486 Contents lists available at ScienceDirect Journal of Archaeological Science: Reports journal homepage: www.elsevier.com/locate/jasrep Later Stone Age toolstone acquisition in the Central Rift Valley of Kenya: T Portable XRF of Eburran obsidian artifacts from Leakey's excavations at Gamble's Cave II ⁎ ⁎⁎ Ellery Frahma,b, , Christian A. Tryonb, a Yale Initiative for the Study of Ancient Pyrotechnology, Council on Archaeological Studies, Department of Anthropology, Yale University, New Haven, CT, United States b Department of Anthropology, Harvard University, Peabody Museum of Archaeology and Ethnology, Cambridge, MA, United States ARTICLE INFO ABSTRACT Keywords: The complexities of Later Stone Age environmental and behavioral variability in East Africa remain poorly Obsidian sourcing defined, and toolstone sourcing is essential to understand the scale of the social and natural landscapes en- Raw material transfer countered by earlier human populations. The Naivasha-Nakuru Basin in Kenya's Rift Valley is a region that is not Naivasha-Nakuru Basin only highly sensitive to climatic changes but also one of the world's most obsidian-rich landscapes. We used African Humid Period portable X-ray fluorescence (pXRF) analyses of obsidian artifacts and geological specimens to understand pat- Hunter-gatherer mobility terns of toolstone acquisition and consumption reflected in the early/middle Holocene strata (Phases 3–4 of the Human-environment interactions Eburran industry) at Gamble's Cave II. Our analyses represent the first geochemical source identifications of obsidian artifacts from the Eburran industry and indicate the persistent selection over time for high-quality obsidian from Mt. Eburru, ~20 km distant, despite changes in site occupation intensity that apparently correlate with changes in the local environment.
    [Show full text]
  • On the Conservation of the Cultural Heritage in the Kenyan Coast
    THE IMPACT OF TOURISM ON THE CONSERVATION OF THE CULTURAL HERITAGE IN THE KENYAN COAST BY PHILEMON OCHIENG’ NYAMANGA - * • > University ol NAIROBI Library "X0546368 2 A THESIS SUBMITTED TO THE INSTITUTE OF ANTHROPOLOGY, GENDER AND AFRICAN STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS IN ANTHROPOLOGY OF THE UNIVERSITY OF NAIROBI NOVEMBER 2008 DECLARATION This thesis is my original work. It has not been presented for a Degree in any other University. ;o§ Philemon Ochieng’ Nyamanga This thesis has been submitted with my approval as a university supervisor D ate..... J . l U ■ — • C*- imiyu Wandibba DEDICATION This work is dedicated to all heritage lovers and caregivers in memory of my late parents, whose inspiration, care and love motivated my earnest quest for knowledge and committed service to society. It is also dedicated to my beloved daughter. Leticia Anvango TABLE OF CONTENTS List of Tables----------------------------------------------------------------------------------------------------------------- v List of Figures----------------------------------------------------------------------------------------------------------------v List of P la tes---------------------------------------------------------------------------------------------------------------- vi Abbreviations/Acronvms----------------------------------------------------------------------------------------------- vii Acknowledgements-------------------------------------------------------------------------------------------------------viii
    [Show full text]