Outline 22: Hominid Fossil Record

Total Page:16

File Type:pdf, Size:1020Kb

Outline 22: Hominid Fossil Record Outline 22: Hominid Fossil Record Human ancestors A.=Australopithicus Assumed direct lineage to modern humans Babcock textbook Collecting hominid fossils in East Africa Using Stratigraphy and Radiometric Dating of ash beds to date hominid fossils A Hominid Jawbones from Ethiopia Sahelanthropus tchadensis, 6.5 MY old Sahelanthropus tchadensis, 6.5 MY old Gorilla – female on left, male on right; note the sexual dimorphism Orrorin tugenensis – the sum total of specimens Ardipithecus ramidus, 2009 Australopithecus anamensis The Australopithecines • Ardipithecus: oldest definite bipedal ancestor, over 4 M.Y. old • Australopithecus: the gracile australopithecines • Paranthropus: the robust australopithecines Fossil Species • Ardipithecus ramidus: 4.4 MY, teeth, jaws and bone fragments suggest it is a hominid, not a pongid. • Australopithecus afarensis: 3.8-3.0 MY based on good fossils. Clearly a bipedal animal based on bones and fossil footprints. Bipedal Footprints of Australopithecus in Lithified Volcanic Ash 4 MY old from Tanzania. Found by Mary Leakey. Australopithecus couple making footprints in volcanic ash Jawbones of Australopithecus afarensis Fossil remains of “Lucy”, the most complete specimen of Australopithecus afarensis. An adult skull, A. afarensis Pelvis of Australopithecus afarensis Reconstruction of Australopithecus afarensis Face-to-face with A. afarensis A troop of A. afarensis feeding on tubers in the forest. A. afarensis family unit crossing the savannah. Fossil Species • Australopithecus africanus: 2.8-2.5 MY • Robust australopithecines: Paranthropus aethiopicus: 2.6-2.2 MY P. robustus: 2.0-1.2 MY P. boisei: 2.6-1.0 MY The Taung Child, A. africanus Skull of Paranthropus boisei Paranthropus aethiopicus Paranthropus aethiopicus Justus Erus found the fossil Kenyanthropus platyops, 3.5 MY old from Kenya Kenyanthropus rudolfensis or Homo rudolfensis? Fossil Species • Homo habilis: 2.5-1.6 MY • H. erectus: 1.8 MY- 25,000 yrs? Java man Peking man • H. sapiens: archaic vs. modern Skull of Homo habilis H. rudolfensis, H. habilis, and P. boisei. Hominids in East Africa around 2 MY ago. Phylogeny 2000 Homo erectus from Indonesia, Java Man Skull of Homo erectus from China Peking Man Skeleton of Homo erectus, Turkana Boy from Kenya H. erectus skull of Turkana Boy The face of Homo erectus Homo erectus using fire to sharpen spears Homo sapiens? •Archaic H. sapiens or unique species? H. antecessor: 800,000 years old H. heidelbergensis: 500,000 years old H. neandertalensis: 200,000-32,000 years old • Currently all thought to be unique species. Homo antecessor from Spain, 800,000 years old Homo heidelbergensis, 500,000 years BP Neanderthal skull, Spain Fleshing out a Neanderthal skull Neanderthal skeleton, Germany Shanidar Cave, Iraq: Neanderthal burial, 50,000 yrs. BP Shanidar Cave, Iraq: Neanderthal burial, 50,000 yrs. BP Did Neandertals have naked skin like we do? What would the Theory of Neoteny say? Reconstruction of Neanderthal child from Gibraltar, Spain, 30,000 years B.P. How scientists recreated Neanderthal man http://www.bbc.co.uk/news/science-environment-19960748 2010: Genetic studies of Neanderthal bones indicates that between 1-4% of modern human DNA is from Neandertals. Suggests interbreeding around 60,000 years ago. 30 ky 1%-4% DNA 500 ky http://news.bbc.co.uk/2/hi/science/nature/8660940.stm 2010: Genetic studies of Neanderthal bones indicates that between 1-4% of modern human DNA is from Neandertals. Suggests interbreeding around 60,000 years ago. Fig. 1 Samples and sites from which DNA was retrieved. R E Green et al. Science 2010;328:710-722 Homo sapiens • modern H. sapiens: first appearances East Africa: 195,000 years ago Middle East: 90,000 years ago Australia: 50,000 years ago Europe: 32,000 years ago Americas: 20,000 years ago Homo sapiens, Israel, 90,000 yrs BP FYI: Abraham lived only 4,000 yrs BP Cro-Magnon man from France, Homo sapiens, 28,000 years old Homo floresiensis, a hobbit-size human from Flores Island, Indonesia, 18,000 BP Modern human Homo sapiens (Cro-Magnon people) drew the cave art in France and Spain about 17,000 years ago. Lascaux, France, cave art Life in the late Stone Age, which ended at different times on different continents. The invention of farming, plus domestication of animals, started civilization. Evolution of Modern Humans Two Theories: • Out of Africa: all modern humans descended from a single population. Racial differences have very recent origins. • Multiregional Theory: modern humans evolved from local populations of H. erectus at several places in the Old World. Accounts for the racial differences in modern humans. How far back in time did the modern races diverge from a common ancestor? Tree DNA studies Diagram show the of Genetic Similarity common ancestor of all humans lived in Africa about 170,000 years ago Another tree diagram of genetic similarity; nearest neighbor method.
Recommended publications
  • H. Erectus 1  H
    Today in Astronomy 106: apes to modern humans Meet the hominids. Brains, diet and toolmaking: going where natural selection fears to tread. Genetic diversity in Africa, the Saharan bottleneck, and the spread of humanity. Selections from The Dawn of Man, The spread of in 2001: A Space Odyssey, by languages. Stanley Kubrick (1968). 13 June 2011 Astronomy 106, Summer 2011 1 Monkeys to hominids Once bipedal hominids began to Evans 2002 appear in newly-drier East Africa, many gene mutations were naturally selected which accelerated the differences between them and the apes. Distinct process from steady rate of increased difference in junk DNA. Most evident in parts of genes called human accelerated regions (HARs), of which 55 have been noted. 13 June 2011 Astronomy 106, Summer 2011 2 Monkeys to hominids (continued) HARs were discovered in 2006 by Katie Pollard (UCSF), as one of the first huge achievements +2 of the new science of genomics. HAR1, chromosome 20, for example: • Present in reptiles onward. • Base-pair difference between chimpanzees and chickens: 2. • Base-pair difference +18 between chimpanzees and humans: 18. 13 June 2011 Astronomy 106, Summer 2011 3 6 Africa’s Hominidae Ardepithecus 5 All bipedal and tail-less: Ardepithecus: several species 4 known mostly by femurs. Australopithecus Australopithecus afarensis (or Paranthropus) (e.g. Lucy), africanus, 3 Myr robustus, bosei. Evolved ago toward bigger teeth. 2 Homo Homo rudolfensis, habilis/ergaster, erectus, 1 heidelbergensis, neanderthalensis, 0 sapiens. Evolved toward bigger brains. Genetic difference (schematic) 13 June 2011 Astronomy 106, Summer 2011 4 6 Evolution of diet 5 As they walked from tree to tree, hominids gradually were selected for eating more than 4 fruit and leave, this also allowed A.
    [Show full text]
  • The Evolutionary History of the Human Face
    This is a repository copy of The evolutionary history of the human face. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/145560/ Version: Accepted Version Article: Lacruz, Rodrigo S, Stringer, Chris B, Kimbel, William H et al. (5 more authors) (2019) The evolutionary history of the human face. Nature Ecology and Evolution. pp. 726-736. ISSN 2397-334X https://doi.org/10.1038/s41559-019-0865-7 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ THE EVOLUTIONARY HISTORY OF THE HUMAN FACE Rodrigo S. Lacruz1*, Chris B. Stringer2, William H. Kimbel3, Bernard Wood4, Katerina Harvati5, Paul O’Higgins6, Timothy G. Bromage7, Juan-Luis Arsuaga8 1* Department of Basic Science and Craniofacial Biology, New York University College of Dentistry; and NYCEP, New York, USA. 2 Department of Earth Sciences, Natural History Museum, London, UK 3 Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ.
    [Show full text]
  • Homo Erectus Infancy and Childhood the Turning Point in the Evolution of Behavioral Development in Hominids
    10 Homo erectus Infancy and Childhood The Turning Point in the Evolution of Behavioral Development in Hominids Sue Taylor Parker In man, attachment is mediated by several different sorts of behaviour of which the most obvious are crying and calling, babbling and smiling, clinging, non-nutritional sucking, and locomotion as used in approach, following and seeking. —John Bowlby, Attachment The evolution of hominid behavioral ontogeny can be recon - structed using two lines of evidence: first, comparative neontological data on the behavior and development of living hominoid species (humans and the great apes), and second, comparative paleontolog- ical and archaeological evidence associated with fossil hominids. (Although behavior rarely fossilizes, it can leave significant traces.) 1 In this chapter I focus on paleontological and neontological evi - dence relevant to modeling the evolution of the following hominid adaptations: (1) bipedal locomotion and stance; (2) tool use and tool making; (3) subsistence patterns; (4) growth and development and other life history patterns; (5) childbirth; (6) childhood and child care; and (7) cognition and cognitive development. In each case I present a cladistic model for the origins of the characters in question. 2 Specifically, I review pertinent data on the following widely recog - nized hominid genera and species: Australopithecus species (A. afarensis , A. africanus , and A. robustus [Paranthropus robustus]) , early Homo species (Australopithecus gahri , Homo habilis , and Homo rudolfensis) , and Middle Pleistocene Homo species (Homo erectus , Homo ergaster , and others), which I am calling erectines . Copyrighted Material www.sarpress.org 279 S UE TAYLOR PARKER Table 10.1 Estimated Body Weights and Geological Ages of Fossil Hominids _______________________________________________________________________ Species Geologic Age Male Weight Female Weight (MYA) (kg) (kg) _______________________________________________________________________ A.
    [Show full text]
  • New Fossils of Australopithecus Anamensis from Kanapoi, West Turkana, Kenya (2003E2008)
    Journal of Human Evolution 65 (2013) 501e524 Contents lists available at SciVerse ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol New fossils of Australopithecus anamensis from Kanapoi, West Turkana, Kenya (2003e2008) C.V. Ward a,*, F.K. Manthi b, J.M. Plavcan c a Department of Pathology and Anatomical Sciences, M263 Medical Sciences Building, University of Missouri, Columbia, MO 65212, USA b Department of Earth Sciences, National Museums of Kenya, P.O. Box 40658, Nairobi, Kenya c Department of Anthropology, 330 Old Main, University of Arkansas, Fayetteville, AR 72701, USA article info abstract Article history: Renewed fieldwork from 2003 through 2008 at the Australopithecus anamensis type-site of Kanapoi, Received 29 January 2013 Kenya, yielded nine new fossils attributable to this species. These fossils all date to between 4.195 and Accepted 7 May 2013 4.108 million years ago. Most were recovered from the lower fluvial sequence at the site, with one from Available online 30 August 2013 the lacustrine sequence deltaic sands that overlie the lower fluvial deposits but are still below the Kanapoi Tuff. The new specimens include a partial edentulous mandible, partial maxillary dentition, two Keywords: partial mandibular dentitions, and five isolated teeth. The new Kanapoi hominin fossils increase the Australopithecus anamensis sample known from the earliest Australopithecus, and provide new insights into morphology within this Kanapoi New fossils taxon. They support the distinctiveness of the early A. anamensis fossils relative to earlier hominins and Dentition to the later Australopithecus afarensis. The new fossils do not appreciably extend the range of observed variation in A.
    [Show full text]
  • The Human Evolutionary Calendar - Evolution in a Year)I------1 January • December F------{( March ) ( June September
    The Human Evolutionary Calendar - Evolution in a Year)I---------1 January • December f-------{( March ) ( June September SahelanthropusTchadensi Australopithecus sediba Homo rh odes iensis Ardipithecus ramidus 7,000,000 - 6,000,000 yrs. 2,000,000 - , ,750,000 yrs. 300,000 -125,000 yrs. 3,200,000 • 4,300,000 yrs. Homo rudolfensis Orrorin tugenensis 1,900,000 - 1.750,000 yrs. Homo pekin ensi s 6, 100,000 - 5,BOO,Oci:l yrs. 700,000 - 500,000 yrs. Australopit ec us anamensis 4,200,00 - 3,900,000 yrs. Ardipithecus kadabba 5,750,000 - 5,200,000 yrs. Ho m o Ergaster 1,900,000 - 1,3,000,000 yrs. Homo heidelberge nsis 700,000 • 200,000 yrs. Australopithecus afarensis Homo erectus 3,900,000 - 2,900,000 yrs. 1,800,000 • 250,000 yrs. Ho mo antecessor Australopithecus africa nus Ho mo habilis 1,000,000 -700,000 yrs. 3,800,000 - 3,000,000 yrs. 2,350,000 - 1,450,000 yrs. Ho m o g eorgicus Kenya nthropus platyo ps 1,800,000- 1.3000,000 yrs. 3,500,000 - 3,200,000 yrs. Ho m o nea nderthalensis 200,000 · 28,000 yrs. Paranthropus bo ise i Paranthropus aethiopicu 2,275,000- 1,250,000 yrs. De nisova ho minins 2,650,000 - 2,300,000 yrs. 200,000 - 30,000 yrs. Paranthropus robustus/crass iden s Australopithecus garhi 1,750,000- 1,200,000 yrs. 2,750,000 - 2.400,000 yrs. Red Deer Cave Peo ple ?- 11,000yrs. Ho mo sa piens sapien s 200~ Ho m o fl o res iensis 100,000 • 13,000 yrs.
    [Show full text]
  • Morphological Affinities of the Sahelanthropus Tchadensis (Late Miocene Hominid from Chad) Cranium
    Morphological affinities of the Sahelanthropus tchadensis (Late Miocene hominid from Chad) cranium Franck Guy*, Daniel E. Lieberman†, David Pilbeam†‡, Marcia Ponce de Leo´ n§, Andossa Likius¶, Hassane T. Mackaye¶, Patrick Vignaud*, Christoph Zollikofer§, and Michel Brunet*‡ *Laboratoire de Ge´obiologie, Biochronologie et Pale´ontologie Humaine, Centre National de la Recherche Scientifique Unite´Mixte de Recherche 6046, Faculte´des Sciences, Universite´de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France; §Anthropologisches Institut, Universita¨t Zu¨rich-Irchel, Winterthurerstrasse 190, 8057 Zu¨rich, Switzerland; †Peabody Museum, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138; and ¶Department de Pale´ontologie, Universite´deNЈDjamena, BP 1117, NЈDjamena, Republic of Chad Contributed by David Pilbeam, November 5, 2005 The recent reconstruction of the Sahelanthropus tchadensis cra- cross-sectional ontogenetic samples of Pan troglodytes (n ϭ 40), nium (TM 266-01-60-1) provides an opportunity to examine in Gorilla gorilla (n ϭ 41), and Homo sapiens (n ϭ 24) (see Table detail differences in cranial shape between this earliest-known 3, which is published as supporting information on the PNAS hominid, African apes, and other hominid taxa. Here we compare web site). In addition, we digitized as many of the same land- the reconstruction of TM 266-01-60-1 with crania of African apes, marks as possible on a sample of available relatively complete humans, and several Pliocene hominids. The results not only fossil hominid crania: the stereolithograhic replica of AL 444-2 confirm that TM 266-01-60-1 is a hominid but also reveal a unique (Australopithecus afarensis) (9); CT scans of Sts 5 and Sts 71 mosaic of characters.
    [Show full text]
  • Paranthropus Boisei: Fifty Years of Evidence and Analysis Bernard A
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences Fall 11-28-2007 Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard A. Wood George Washington University Paul J. Constantino Biological Sciences, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Biological and Physical Anthropology Commons Recommended Citation Wood B and Constantino P. Paranthropus boisei: Fifty years of evidence and analysis. Yearbook of Physical Anthropology 50:106-132. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. YEARBOOK OF PHYSICAL ANTHROPOLOGY 50:106–132 (2007) Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard Wood* and Paul Constantino Center for the Advanced Study of Hominid Paleobiology, George Washington University, Washington, DC 20052 KEY WORDS Paranthropus; boisei; aethiopicus; human evolution; Africa ABSTRACT Paranthropus boisei is a hominin taxon ers can trace the evolution of metric and nonmetric var- with a distinctive cranial and dental morphology. Its iables across hundreds of thousands of years. This pa- hypodigm has been recovered from sites with good per is a detailed1 review of half a century’s worth of fos- stratigraphic and chronological control, and for some sil evidence and analysis of P. boi se i and traces how morphological regions, such as the mandible and the both its evolutionary history and our understanding of mandibular dentition, the samples are not only rela- its evolutionary history have evolved during the past tively well dated, but they are, by paleontological 50 years.
    [Show full text]
  • What Makes a Modern Human We Probably All Carry Genes from Archaic Species Such As Neanderthals
    COMMENT NATURAL HISTORY Edward EARTH SCIENCE How rocks and MUSIC Philip Glass on Einstein EMPLOYMENT The skills gained Lear’s forgotten work life evolved together on our and the unpredictability of in PhD training make it on ornithology p.36 planet p.39 opera composition p.40 worth the money p.41 ILLUSTRATION BY CHRISTIAN DARKIN CHRISTIAN BY ILLUSTRATION What makes a modern human We probably all carry genes from archaic species such as Neanderthals. Chris Stringer explains why the DNA we have in common is more important than any differences. n many ways, what makes a modern we were trying to set up strict criteria, based non-modern (or, in palaeontological human is obvious. Compared with our on cranial measurements, to test whether terms, archaic). What I did not foresee evolutionary forebears, Homo sapiens is controversial fossils from Omo Kibish in was that some researchers who were not Icharacterized by a lightly built skeleton and Ethiopia were within the range of human impressed with our test would reverse it, several novel skull features. But attempts to skeletal variation today — anatomically applying it back onto the skeletal range of distinguish the traits of modern humans modern humans. all modern humans to claim that our diag- from those of our ancestors can be fraught Our results suggested that one skull nosis wrongly excluded some skulls of with problems. was modern, whereas the other was recent populations from being modern2. Decades ago, a colleague and I got into This, they suggested, implied that some difficulties over an attempt to define (or, as PEOPLING THE PLANET people today were more ‘modern’ than oth- I prefer, diagnose) modern humans using Interactive map of migrations: ers.
    [Show full text]
  • K = Kenyanthropus Platyops “Kenya Man” Discovered by Meave Leaky
    K = Kenyanthropus platyops “Kenya Man” Discovered by Meave Leaky and her team in 1998 west of Lake Turkana, Kenya, and described as a new genus dating back to the middle Pliocene, 3.5 MYA. A = Australopithecus africanus STS-5 “Mrs. Ples” The discovery of this skull in 1947 in South Africa of this virtually complete skull gave additional credence to the establishment of early Hominids. Dated at 2.5 MYA. H = Homo habilis KNM-ER 1813 Discovered in 1973 by Kamoya Kimeu in Koobi Fora, Kenya. Even though it is very small, it is considered to be an adult and is dated at 1.9 MYA. E = Homo erectus “Peking Man” Discovered in China in the 1920’s, this is based on the reconstruction by Sawyer and Tattersall of the American Museum of Natural History. Dated at 400-500,000 YA. (2 parts) L = Australopithecus afarensis “Lucy” Discovered by Donald Johanson in 1974 in Ethiopia. Lucy, at 3.2 million years old has been considered the first human. This is now being challenged by the discovery of Kenyanthropus described by Leaky. (2 parts) TC = Australopithecus africanus “Taung child” Discovered in 1924 in Taung, South Africa by M. de Bruyn. Raymond Dart established it as a new genus and species. Dated at 2.3 MYA. (3 parts) G = Homo ergaster “Nariokotome or Turkana boy” KNM-WT 15000 Discovered in 1984 in Nariokotome, Kenya by Richard Leaky this is the first skull dated before 100,000 years that is complete enough to get accurate measurements to determine brain size. Dated at 1.6 MYA.
    [Show full text]
  • The Modern Man: a Revision of His Definition and a New Estimation of His Emergence Date
    9 International Journal of Modern Anthropology Int. J. Mod. Anthrop. 1 : 1-110 (2008) Available online at www.ata.org.tn Original Synthetic Article The modern man: a revision of his definition and a new estimation of his emergence date Hassen Chaabani Hassen Chaabani was born the 07 / 09 / 1947 in Tunis (Tunisia). He is Full Professor and research unit Director at Monastir University. He is the Founder and the President of the Tunisian Association of Anthropology. He is the Founder and the Editor in-Chef of the International Journal of Modern Anthropology. Specialist in Human Genetics, Biological Anthropology and some cultural and religious subjects, he wrote many articles and books. Laboratoire de Génétique Humaine et d'Anthropologie, Faculté de Pharmacie, 5000 Monastir, Tunisia. E.mail: [email protected] Abstract - In spite of important anthropological data stored up to date, the recent human evolution is still a subject of great controversy. Here I present a revision of the definition of modern man and an attempt to estimate the date of his emergence. The anatomical feature criterion cannot be considered as a rigorous criterion for identified modern human fossils from those of earlier Homo peoples. This identification could be carried out indirectly from analysis of cultural products and, if possible, directly by ancient DNA analysis. During the last 20,000 years period, Homo peoples have shown a first real cultural progress, which reflects their possession of the superior level of potential intellectual aptitude that marks the definition of modern man. On the basis of this definition, in agreement with several anthropological basic data, I consider that the real modern man, Homo sapiens sapiens, emerged at about 20,000 years ago.
    [Show full text]
  • Turkana Boy: a 1.5-Million-Year-Old Skeleton
    Turkana Boy: A 1.5-Million-year-old Skeleton The Nariokotome site. Fossil hunters scouring the inhospitable terrain west of Lake Turkana in Kenya in 1984 were lured to the place by the promise of shade and a supply of underground water, not knowing that one of them would discover the almost entire skeleton of an early human. Beating the Odds Chances are stacked against the survival and recovery of the bones of early humans. For a start, they were rare creatures on the African landscape, and they did not bury their dead. Their corpses, even of those who did not succumb to predators, were quickly destroyed by scavengers and trampling animals, and the remaining bones crumbled through weathering and entanglement by vegetation. Occasionally, however, pieces of bone and, particularly, teeth survived long enough to be covered by sediments that protected them from the ravages of the open veld. Over time, minerals from the sediments seeped in and replaced their decaying organic materials until they turned to stone and became the fossil remains of once-living organisms. Then they wait — until their final resting place is exposed by erosion or excavation to the sharp eyes of a paleoanthropologist, a scientist who studies human evolution. The recovery of even a partial early human skeleton is rare; usually the remains are so fragmentary that simply trying to identify them can fuel lively debates among scientists.. Hitting the Jackpot However, luck was on the side of the paleoanthropologists who had pitched camp beside the sandy bed of the Nariokotome River some 3 miles (5 kilometers) west of Lake Turkana in northern Kenya one August day in 65 CHAPTER 2: NATURAL DEATHS RIGHT Working under the hot African sun, the excavation team Identify carefully sifts through the sediments at Nariokotome to KNM-WT recover almost all the bones of a skulls, he 1.5-million-year-old early human: position c only his feet and a few other pieces ancestor: were not found.
    [Show full text]
  • Early Members of the Genus Homo -. EXPLORATIONS: an OPEN INVITATION to BIOLOGICAL ANTHROPOLOGY
    EXPLORATIONS: AN OPEN INVITATION TO BIOLOGICAL ANTHROPOLOGY Editors: Beth Shook, Katie Nelson, Kelsie Aguilera and Lara Braff American Anthropological Association Arlington, VA 2019 Explorations: An Open Invitation to Biological Anthropology is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted. ISBN – 978-1-931303-63-7 www.explorations.americananthro.org 10. Early Members of the Genus Homo Bonnie Yoshida-Levine Ph.D., Grossmont College Learning Objectives • Describe how early Pleistocene climate change influenced the evolution of the genus Homo. • Identify the characteristics that define the genus Homo. • Describe the skeletal anatomy of Homo habilis and Homo erectus based on the fossil evidence. • Assess opposing points of view about how early Homo should be classified. Describe what is known about the adaptive strategies of early members of the Homo genus, including tool technologies, diet, migration patterns, and other behavioral trends.The boy was no older than 9 when he perished by the swampy shores of the lake. After death, his slender, long-limbed body sank into the mud of the lake shallows. His bones fossilized and lay undisturbed for 1.5 million years. In the 1980s, fossil hunter Kimoya Kimeu, working on the western shore of Lake Turkana, Kenya, glimpsed a dark colored piece of bone eroding in a hillside. This small skull fragment led to the discovery of what is arguably the world’s most complete early hominin fossil—a youth identified as a member of the species Homo erectus. Now known as Nariokotome Boy, after the nearby lake village, the skeleton has provided a wealth of information about the early evolution of our own genus, Homo (see Figure 10.1).
    [Show full text]