Homo Erectus: a Bigger, Faster, Smarter, Longer Lasting Hominin Lineage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Beyond Endocasts: Using Predicted Brain-Structure Volumes of Extinct Birds to Assess Neuroanatomical and Behavioral Inferences
diversity Article Beyond Endocasts: Using Predicted Brain-Structure Volumes of Extinct Birds to Assess Neuroanatomical and Behavioral Inferences 1, , 2 2 Catherine M. Early * y , Ryan C. Ridgely and Lawrence M. Witmer 1 Department of Biological Sciences, Ohio University, Athens, OH 45701, USA 2 Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; [email protected] (R.C.R.); [email protected] (L.M.W.) * Correspondence: [email protected] Current Address: Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA. y Received: 1 November 2019; Accepted: 30 December 2019; Published: 17 January 2020 Abstract: The shape of the brain influences skull morphology in birds, and both traits are driven by phylogenetic and functional constraints. Studies on avian cranial and neuroanatomical evolution are strengthened by data on extinct birds, but complete, 3D-preserved vertebrate brains are not known from the fossil record, so brain endocasts often serve as proxies. Recent work on extant birds shows that the Wulst and optic lobe faithfully represent the size of their underlying brain structures, both of which are involved in avian visual pathways. The endocasts of seven extinct birds were generated from microCT scans of their skulls to add to an existing sample of endocasts of extant birds, and the surface areas of their Wulsts and optic lobes were measured. A phylogenetic prediction method based on Bayesian inference was used to calculate the volumes of the brain structures of these extinct birds based on the surface areas of their overlying endocast structures. This analysis resulted in hyperpallium volumes of five of these extinct birds and optic tectum volumes of all seven extinct birds. -
Hominin Occupation of the Chinese Loess Plateau Since About 2.1
LETTER https://doi.org/10.1038/s41586-018-0299-4 Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago Zhaoyu Zhu1,2*, Robin Dennell3*, Weiwen Huang2,4, Yi Wu5, Shifan Qiu6, Shixia Yang4,7, Zhiguo Rao8, Yamei Hou2,4, Jiubing Xie9, Jiangwei Han10 & Tingping Ouyang1,11 Considerable attention has been paid to dating the earliest recording of polarity reversals in loess20, we date each unit to within a appearance of hominins outside Africa. The earliest skeletal and precessional cycle rather than to the 1-thousand-year precision of the artefactual evidence for the genus Homo in Asia currently comes Chiloparts timescale. from Dmanisi, Georgia, and is dated to approximately 1.77–1.85 The main palaeoanthropological limitation of the Loess Plateau is million years ago (Ma)1. Two incisors that may belong to Homo that it largely lacks evidence of the Early Palaeolithic, or associated erectus come from Yuanmou, south China, and are dated to 1.7 Ma2; hominin remains. The main exception is Lantian county in which a the next-oldest evidence is an H. erectus cranium from Lantian mandible and cranium of H. erectus have been found at Chenjiawo (Gongwangling)—which has recently been dated to 1.63 Ma3— and Gongwangling, respectively. Both were dated by palaeomagne- and the earliest hominin fossils from the Sangiran dome in Java, tism and correlation with the Luochuan loess–palaeosol sequence21. which are dated to about 1.5–1.6 Ma4. Artefacts from Majuangou At Chenjiawo the mandible occurs in palaeosol S6 (684–710 thousand III5 and Shangshazui6 in the Nihewan basin, north China, have years ago), and at Gongwangling the layer containing the cranium is also been dated to 1.6–1.7 Ma. -
Hands-On Human Evolution: a Laboratory Based Approach
Hands-on Human Evolution: A Laboratory Based Approach Developed by Margarita Hernandez Center for Precollegiate Education and Training Author: Margarita Hernandez Curriculum Team: Julie Bokor, Sven Engling A huge thank you to….. Contents: 4. Author’s note 5. Introduction 6. Tips about the curriculum 8. Lesson Summaries 9. Lesson Sequencing Guide 10. Vocabulary 11. Next Generation Sunshine State Standards- Science 12. Background information 13. Lessons 122. Resources 123. Content Assessment 129. Content Area Expert Evaluation 131. Teacher Feedback Form 134. Student Feedback Form Lesson 1: Hominid Evolution Lab 19. Lesson 1 . Student Lab Pages . Student Lab Key . Human Evolution Phylogeny . Lab Station Numbers . Skeletal Pictures Lesson 2: Chromosomal Comparison Lab 48. Lesson 2 . Student Activity Pages . Student Lab Key Lesson 3: Naledi Jigsaw 77. Lesson 3 Author’s note Introduction Page The validity and importance of the theory of biological evolution runs strong throughout the topic of biology. Evolution serves as a foundation to many biological concepts by tying together the different tenants of biology, like ecology, anatomy, genetics, zoology, and taxonomy. It is for this reason that evolution plays a prominent role in the state and national standards and deserves thorough coverage in a classroom. A prime example of evolution can be seen in our own ancestral history, and this unit provides students with an excellent opportunity to consider the multiple lines of evidence that support hominid evolution. By allowing students the chance to uncover the supporting evidence for evolution themselves, they discover the ways the theory of evolution is supported by multiple sources. It is our hope that the opportunity to handle our ancestors’ bone casts and examine real molecular data, in an inquiry based environment, will pique the interest of students, ultimately leading them to conclude that the evidence they have gathered thoroughly supports the theory of evolution. -
Homo Erectus Infancy and Childhood the Turning Point in the Evolution of Behavioral Development in Hominids
10 Homo erectus Infancy and Childhood The Turning Point in the Evolution of Behavioral Development in Hominids Sue Taylor Parker In man, attachment is mediated by several different sorts of behaviour of which the most obvious are crying and calling, babbling and smiling, clinging, non-nutritional sucking, and locomotion as used in approach, following and seeking. —John Bowlby, Attachment The evolution of hominid behavioral ontogeny can be recon - structed using two lines of evidence: first, comparative neontological data on the behavior and development of living hominoid species (humans and the great apes), and second, comparative paleontolog- ical and archaeological evidence associated with fossil hominids. (Although behavior rarely fossilizes, it can leave significant traces.) 1 In this chapter I focus on paleontological and neontological evi - dence relevant to modeling the evolution of the following hominid adaptations: (1) bipedal locomotion and stance; (2) tool use and tool making; (3) subsistence patterns; (4) growth and development and other life history patterns; (5) childbirth; (6) childhood and child care; and (7) cognition and cognitive development. In each case I present a cladistic model for the origins of the characters in question. 2 Specifically, I review pertinent data on the following widely recog - nized hominid genera and species: Australopithecus species (A. afarensis , A. africanus , and A. robustus [Paranthropus robustus]) , early Homo species (Australopithecus gahri , Homo habilis , and Homo rudolfensis) , and Middle Pleistocene Homo species (Homo erectus , Homo ergaster , and others), which I am calling erectines . Copyrighted Material www.sarpress.org 279 S UE TAYLOR PARKER Table 10.1 Estimated Body Weights and Geological Ages of Fossil Hominids _______________________________________________________________________ Species Geologic Age Male Weight Female Weight (MYA) (kg) (kg) _______________________________________________________________________ A. -
Human Life Histories in an Evolutionary and Comparative Context;
HUMAN LIFE HISTORIES IN AN EVOLUTIONARY AND COMPARATIVE CONTEXT by Shannen Lorraine Robson A dissertation submitted by the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Anthropology The University of Utah August 2011 Copyright © Shannen Lorraine Robson 2011 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Shannen Lorraine Robson has been approved by the following supervisory committee members: Kristen Hawkes , Chair 04/27/2011 Date Approved Douglas Jones , Member 04/27/2011 Date Approved James O’Connell , Member 04/27/2011 Date Approved Eric Rickart , Member 04/27/2011 Date Approved Ken Smith , Member 04/27/2011 Date Approved and by Elizabeth Cashdan , Chair of the Department of Anthropology and by Charles A. Wight, Dean of The Graduate School. ABSTRACT This dissertation utilizes life history theory to describe traits that are derived in humans through comparisons with other primate species. Modern human life histories are unique in that they are slower, exhibiting distinctly long postmenopausal life spans and later ages at sexual maturity as a result of a reduction in adult mortality since the evolutionary split the last Pan-Homo ancestor. Faster reproduction with shorter than expected interbirth intervals and earlier weaning ages are likely the result of cooperative breeding featuring postmenopausal grandmothers. Life history traits are distinguished from life history related variables (LHRVs) which are used to makes inferences about life history variables in extinct taxa. Body mass LHRV is a strong predictive life history proxy, but brain size and dental development are only weakly associated and inferences using them should be made with caution. -
Bibliography
Bibliography Many books were read and researched in the compilation of Binford, L. R, 1983, Working at Archaeology. Academic Press, The Encyclopedic Dictionary of Archaeology: New York. Binford, L. R, and Binford, S. R (eds.), 1968, New Perspectives in American Museum of Natural History, 1993, The First Humans. Archaeology. Aldine, Chicago. HarperSanFrancisco, San Francisco. Braidwood, R 1.,1960, Archaeologists and What They Do. Franklin American Museum of Natural History, 1993, People of the Stone Watts, New York. Age. HarperSanFrancisco, San Francisco. Branigan, Keith (ed.), 1982, The Atlas ofArchaeology. St. Martin's, American Museum of Natural History, 1994, New World and Pacific New York. Civilizations. HarperSanFrancisco, San Francisco. Bray, w., and Tump, D., 1972, Penguin Dictionary ofArchaeology. American Museum of Natural History, 1994, Old World Civiliza Penguin, New York. tions. HarperSanFrancisco, San Francisco. Brennan, L., 1973, Beginner's Guide to Archaeology. Stackpole Ashmore, w., and Sharer, R. J., 1988, Discovering Our Past: A Brief Books, Harrisburg, PA. Introduction to Archaeology. Mayfield, Mountain View, CA. Broderick, M., and Morton, A. A., 1924, A Concise Dictionary of Atkinson, R J. C., 1985, Field Archaeology, 2d ed. Hyperion, New Egyptian Archaeology. Ares Publishers, Chicago. York. Brothwell, D., 1963, Digging Up Bones: The Excavation, Treatment Bacon, E. (ed.), 1976, The Great Archaeologists. Bobbs-Merrill, and Study ofHuman Skeletal Remains. British Museum, London. New York. Brothwell, D., and Higgs, E. (eds.), 1969, Science in Archaeology, Bahn, P., 1993, Collins Dictionary of Archaeology. ABC-CLIO, 2d ed. Thames and Hudson, London. Santa Barbara, CA. Budge, E. A. Wallis, 1929, The Rosetta Stone. Dover, New York. Bahn, P. -
Harvard University Press, 2015)
This is a preprint draft of a chapter that appeared in Jeremy Brown and Matthew Johnson, eds. Maoism at the Grassroots (Harvard University Press, 2015). Youth and the "Great Revolutionary Movement" of Scientific Experiment in 1960s-70s Rural China Sigrid Schmalzer1 During the 1960s and 1970s, millions of young Chinese people moved to the countryside to be tempered by the "three great revolutionary movements." Originating in a May 1963 quotation from Chairman Mao, this became a stock phrase in the Cultural Revolution. But what were these three movements? The first two are familiar enough. Class struggle: political study meetings, criticism/self-criticism sessions, violent and sometimes deadly assaults on people identified as "class enemies." The struggle for production: back-breaking labor that defined life for rural people and offered a profound, and often bitter, lesson for sentdown urbanites. But what of the third? Rarely discussed in secondary literature, the “great revolutionary movement” of scientific experiment was nonetheless a significant experience for millions of people in rural China, and especially educated youth. In some areas, as many as one-third of urban, sent-down youth participated in scientific experiment.2 Whether cultivating bacterial fertilizer in makeshift laboratories, observing insect behavior to develop more effective control technologies, or designing new agricultural machinery, youth provided key support to the state's goal of transforming agriculture, and participating in scientific experiment presented opportunities for 1 young people to pursue both intellectual and revolutionary dreams. The idea that science should be pitched to youth is common in modern societies, but the Chinese case stands out because of the degree to which science itself was characterized as youthful, and youth themselves understood as agents of revolutionary scientific transformation. -
A New Small-Bodied Hominin from the Late Pleistocene of Flores, Indonesia
articles A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia P. Brown1, T. Sutikna2, M. J. Morwood1, R. P. Soejono2, Jatmiko2, E. Wayhu Saptomo2 & Rokus Awe Due2 1Archaeology & Palaeoanthropology, School of Human & Environmental Studies, University of New England, Armidale, New South Wales 2351, Australia 2Indonesian Centre for Archaeology, Jl. Raya Condet Pejaten No. 4, Jakarta 12001, Indonesia ........................................................................................................................................................................................................................... Currently, it is widely accepted that only one hominin genus, Homo, was present in Pleistocene Asia, represented by two species, Homo erectus and Homo sapiens. Both species are characterized by greater brain size, increased body height and smaller teeth relative to Pliocene Australopithecus in Africa. Here we report the discovery, from the Late Pleistocene of Flores, Indonesia, of an adult hominin with stature and endocranial volume approximating 1 m and 380 cm3, respectively—equal to the smallest-known australopithecines. The combination of primitive and derived features assigns this hominin to a new species, Homo floresiensis. The most likely explanation for its existence on Flores is long-term isolation, with subsequent endemic dwarfing, of an ancestral H. erectus population. Importantly, H. floresiensis shows that the genus Homo is morphologically more varied and flexible in its adaptive responses than previously thought. The LB1 skeleton was recovered in September 2003 during archaeo- hill, on the southern edge of the Wae Racang river valley. The type logical excavation at Liang Bua, Flores1.Mostoftheskeletal locality is at 088 31 0 50.4 00 south latitude 1208 26 0 36.9 00 east elements for LB1 were found in a small area, approximately longitude. 500 cm2, with parts of the skeleton still articulated and the tibiae Horizon. -
© in This Web Service Cambridge University
Cambridge University Press 978-1-107-01829-7 - Human Adaptation in the Asian Palaeolithic: Hominin Dispersal and Behaviour during the Late Quaternary Ryan J. Rabett Index More information Index Abdur, 88 Arborophilia sp., 219 Abri Pataud, 76 Arctictis binturong, 218, 229, 230, 231, 263 Accipiter trivirgatus,cf.,219 Arctogalidia trivirgata, 229 Acclimatization, 2, 7, 268, 271 Arctonyx collaris, 241 Acculturation, 70, 279, 288 Arcy-sur-Cure, 75 Acheulean, 26, 27, 28, 29, 45, 47, 48, 51, 52, 58, 88 Arius sp., 219 Acheulo-Yabrudian, 48 Asian leaf turtle. See Cyclemys dentata Adaptation Asian soft-shell turtle. See Amyda cartilaginea high frequency processes, 286 Asian wild dog. See Cuon alipinus hominin adaptive trajectories, 7, 267, 268 Assamese macaque. See Macaca assamensis low frequency processes, 286–287 Athapaskan, 278 tropical foragers (Southeast Asia), 283 Atlantic thermohaline circulation (THC), 23–24 Variability selection hypothesis, 285–286 Attirampakkam, 106 Additive strategies Aurignacian, 69, 71, 72, 73, 76, 78, 102, 103, 268, 272 economic, 274, 280. See Strategy-switching Developed-, 280 (economic) Proto-, 70, 78 technological, 165, 206, 283, 289 Australo-Melanesian population, 109, 116 Agassi, Lake, 285 Australopithecines (robust), 286 Ahmarian, 80 Azilian, 74 Ailuropoda melanoleuca fovealis, 35 Airstrip Mound site, 136 Bacsonian, 188, 192, 194 Altai Mountains, 50, 51, 94, 103 Balobok rock-shelter, 159 Altamira, 73 Ban Don Mun, 54 Amyda cartilaginea, 218, 230 Ban Lum Khao, 164, 165 Amyda sp., 37 Ban Mae Tha, 54 Anderson, D.D., 111, 201 Ban Rai, 203 Anorrhinus galeritus, 219 Banteng. See Bos cf. javanicus Anthracoceros coronatus, 219 Banyan Valley Cave, 201 Anthracoceros malayanus, 219 Barranco Leon,´ 29 Anthropocene, 8, 9, 274, 286, 289 BAT 1, 173, 174 Aq Kupruk, 104, 105 BAT 2, 173 Arboreal-adapted taxa, 96, 110, 111, 113, 122, 151, 152, Bat hawk. -
Turkana Boy: a 1.5-Million-Year-Old Skeleton
Turkana Boy: A 1.5-Million-year-old Skeleton The Nariokotome site. Fossil hunters scouring the inhospitable terrain west of Lake Turkana in Kenya in 1984 were lured to the place by the promise of shade and a supply of underground water, not knowing that one of them would discover the almost entire skeleton of an early human. Beating the Odds Chances are stacked against the survival and recovery of the bones of early humans. For a start, they were rare creatures on the African landscape, and they did not bury their dead. Their corpses, even of those who did not succumb to predators, were quickly destroyed by scavengers and trampling animals, and the remaining bones crumbled through weathering and entanglement by vegetation. Occasionally, however, pieces of bone and, particularly, teeth survived long enough to be covered by sediments that protected them from the ravages of the open veld. Over time, minerals from the sediments seeped in and replaced their decaying organic materials until they turned to stone and became the fossil remains of once-living organisms. Then they wait — until their final resting place is exposed by erosion or excavation to the sharp eyes of a paleoanthropologist, a scientist who studies human evolution. The recovery of even a partial early human skeleton is rare; usually the remains are so fragmentary that simply trying to identify them can fuel lively debates among scientists.. Hitting the Jackpot However, luck was on the side of the paleoanthropologists who had pitched camp beside the sandy bed of the Nariokotome River some 3 miles (5 kilometers) west of Lake Turkana in northern Kenya one August day in 65 CHAPTER 2: NATURAL DEATHS RIGHT Working under the hot African sun, the excavation team Identify carefully sifts through the sediments at Nariokotome to KNM-WT recover almost all the bones of a skulls, he 1.5-million-year-old early human: position c only his feet and a few other pieces ancestor: were not found. -
0205683290.Pdf
Hominin footprints preserved at Laetoli, Tanzania, are about 3.6 million years old. These individuals were between 3 and 4 feet tall when standing upright. For a close-up view of one of the footprints and further information, go to the human origins section of the website of the Smithsonian Institution’s National Museum of Natural History, www.mnh.si.edu/anthro/ humanorigins/ha/laetoli.htm. THE EVOLUTION OF HUMANITY AND CULTURE 2 the BIG questions v What do living nonhuman primates tell us about OUTLINE human culture? Nonhuman Primates and the Roots of Human Culture v Hominin Evolution to Modern What role did culture play Humans during hominin evolution? Critical Thinking: What Is Really in the Toolbox? v How has modern human Eye on the Environment: Clothing as a Thermal culture changed in the past Adaptation to Cold and Wind 12,000 years? The Neolithic Revolution and the Emergence of Cities and States Lessons Applied: Archaeology Findings Increase Food Production in Bolivia 33 Substantial scientific evidence indicates that modern hu- closest to humans and describes how they provide insights into mans have evolved from a shared lineage with primate ances- what the lives of the earliest human ancestors might have been tors between 4 and 8 million years ago. The mid-nineteenth like. It then turns to a description of the main stages in evolu- century was a turning point in European thinking about tion to modern humans. The last section covers the develop- human origins as scientific thinking challenged the biblical ment of settled life, agriculture, and cities and states. -
Early Members of the Genus Homo -. EXPLORATIONS: an OPEN INVITATION to BIOLOGICAL ANTHROPOLOGY
EXPLORATIONS: AN OPEN INVITATION TO BIOLOGICAL ANTHROPOLOGY Editors: Beth Shook, Katie Nelson, Kelsie Aguilera and Lara Braff American Anthropological Association Arlington, VA 2019 Explorations: An Open Invitation to Biological Anthropology is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted. ISBN – 978-1-931303-63-7 www.explorations.americananthro.org 10. Early Members of the Genus Homo Bonnie Yoshida-Levine Ph.D., Grossmont College Learning Objectives • Describe how early Pleistocene climate change influenced the evolution of the genus Homo. • Identify the characteristics that define the genus Homo. • Describe the skeletal anatomy of Homo habilis and Homo erectus based on the fossil evidence. • Assess opposing points of view about how early Homo should be classified. Describe what is known about the adaptive strategies of early members of the Homo genus, including tool technologies, diet, migration patterns, and other behavioral trends.The boy was no older than 9 when he perished by the swampy shores of the lake. After death, his slender, long-limbed body sank into the mud of the lake shallows. His bones fossilized and lay undisturbed for 1.5 million years. In the 1980s, fossil hunter Kimoya Kimeu, working on the western shore of Lake Turkana, Kenya, glimpsed a dark colored piece of bone eroding in a hillside. This small skull fragment led to the discovery of what is arguably the world’s most complete early hominin fossil—a youth identified as a member of the species Homo erectus. Now known as Nariokotome Boy, after the nearby lake village, the skeleton has provided a wealth of information about the early evolution of our own genus, Homo (see Figure 10.1).