Araneae, Leptonetidae) from Korea
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Research Article ISSN 2336-9744 (Online) | ISSN 2337-0173 (Print) the Journal Is Available on Line At
Research Article ISSN 2336-9744 (online) | ISSN 2337-0173 (print) The journal is available on line at www.biotaxa.org/em New faunistic data on the cave-dwelling spiders in the Balkan Peninsula (Araneae) MARIA V. NAUMOVA1, STOYAN P. LAZAROV2, BOYAN P. PETROV2, CHRISTO D. DELTSHEV2 1Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1, Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria, E-mail: [email protected] 2National Museum of Natural History, Bulgarian Academy of Sciences, 1, Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria, E-mail: [email protected], [email protected], [email protected] Corresponding author: Christo Deltshev Received 15 October 2016 │ Accepted 7 November 2016 │ Published online 9 November 2016. Abstract The contribution summarizes previously unpublished data and adds records of newly collected cave-dwelling spiders from the Balkan Peninsula. New data on the distribution of 91 species from 16 families, found in 157 (27 newly established) underground sites (caves and artificial galleries) are reported due to 337 original records. Twelve species are new to the spider fauna of the caves of the Balkan Peninsula. The species Histopona palaeolithica (Brignoli, 1971) and Hoplopholcus longipes (Spassky, 1934) are reported for the first time for the territory of Balkan Peninsula, Centromerus cavernarum (L. Koch, 1872), Diplocephalus foraminifer (O.P.-Cambridge, 1875) and Lepthyphantes notabilis Kulczyński, 1887 are new for the fauna of Bosnia and Herzegovina, Cataleptoneta detriticola Deltshev & Li, 2013 is new for the fauna of Greece, Asthenargus bracianus Miller, 1938 and Centromerus europaeus (Simon, 1911) are new for the fauna of Montenegro and Syedra gracilis (Menge, 1869) is new for the fauna of Turkey. -
Estimating Spider Species Richness in a Southern Appalachian Cove Hardwood Forest
1996. The Journal of Arachnology 24:111-128 ESTIMATING SPIDER SPECIES RICHNESS IN A SOUTHERN APPALACHIAN COVE HARDWOOD FOREST Jonathan A. Coddington: Dept. of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560 USA Laurel H. Young and Frederick A. Coyle: Dept. of Biology, Western Carolina University, Cullowhee, North Carolina 28723 USA ABSTRACT. Variation in species richness at the landscape scale is an important consideration in con- servation planning and natural resource management. To assess the ability of rapid inventory techniques to estimate local species richness, three collectors sampled the spider fauna of a "wilderness" cove forest in the southern Appalachians for 133 person-hours during September and early October 1991 using four methods: aerial hand collecting, ground hand collecting, beating, and leaf litter extraction. Eighty-nine species in 64 genera and 19 families were found. To these data we applied various statistical techniques (lognormal, Poisson lognormal, Chao 1, Chao 2, jackknife, and species accumulation curve) to estimate the number of species present as adults at this site. Estimates clustered between roughly 100-130 species with an outlier (Poisson lognormal) at 182 species. We compare these estimates to those from Bolivian tropical forest sites sampled in much the same way but less intensively. We discuss the biases and errors such estimates may entail and their utility for inventory design. We also assess the effects of method, time of day and collector on the number of adults, number of species and taxonomic composition of the samples and discuss the nature and importance of such effects. Method, collector and method-time of day interaction significantly affected the numbers of adults and species per sample; and each of the four methods collected clearly different sets of species. -
WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07C 39/00 (2006.01) C07D 303/32 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C07C 49/242 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/US20 16/048092 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 22 August 2016 (22.08.2016) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/208,662 22 August 2015 (22.08.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: NEOZYME INTERNATIONAL, INC. -
Arachnologische Arachnology
Arachnologische Gesellschaft E u Arachnology 2015 o 24.-28.8.2015 Brno, p Czech Republic e www.european-arachnology.org a n Arachnologische Mitteilungen Arachnology Letters Heft / Volume 51 Karlsruhe, April 2016 ISSN 1018-4171 (Druck), 2199-7233 (Online) www.AraGes.de/aramit Arachnologische Mitteilungen veröffentlichen Arbeiten zur Faunistik, Ökologie und Taxonomie von Spinnentieren (außer Acari). Publi- ziert werden Artikel in Deutsch oder Englisch nach Begutachtung, online und gedruckt. Mitgliedschaft in der Arachnologischen Gesellschaft beinhaltet den Bezug der Hefte. Autoren zahlen keine Druckgebühren. Inhalte werden unter der freien internationalen Lizenz Creative Commons 4.0 veröffentlicht. Arachnology Logo: P. Jäger, K. Rehbinder Letters Publiziert von / Published by is a peer-reviewed, open-access, online and print, rapidly produced journal focusing on faunistics, ecology Arachnologische and taxonomy of Arachnida (excl. Acari). German and English manuscripts are equally welcome. Members Gesellschaft e.V. of Arachnologische Gesellschaft receive the printed issues. There are no page charges. URL: http://www.AraGes.de Arachnology Letters is licensed under a Creative Commons Attribution 4.0 International License. Autorenhinweise / Author guidelines www.AraGes.de/aramit/ Schriftleitung / Editors Theo Blick, Senckenberg Research Institute, Senckenberganlage 25, D-60325 Frankfurt/M. and Callistus, Gemeinschaft für Zoologische & Ökologische Untersuchungen, D-95503 Hummeltal; E-Mail: [email protected], [email protected] Sascha -
Karst Invertebrates Taxonomy
Endangered Karst Invertebrate Taxonomy of Central Texas U.S. Fish and Wildlife Service Austin Ecological Services Field Office 10711 Burnet Rd. Suite #200 Austin, TX 78758 Original date: July 28, 2011 Revised on: April 4, 2019 TABLE OF CONTENTS 1.0 INTRODUCTION .................................................................................................................... 1 2.0 ENDANGERED KARST INVERTEBRATE TAXONOMY ................................................. 1 2.1 Batrisodes texanus (Coffin Cave mold beetle) ......................................................................... 2 2.2 Batrisodes venyivi (Helotes mold beetle) .................................................................................. 3 2.3 Cicurina baronia (Robber Baron Cave meshweaver) ............................................................... 4 2.4 Cicurina madla (Madla Cave meshweaver) .............................................................................. 5 2.5 Cicurina venii (Braken Bat Cave meshweaver) ........................................................................ 6 2.6 Cicurina vespera (Government Canyon Bat Cave meshweaver) ............................................. 7 2.7 Neoleptoneta microps (Government Canyon Bat Cave spider) ................................................ 8 2.8 Neoleptoneta myopica (Tooth Cave spider) .............................................................................. 9 2.9 Rhadine exilis (no common name) ......................................................................................... -
Araneae (Spider) Photos
Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison. -
Journal of Cave and Karst Studies
June 2020 Volume 82, Number 2 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Julian J. Lewis & Salisa L. Lewis Tel:256-852-1300 Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Bowling Green, KY Washington, DC 20460-0001 [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy [email protected] Scott A. Engel Knoxville, TN Carol Wicks 225-281-3914 Louisiana State University [email protected] Baton Rouge, LA [email protected] Exploration Paul Burger National Park Service Eagle River, Alaska [email protected] Microbiology Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM [email protected] Number #40065056, is a multi-disciplinary, refereed journal pub- lished four times a year by the National Speleological Society. -
Annotated Checklist of the Spiders of Turkey
_____________Mun. Ent. Zool. Vol. 12, No. 2, June 2017__________ 433 ANNOTATED CHECKLIST OF THE SPIDERS OF TURKEY Hakan Demir* and Osman Seyyar* * Niğde University, Faculty of Science and Arts, Department of Biology, TR–51100 Niğde, TURKEY. E-mails: [email protected]; [email protected] [Demir, H. & Seyyar, O. 2017. Annotated checklist of the spiders of Turkey. Munis Entomology & Zoology, 12 (2): 433-469] ABSTRACT: The list provides an annotated checklist of all the spiders from Turkey. A total of 1117 spider species and two subspecies belonging to 52 families have been reported. The list is dominated by members of the families Gnaphosidae (145 species), Salticidae (143 species) and Linyphiidae (128 species) respectively. KEY WORDS: Araneae, Checklist, Turkey, Fauna To date, Turkish researches have been published three checklist of spiders in the country. The first checklist was compiled by Karol (1967) and contains 302 spider species. The second checklist was prepared by Bayram (2002). He revised Karol’s (1967) checklist and reported 520 species from Turkey. Latest checklist of Turkish spiders was published by Topçu et al. (2005) and contains 613 spider records. A lot of work have been done in the last decade about Turkish spiders. So, the checklist of Turkish spiders need to be updated. We updated all checklist and prepare a new checklist using all published the available literatures. This list contains 1117 species of spider species and subspecies belonging to 52 families from Turkey (Table 1). This checklist is compile from literature dealing with the Turkish spider fauna. The aim of this study is to determine an update list of spider in Turkey. -
Diversity and Community Assembly Patterns of Epigean Vs. Troglobiont Spiders in the Iberian Peninsula Pedro Cardoso1
International Journal of Speleology 41 (1) 83-94 Tampa, FL (USA) January 2012 Available online at scholarcommons.usf.edu/ijs/ & www.ijs.speleo.it International Journal of Speleology Official Journal of Union Internationale de Spéléologie Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula Pedro Cardoso1 Abstract: Cardoso P. 2012. Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. International Journal of Speleology, 41(1), 83-94. Tampa, FL (USA). ISSN 0392-6672. http://dx.doi.org/10.5038/1827-806X.41.1.9 Cave-obligate organisms usually have smaller ranges and their assemblages have higher beta diversity than their epigean counterparts. Phylogenetic and functional diversity is usually low in cave communities, leading to taxonomic and functional disharmony, with entire groups missing from the subterranean realm. The objective of this work is to compare range, beta diversity, phylogenetic and functional diversity, taxonomic and functional disharmony of epigean versus troglobiont spiders in the Iberian Peninsula. The median extent of occurrence was found to be 33 times higher for epigean than for cave species. Beta diversity was significantly higher for troglobiont assemblages. Cave assemblages present lower phylogenetic and functional diversities than expected by chance. Taxonomic disharmony was noticeable, with many speciose families, namely Gnaphosidae, Salticidae and Lycosidae, absent in caves. Functional disharmony was equally high, with ambush hunters and sensing web weavers being absent in caves. The small range and high beta diversity of troglobiont spiders in the Iberian Peninsula is typical of many cave-obligate organisms, caused by the fragmentation and isolation of cave systems and the low vagility and high habitat specialization of species. -
Spiders (Arachnida: Aranei) of Azerbaijan. 1. New Family and Genus Records
Arthropoda Selecta 12 (1): 2946 © ARTHROPODA SELECTA, 2003 Spiders (Arachnida: Aranei) of Azerbaijan. 1. New family and genus records Ïàóêè (Arachnida: Aranei) Àçåðáàéäæàíà. 1. Íîâûå äëÿ ðåãèîíà ñåìåéñòâà è ðîäà Yuri M. Marusik1 & Elchin F. Guseinov2 Þ.Ì. Ìàðóñèê1, Ý.Ô. Ãóñåéíîâ2 ¹ Institute for Biological Problems of the North, Portovaya Str. 18, Magadan 685000 Russia. email: [email protected] 1 Èíñòèòóò áèîëîãè÷åñêèõ ïðîáëåì Ñåâåðà, ÄÂÎ ÐÀÍ, óë. Ïîðòîâàÿ 18, Ìàãàäàí 685000 Ðîññèÿ. ² Institute of Zoology, block 504, passage 1128, Baku 370073 Azerbaijan. email: [email protected] 2 Èíñòèòóò çîîëîãèè ÀÍ Àçåðáàéäæàíà, êâàðòàë 504, ïðîåçä 1128, Áàêó 370073 Àçåðáàéäæàí. KEY WORDS: Aranei, spiders, Caucasus, Azerbaijan, new records, new species. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Aranei, ïàóêè, Êàâêàç, Àçåðáàéäæàí, íîâûå íàõîäêè, íîâûå âèäû. ABSTRACT. Twenty genera and seven families Ñîâåòñêîãî Ñîþçà. Äâà ðîäà Mysmena è Tuberta (Desidae, Leptonetidae, Mysmenidae, Nesticidae, Pal- âïåðâûå çàðåãèñòðèðîâàíû íà òåððèòîðèè Àçèè. pimanidae, Prodidomidae and Theridiosomatidae) new Îïèñàíî òðè âèäà íîâûõ äëÿ íàóêè: Lycosoides to Azerbaijan are reported. 16 genera and 4 families are lehtineni sp.n. ($), Paracedicus feti sp.n. (#$) è Try- new to Caucasus. Five genera are new to the former getus jacksoni sp.n. ($), êðîìå òîãî, ïðèâåäåíû èëëþ- Soviet Union (Lycosoides, Mysmena, Orchestina, Tryge- ñòðèðîâàííûå îïèñàíèÿ åùå ïÿòè âèäîâ: Leptonetella tus and Tuberta) and two genera (Mysmena and Tuber- caucasica Dunin, 1990 ? ($), Howaia mogera (Yagi- ta) are new to Asia as a whole. Three species are numa, 1972) (#$), Nesticella nepalensis (Hubert, 1973) described as new to science: Lycosoides lehtineni sp.n. (# èç ñåâåðíîé Èíäèè), Orchestina sp. ($) è Palpima- ($), Paracedicus feti sp.n. (#$) and Trygetus jacksoni nus sogdianus Charitonov, 1946 ? (#$). -
2013 Kirill the Book.P65
ZOOLOGICAL MUSEUM OF MOSCOW STATE UNIVERSITY K.G. Mikhailov The spiders (Arachnida: Aranei) of Russia and adjacent countries: a non-annotated checklist Arthropoda Selecta. Supplement No. 3. KMK Scientific Press Ltd. Moscow v 2013 Mikhailov K.G.1 The spiders (Arachnida: Aranei) of Russia and adjacent countries: a non- annotated checklist. Arthropoda Selecta. Supplement No.3. Moscow: KMK Scientific Press Ltd. 262 p. 1 Zoological Museum MGU, Bolshaya Nikitskaya Str. 6, Moscow 125009 Russia. E-mail: [email protected] A checklist of 3,340 spider species belonging to 629 genera and 50 families is provided for Russia and the other post-Soviet republics, namely, Armenia, Azerbaijan, Byelorussia (Belarus), Estonia, Georgia, Kazakhstan, Latvia, Lithuania, Moldavia (Moldova), Kirghizia (Kyrgyzstan), Tajikistan, Turkmenia (Turkmenistan), Ukraine, and Uzbekistan, based on comprehensive literature data covering more than 2,600 sources published between 1770 and June 2013. Calculations of the number of spider species in the post-Soviet republics and different physiographical areas are provided in the introductory part. Each species included in the checklist is supplied with an attribution both to physiographical area(s) and republic(s). The necessary synonymies and valid subspecies are also enlisted, same as nomina dubia and nomina nuda. An alphabetic index of all genera and species names is provided as well. Destined for zoologists, mainly arachnologists and entomologists, as well as for local biologists and naturalists. 1 map, 3 tables, 199 references. Key words: Aranei, spiders, checklist, Russia, Armenia, Azerbaijan, Byelorussia, Belarus, Estonia, Georgia, Kazakhstan, Latvia, Lithuania, Moldavia, Moldova, Kirghizia, Kyrgyzstan, Tajikistan, Turkmenia, Turkmenistan, Ukraine, Uzbekistan, physiographical areas. Ìèõàéëîâ Ê.Ã.1 Ïàóêè (Arachnida: Aranei) Ðîññèè è ïðèëåæàùèõ ñòðàí: íåàííîòè- ðîâàííûé ðååñòð. -
Cave Survey Yields a New Spider Family Record for Israel
© Arachnologische Gesellschaft e.V. Frankfurt/Main; http://arages.de/ Arachnologische Mitteilungen / Arachnology Letters 51: 39-42 Karlsruhe, April 2016 Cave survey yields a new spider family record for Israel Efrat Gavish-Regev, Shlomi Aharon, Igor Armiach & Yael Lubin doi: 10.5431/aramit5105 Abstract. Leptonetidae and Phyxelididae were discovered as part of the first thorough cave survey of arthropods in Israel, and are re- ported here for the first time from caves in Israel. Both families were found in relatively temperate and humid caves at the western part of Israel and in intermediate elevation, at the cave entrance and the twilight zone. Leptonetidae were recorded for the first time in Israel. Keywords: Araneae, Cataleptoneta, Leptonetidae, Levant, Phyxelida, Phyxelididae, troglophiles Cave dwelling species can be classified into three groups, ac- of Cyprus and the mainland area including Israel, Jordan, cording to their affinity to life in caves: troglobites are obli- Lebanon, Palestine and Syria. The Levant mainland is, as a gatory cave species, and therefore usually have morphological unit, unusually heterogeneous topographically, climatically adaptations such as reduction or complete loss of vision and and biologically. It includes four main topographic elements, pigmentation as well as elongation of the appendages; troglo- each element continues from the north to the south: the philes (which can be divided into eutroglophile and subtrog- coastal plain, the western mountain ridge, the rift valley and lophile, see Sket 2008) are species that have a strong affinity the eastern mountain ridge. The topographic and climatic to caves but can also live outside caves, and therefore lack the- heterogeneity can be explained by geological processes and se morphological adaptations.