On the Structure and Function of Tails in Snakes: Relative Length and Arboreality

Total Page:16

File Type:pdf, Size:1020Kb

On the Structure and Function of Tails in Snakes: Relative Length and Arboreality ON THE STRUCTURE AND FUNCTION OF TAILS IN SNAKES: RELATIVE LENGTH AND ARBOREALITY By COLEMAN MATTHEW SHEEHY III A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2006 1 Copyright 2006 By Coleman Matthew Sheehy III 2 To the increased understanding, respect, and conservation of snakes worldwide 3 ACKNOWLEDGMENTS I thank my committee members Harvey B. Lillywhite (chair), James Albert, and Max A. Nickerson for their guidance and support. Harvey B. Lillywhite first inspired this work by suggesting a link between snake tails and the gravitational hypothesis. I thank Harvey B. Lillywhite and Michael B. Harvey for providing unpublished snake length data, Florida Museum of Natural History (FLMNH) curators F. Wayne King and Max A. Nickerson for access to the Herpetology collection, Roy McDiarmid and George Zug at the United States National Museum (USNM) for permission to use the Herpetology collection, and Steve Gotte at the USNM and Kenney L. Krysko at the FLMNH for supplying data from the Herpetology collection databases. I thank Michael B. Harvey, Laurie Vitt, James McCranie, Rom Whitaker, Bob Henderson, Bob Powell, Blair Hedges, Ming Tu, Max A. Nickerson, Richard Sajdak, Bill Love, and John Rossi for providing difficult to find snake natural history information. I thank Michael B. Harvey and Ron Gutberlet for information on snake phylogenies, Michael McCoy for assistance with various statistical programs and analyses, and Kent Vliet for the use of a Macintosh computer. I thank Andres Lopez and Griffin Sheehy for help with illustrating programs, Andres Lopez for help with phylogenetic programs, and Jason Neville for computer assistance. I thank Glades Herp Inc. for permission to measure live snakes and, perhaps more importantly, I am grateful to Russel L. Anderson, Sam D. Floyd and Ryan J. R. McCleary for assistance in handling and measuring live snakes, many of which were large, highly venomous, and uncooperative. In addition to my committee members, I thank Ryan J. R. McCleary, David A. Wooten, Leslie Babonis, Chris Samuelson, Bruce Jayne, and Roy McDiarmid for stimulating discussions regarding snake natural history and evolution. I thank Griffin E. Sheehy and Andrea Martinez for all their patience, love and support. Finally, I want to 4 thank my parents Coleman M. Sheehy, Jr. and Ellen R. Sheehy for never failing to support and encourage a young boy’s endless passion for snakes. I could not have been more lucky. 5 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................8 LIST OF FIGURES .........................................................................................................................9 ABSTRACT...................................................................................................................................10 CHAPTER 1 INTRODUCTION ..................................................................................................................12 Gravitational Influence on Tail Morphology..........................................................................13 Length Limitations..................................................................................................................14 Relative Tail Length and Macrohabitat Use...........................................................................15 Multiple Functions of Tail Use...............................................................................................17 Locomotion......................................................................................................................17 Caudal Luring..................................................................................................................20 Defense............................................................................................................................21 Morphology and Reproduction........................................................................................24 Sexual Dimorphism and Ontogenetic Shifts ...................................................................25 2 MATERIALS AND METHODS............................................................................................27 Categorizing Climbing in Snakes: Gravitational Habitat .......................................................27 Analyses..................................................................................................................................31 Frequency Distribution....................................................................................................31 Gravitational Habitat and Total Body Length.................................................................31 Gravitational Habitat and Tail Length.............................................................................32 Constructing the Phylogeny ............................................................................................32 Relative Tail-Length, Gravitational Habitat, and Phylogeny..........................................34 3 RESULTS...............................................................................................................................48 Frequency Distribution ...........................................................................................................48 Gravitational Habitat and Total Body Length ........................................................................48 Gravitational Habitat and Tail Length....................................................................................49 Relative Tail-Length, Gravitational Habitat, and Phylogeny .................................................49 4 DISCUSSION.........................................................................................................................63 Relative Tail Length, Gravity, and Climbing in Snakes.........................................................63 Snake Tails and Defense: Speed and Pseudautotomy ............................................................67 APPENDIX STENOTOPICALLY ARBOREAL SPECIES........................................................71 6 LIST OF REFERENCES...............................................................................................................73 BIOGRAPHICAL SKETCH .........................................................................................................85 7 LIST OF TABLES Table page 2-1 Taxa and associated data sources for 227 snake species included in this study................36 2-2 Total variation in relative tail-lengths of 26 species of snakes..........................................43 3-1 The 227 species included in this study ..............................................................................50 A-1 Stenotopically arboreal species..........................................................................................71 8 LIST OF FIGURES Figure page 2-1 Composite phylogeny of 227 snake taxa. ..........................................................................44 3-1 Snake total length frequency distribution. .........................................................................56 3-2 Coefficients of variation of log10 transformed total length................................................58 3-3 Regression of log10 tail length on log10 total length...........................................................59 3-4 Analysis of covariance (ANCOVA) on corrected tail-length for 227 species of stenotopically arboreal.......................................................................................................60 3-5 Analysis of covariance (ANCOVA) on corrected tail-length for 227 species of scansorial............................................................................................................................61 3-6 Independent contrasts.........................................................................................................62 4-1 Regression of absolute tail length on relative tail-length...................................................70 9 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science ON THE STRUCTURE AND FUNCTION OF TAILS IN SNAKES: RELATIVE LENGTH AND ARBOREALITY By Coleman Matthew Sheehy III December 2006 Chair: Harvey B. Lillywhite Major Department: Zoology The pervasive effect of gravity on blood circulation is an important consequence for elongate animals such as snakes that utilize arboreal habitats. Upright postures create vertical gradients of hydrostatic pressures within circulatory vessels, and the magnitude of the pressure change is proportional to the total length of the blood column. In air, this potentially induces blood pooling and edema in dependent tissues and a decrease in the volume of blood reaching the head and vital organs of animals that are tall or elongate. Arboreal snakes exhibit a suite of behavioral, morphological, and physiological adaptations for countering the effects of gravity on blood circulation including relatively non-compliant tissue compartments in the tail. Comparative studies involving arboreal, terrestrial, and aquatic species have demonstrated that blood pooling in dependent
Recommended publications
  • Evidence of Lingual-Luring by an Aquatic Snake
    Journal of Herpetology, Vol. 34 No. 1 pp 67-74, 2000 Copyright 2000 Society for the Study of Amphibians and Reptiles Evidence of Lingual-luring by an Aquatic Snake HARTWELL H. WELSH, JR. AND AMY J. LIND Pacific Southwest Research Station, USDA Forest Service, 1700 Bayview Dr., Arcata, California 95521, USA. E-mail: hwelsh/[email protected] ABSTRACT.-We describe and quantify the components of an unusual snake behavior used to attract fish prey: lingual-luring. Our earlier research on the foraging behavior of the Pacific Coast aquatic garter snake (Thamnophis atratus) indicated that adults are active foragers, feeding primarily on aquatic Pacific giant salamanders (Dicamptodon tenebrosus) in streambed substrates. Juvenile snakes, however, use primarily ambush tactics to capture larval anurans and juvenile salmonids along stream margins, behaviors that include the lingual-luring described here. We found that lingual-luring differed from typical chemosensory tongue-flicking by the position of the snake, contact of the tongue with the water surface, and the length of time the tongue was extended. Luring snakes are in ambush position and extend and hold their tongues out rigid, with the tongue-tips quivering on the water surface, apparently mimicking insects in order to draw young fish within striking range. This behavior is a novel adaptation of the tongue-vomeronasal system by a visually-oriented predator. The luring of prey by snakes has been asso- luring function (Mushinsky, 1987; Ford and ciated primarily with the use of the tail, a be- Burghardt, 1993). However, Lillywhite and Hen- havior termed caudal luring (e.g., Neill, 1960; derson (1993) noted the occurrence of a pro- Greene and Campbell, 1972; Heatwole and Dav- longed extension of the tongue observed in vine ison, 1976; Jackson and Martin, 1980; Schuett et snakes (e.g., Kennedy, 1965; Henderson and al., 1984; Chizar et al., 1990).
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • BIB 13484.Pdf
    Russian Journal of Herpetology Vol. 26, No. 5, 2019, pp. 247 – 260 DOI: 10.30906/1026-2296-2019-26-5-247-260 REAPPRAISAL OF HERPETOFAUNA RECORDED FROM JAFFNA PENINSULA IN NORTHERN SRI LANKA WITH REMARKS ON CONSERVATION, DIVERSITY, AND DISTRIBUTION Majintha Madawala,1 Thilina Surasinghe,2* Anslem De Silva,3 Dinesh Gabadage,4 Madhava Botejue,4 Indika Peabotuwage,5 Dushantha Kandambi,5 and Suranjan Karunarathna5 Submitted January 11, 2017 Jaffna peninsula is quite an unexplored area of Sri Lanka’s lowland dry zone. We constructed a species checklist for all herpetofauna of this area based on a short-term field survey, a comprehensive literature review, museum specimens, and observations made by field herpetologists. Based on 200 × 10 m belt transects, we surveyed herpetofauna both during day and night time, in 10 different types of habitats. The species checklist we compiled comprised 44 species of reptiles (including three nationally threatened, one globally threatened, and eight endemic species) and 15 species of amphibians (including one nationally threatened and three endemic species). Based on published literature, museum specimens, expert opinions, and current field survey, we documented 85 species of herpetofauna in this area. Of this entire list, we were unable to record the presence of 25 species through our field survey. Our field survey documented 18 species that were not previously reported from Jaffna Peninsula. Our study revealed that inland water bodies, cultivated lands, home gardens, and coastal beaches are of high impor- tance for native herpetofauna of Jaffna peninsula. Many human disturbances, such as habitat alterations, vengeful killing, consumption overexploitation, and road mortality are the key threats encountered by herpetofauna in Jaffna.
    [Show full text]
  • Activity Budget and Spatial Behavior of the Emerald Tree Boa Corallus Batesii
    Activity Budget and Spatial Behavior of the Emerald Tree Boa Corallus batesii Faculty Member #1 Joseph R. Mendelson III Signature Faculty Member #2 Emily G. Weigel Signature 2 Acknowledgments I would first like to thank my primary research advisor, Professor Joseph Mendelson, for your guidance and support. Thank you for inviting me to be a part of the emerald boa project and for investing so much time in helping me to become a scientist. I would also like to thank my second research advisor, Professor Emily Weigel, for helping me to get involved in research. Thank you for all of your help with my statistics and analysis and for providing detailed feedback to help me improve my scientific writing. Next, I would like to thank members of my research team: Liz Haseltine, Sav Berry, and Ellen Sproule. Thank you for organizing this study and for your help analyzing our 1,104 hours of video footage. I would like to thank members of the Spatial Ecology and Paleontology lab for your help in training me to become a better researcher. Thank you to Professor Jenny McGuire, Dr. Sílvia Pineda-Munoz, Dr. Yue Wang, Dr. Rachel Short, and Julia Schap. A special thanks to Ben Shipley and Danny Lauer for teaching me how to use R. Finally, I would like to thank my family for your continuous support while I study to become a wildlife biologist. Thank you for listening to me talk about snakes for the past few years. 3 Abstract Corallus batesii is a boid snake native to the Amazon basin.
    [Show full text]
  • De Los Reptiles Del Yasuní
    guía dinámica de los reptiles del yasuní omar torres coordinador editorial Lista de especies Número de especies: 113 Amphisbaenia Amphisbaenidae Amphisbaena bassleri, Culebras ciegas Squamata: Serpentes Boidae Boa constrictor, Boas matacaballo Corallus hortulanus, Boas de los jardines Epicrates cenchria, Boas arcoiris Eunectes murinus, Anacondas Colubridae: Dipsadinae Atractus major, Culebras tierreras cafés Atractus collaris, Culebras tierreras de collares Atractus elaps, Falsas corales tierreras Atractus occipitoalbus, Culebras tierreras grises Atractus snethlageae, Culebras tierreras Clelia clelia, Chontas Dipsas catesbyi, Culebras caracoleras de Catesby Dipsas indica, Culebras caracoleras neotropicales Drepanoides anomalus, Culebras hoz Erythrolamprus reginae, Culebras terrestres reales Erythrolamprus typhlus, Culebras terrestres ciegas Erythrolamprus guentheri, Falsas corales de nuca rosa Helicops angulatus, Culebras de agua anguladas Helicops pastazae, Culebras de agua de Pastaza Helicops leopardinus, Culebras de agua leopardo Helicops petersi, Culebras de agua de Peters Hydrops triangularis, Culebras de agua triángulo Hydrops martii, Culebras de agua amazónicas Imantodes lentiferus, Cordoncillos del Amazonas Imantodes cenchoa, Cordoncillos comunes Leptodeira annulata, Serpientes ojos de gato anilladas Oxyrhopus petolarius, Falsas corales amazónicas Oxyrhopus melanogenys, Falsas corales oscuras Oxyrhopus vanidicus, Falsas corales Philodryas argentea, Serpientes liana verdes de banda plateada Philodryas viridissima, Serpientes corredoras
    [Show full text]
  • Daily News Diary 14.11.2020
    DAILY NEWS DIARY 14.11.2020 +91-90000 66690 / 99899 66744 H. NO. 1-10-196 (New No. 177), Street no. 1, Ashok Nagar X roads, Hyderabad, Telangana 500020 DAILY NEWS DIARY of 14.11.2020 FOR PRELIMS AND MAINS 1 www.sosinclasses.com +91 90000 66690 [email protected] Page DAILY NEWS DIARY 14.11.2020 Warm Greetings. ➢ DnD aims to provide every day news analysis in sync with the UPSC pattern. ➢ It is targeted at UPSC – Prelims & Mains. ➢ Daily articles are provided in the form of Question and Answers • To have a bank of mains questions. • And interesting to read. • Providing precise information that can be carried straight to the exam, rather than over dumping. Enjoy reading. THE HINDU - TH INDIAN EXPRESS - IE BUSINESS LINE - BL ECONOMIC TIMES - ET TIMES OF INDIA - TOI 2 www.sosinclasses.com +91 90000 66690 [email protected] Page DAILY NEWS DIARY 14.11.2020 INDEX ➢ Essay Paper Editorial 1. The latest stimulus package taking into account the jobs crisis in both urban and rural India.….…..04 GS 2 ➢ Social Justice 1. Intent behind Supreme Court’s verdict leaving the eligibility of an employee in the discretion of the employer …………………………………………………………………………………………………………………………………….05 GS 3 ➢ Biodiversity 1. New species of vine snakes discovered………………………………………………………………………………………..06 Snippets GS 2 ➢ Governance 1. Steps taken by the central government to promote Ayurveda Medicine in India and worldwide….07 ➢ Social Justice 2. Affordable Rental Housing Complex (ARHC) scheme……………………………………………………………………07 GS 3 ➢ Economic Development 1. Pros and cons of the Production-linked incentive scheme……………………………………………………………08 3 www.sosinclasses.com +91 90000 66690 [email protected] Page DAILY NEWS DIARY 14.11.2020 ESSAY PAPER EDITORIAL Q – How is the latest stimulus package taking into account the jobs crisis in both urban and rural India.
    [Show full text]
  • A Molecular Phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia)
    Zootaxa 1945: 51–66 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia) NICOLAS VIDAL1,10, WILLIAM R. BRANCH2, OLIVIER S.G. PAUWELS3,4, S. BLAIR HEDGES5, DONALD G. BROADLEY6, MICHAEL WINK7, CORINNE CRUAUD8, ULRICH JOGER9 & ZOLTÁN TAMÁS NAGY3 1UMR 7138, Systématique, Evolution, Adaptation, Département Systématique et Evolution, C. P. 26, Muséum National d’Histoire Naturelle, 43 Rue Cuvier, Paris 75005, France. E-mail: [email protected] 2Bayworld, P.O. Box 13147, Humewood 6013, South Africa. E-mail: [email protected] 3 Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. E-mail: [email protected], [email protected] 4Smithsonian Institution, Center for Conservation Education and Sustainability, B.P. 48, Gamba, Gabon. 5Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802-5301 USA. E-mail: [email protected] 6Biodiversity Foundation for Africa, P.O. Box FM 730, Bulawayo, Zimbabwe. E-mail: [email protected] 7 Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, INF 364, D-69120 Heidelberg, Germany. E-mail: [email protected] 8Centre national de séquençage, Genoscope, 2 rue Gaston-Crémieux, CP5706, 91057 Evry cedex, France. E-mail: www.genoscope.fr 9Staatliches Naturhistorisches Museum, Pockelsstr. 10, 38106 Braunschweig, Germany. E-mail: [email protected] 10Corresponding author Abstract The Elapoidea includes the Elapidae and a large (~60 genera, 280 sp.) and mostly African (including Madagascar) radia- tion termed Lamprophiidae by Vidal et al.
    [Show full text]
  • BEST of SCIENCE in 2019 Popular Stories the BEST of SCIENCE in 2019 Popular Stories
    THE BEST OF SCIENCE IN 2019 Popular stories THE BEST OF SCIENCE IN 2019 Popular Stories A Collation by Research Matters Published by: Gubbi Labs LLP No 2-182, 2nd Cross, Extension, Gubbi - 572 216, Tumakuru District, Karnataka, India. Email: [email protected] | [email protected] Web: https://researchmatters.in This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 2019 was an exciting year for science as ever. We have collated the top ten stories that was popular on Research Matters in 2019. These were the ones that garnered most views because of readers like you. We would like to thank you for patronage and look forward to your support in the years to come. TABLE OF CONTENTS 06 08 Mathematician Two Dr Neena Gupta Bengaluru scientists shines as the shine on the list of youngest Shanti 2019 Padma Swarup Bhatnagar awardees awardee 10 13 “High blood Welcome AJIT, pressure? a ‘Made in India’ It could be in Microprocessor the air! 15 18 21 Researchers discover a new Alternatives to Watch what you eat: species of vine stubble burning not 1 in 5 deaths due snake from the only possible but to poor diet, reveals Western Ghats that profitable, shows study dates back study 26 million years 24 26 29 Hearing out IISc Develops the deaf: IISc Cutting Pesticide India’s first e-mode researchers design Costs in Cotton Gallium-Nitride a smar phone- Farms Power Transistor based therapy and hearing aid Two Bengaluru scientists shine on the list of 2019 Padma awardees 6 Prof Rohini M.
    [Show full text]
  • O Mimetismo Das Serpentes Corais Em Ambientes
    UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE ECOLOGIA O MIMETISMO DAS SERPENTES CORAIS EM AMBIENTES CAMPESTRES, SAVÂNICOS E FLORESTAIS DA AMÉRICA DO SUL Frederico Gustavo Rodrigues França Brasília-DF 2008 UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE ECOLOGIA O MIMETISMO DAS SERPENTES CORAIS EM AMBIENTES CAMPESTRES, SAVÂNICOS E FLORESTAIS DA AMÉRICA DO SUL Frederico Gustavo Rodrigues França Orientador: Alexandre Fernandes Bamberg de Araújo Tese apresentada ao Departamento de Ecologia do Instituto de Ciências Biológicas da Universidade de Brasília, como parte dos requisitos necessários para a obtenção do título de Doutor em Ecologia. Brasília-DF 2008 Trabalho realizado junto ao Departamento de Ecologia do Instituto de Ciências Biológicas da Universidade de Brasília, sob orientação do Prof. Alexandre Fernandes Bamberg de Araújo, com o apoio financeiro da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), como parte dos requisitos para obtenção do título de Doutor em Ecologia. Data da Defesa: 01 de agosto de 2008 Banca Examinadora Prof. Dr. Alexandre Fernandes Bamberg de Araújo (Orientador) ________________________________________________ Prof. Dr. Daniel Oliveira Mesquita ________________________________________________ Prof. Dr. Guarino Rinaldi Colli ________________________________________________ Prof. Dr. Hélio Ricardo da Silva ________________________________________________ Prof. Dr. Raimundo
    [Show full text]
  • The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters.
    [Show full text]
  • Download Full Article in PDF Format
    First record of Ahaetulla mycterizans (Linnaeus, 1758) (Reptilia, Squamata, Colubridae) from Sumatra, Indonesia, with an expanded defi nition Aurélien MIRALLES Technical University of Braunschweig, Department of Evolutionary Biology, Zoological Institute, Spielmannstrasse 8, D-38106 Braunschweig (Germany) [email protected] Patrick DAVID Muséum national d’Histoire naturelle, Département Systématique et Évolution, UMR 7202 CNRS Origine, Structure et Évolution de la Biodiversité, case postale 30, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] Miralles A. & David P. 2010. — First record of Ahaetulla mycterizans (Linnaeus, 1758) (Reptilia, Squamata, Colubridae) from Sumatra, Indonesia, with an expanded defi nition. Zoosystema 32 (3) : 449-456. ABSTRACT A specimen of the colubrid genus Ahaetulla Link, 1807 collected in 2002 in Jambi Province, Sumatra, Indonesia, proves to be the fi rst record of Ahaetulla mycterizans (Linnaeus, 1758) for this Indonesian island. Th is species was previ- KEY WORDS ously known from Java, West Malaysia and southern Peninsular Th ailand. Th e Reptilia, Serpentes, discovery of this specimen constitutes an opportunity to redefi ne and illustrate Colubridae, this rare and poorly known species and to compare it with the more common Ahaetulla mycterizans, Ahaetulla prasina (Boie, 1827). Additionally, an identifi cation key of the species Ahaetulla prasina, Sumatra, of Ahaetulla from the Indo-Malayan Region is proposed. Th is addition brings Indonesia. to 134 the number of snake species currently known from Sumatra Island. RÉSUMÉ Première mention d’Ahaetulla mycterizans (Linnaeus, 1758) (Reptilia, Squamata, Colubridae) pour Sumatra, Indonésie, avec une redéfi nition de cette espèce. Un spécimen du genre de couleuvre Ahaetulla Link, 1807, collecté en 2002 dans la province de Jambi, île de Sumatra, Indonésie, représente la première mention confi rmée de Ahaetulla mycterizans (Linnaeus, 1758) sur cette île d’Indonésie.
    [Show full text]
  • Boidae, Boinae): a Rare Snake from the Vale Do Ribeira, State of São Paulo, Brazil
    SALAMANDRA 47(2) 112–115 20 May 2011 ISSNCorrespondence 0036–3375 Correspondence New record of Corallus cropanii (Boidae, Boinae): a rare snake from the Vale do Ribeira, State of São Paulo, Brazil Paulo R. Machado-Filho 1, Marcelo R. Duarte 1, Leandro F. do Carmo 2 & Francisco L. Franco 1 1) Laboratório de Herpetologia, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP, CEP: 05503-900, Brazil 2) Departamento de Agroindústria, Alimentos e Nutrição. Escola Superior de Agronomia “Luiz de Queiroz” – ESALQ/USP, Av. Pádua Dias, 11 C.P.: 9, Piracicaba, SP, CEP: 13418-900, Brazil Correspondig author: Francisco L. Franco, e-mail: [email protected] Manuscript received: 9 December 2010 The boid genusCorallus Daudin, 1803 is comprised of nine Until recently, only four specimens (including the above Neotropical species (Henderson et al. 2009): Corallus an­ mentioned holotype) of C. cropanii were deposited in her- nulatus (Cope, 1876), Corallus batesii (Gray, 1860), Co­ petological collections: three in the Coleção Herpetológica rallus blombergi (Rendahl & Vestergren, 1941), Coral­ “Alphonse Richard Hoge”, Instituto Butantan, São Paulo, lus caninus (Linnaeus, 1758), Corallus cookii Gray, 1842, Corallus cropanii (Hoge, 1954), Corallus grenadensis (Bar- bour, 1914), Corallus hortulanus (Linnaeus, 1758), and Corallus ruschenbergerii (Cope, 1876). The most conspic- uous morphological attributes of representatives of these species are the laterally compressed body, robust head, slim neck, and the presence of deep pits in some of the la- bial scales (Henderson 1993a, 1997). Species of Corallus are distributed from northern Central American to south- ern Brazil, including Trinidad and Tobago and islands of the south Caribbean. Four species occur in Brazil: Corallus batesii, C.
    [Show full text]