Phylogenomics and Biogeography of Leptonetid Spiders (Araneae : Leptonetidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supraspecific Names in Spider Systematic and Their Nomenclatural Problems
Arachnologische Mitteilungen / Arachnology Letters 55: 42-45 Karlsruhe, April 2018 Supraspecific names in spider systematic and their nomenclatural problems Yuri M. Marusik doi: 10.30963/aramit5507 Abstract. Three different types of the names used in spider systematics are recognized and discussed: 1) typified taxonomic names, 2) non-typified taxonomic names, and 3) non-taxonomic names. Typified names are those from genus to superfamily group names; they are regulated by the ICZN. Non-typified names are used for taxonomic groups higher than superfamilies (e.g., Haplogynae, Mesothelae, etc.); they are not regulated by the ICZN but have an authorship, a fixed year of publication and are incorporated in a hierarchical classification. Non-taxonomic names are not regulated by any formal rules, unranked, have no authorship or description, and are non-typified. Some difficulties connected with the non-typified names in spider systematics are briefly discussed. Senior synonyms of some non-typified and non-taxonomic names are discussed, and suggestions are given on how to deal with the non-typified names lacking senior synonyms. Keywords: clade name, non-typified name, typified name. Zusammenfassung. Supraspezifische Namen in der Spinnensystematik und ihre nomenklatorischen Probleme. Drei verschie- dene Namenstypen in der Spinnensystematik werden diskutiert: 1) typisierte taxonomische Namen, 2) nicht-typisierte taxonomische Namen sowie 3) nicht-taxonomische Namen. Typisierte Namen reichen von Gattungen bis zu Überfamilien und sind durch die ICZN reguliert. Nicht-typisierte Namen werden für taxonomische Einheiten oberhalb von Überfamilien verwendet (z. B. Haplogynae, Meso- thelae), sind nicht durch die ICZN reguliert, haben aber Autoren, ein Erstbeschreibungsjahr und werden in hierarchischen Klassifikatio- nen verwendet. -
The First Record of Family Segestriidae Simon, 1893 (Araneae: Dysderoidea) from Iran
Serket (2014) vol. 14(1): 15-18. The first record of family Segestriidae Simon, 1893 (Araneae: Dysderoidea) from Iran Alireza Zamani Department of Animal Biology, School of Biology and Center of Excellence in Phylogeny of Living Organisms in Iran, College of Science, University of Tehran, Tehran, Iran [email protected] Abstract The family Segestriidae Simon, 1893 and the species Segestria senoculata (Linnaeus, 1758) are recorded in Iran for the first time, based on a single female specimen. Keywords: Spiders, Segestriidae, Segestria senoculata, new record, Iran. Introduction Segestriidae Simon, 1893 is a small family of medium-sized, araneomorph, ecribellate, haplogyne spiders with three tarsal claws which are globally represented by 119 species in three genera (Platnick, 2014). These spiders are six-eyed, and are usually distinguishable by having their third pair of legs directed forwards. From taxonomic point of view, Segestriidae is closely related to Dysderidae, and are considered as a member of the superfamily Dysderoidea. The type genus, Segestria Latreille, 1804, is consisted of 18 species and one subspecies which are mostly distributed in the Palaearctic ecozone (Platnick, 2014). One of the more distributed species is Segestria senoculata (Linnaeus, 1758). This species, like most segestriids, occupies a wide variety of habitats; they prefer living in holes within walls and barks, or under stones, where they build a tubular retreat, with strong threads of silk radiating from the entrance (Roberts, 1995). So far, about 500 spider species of more than 38 families have been reported from Iran (based on our upcoming work on the renewed checklist and the history of studies), but no documentation of the family Segestriidae has been reported from Iran (Mozaffarian & Marusik, 2001; Ghavami, 2006; Kashefi et al., 2013). -
The Common Spiders of Antelope Island State Park
THE COMMON SPIDERS OF ANTELOPE ISLAND STATE PARK by Stephanie M Cobbold Web-building Spiders ______________________________________________________________________________ Family Araneidae (orb web spiders) Build a circular spiral web on support lines that radiate out from the center The spider is often found waiting for prey in the center of its web Typical eye pattern: 4 median eyes clustered in a square shape Eye pattern Orb web SMC SMC Neoscona (back and front views) Banded Garden Spider (Argiope) 1 ______________________________________________________________________________ Family Theridiidae (cob web spiders) Abdomen usually ball or globe-shaped Have bristles on legs called combs. These combs are used to fling silk strands over captive prey. Web is loose, irregular and 3-dimensional commons.wikimedia.org Black Widow (Latrodectus hesperus) Theridion ________________________________________________________________________ Family Linyphiidae (sheet web spiders) Build flat, sheet-like or dome-shaped webs under which the spider hangs upside- down. Abdomen is usually longer than wide SMC Sheet web spider hanging under its web 2 ________________________________________________________________________ Family Dictynidae (mesh web spiders) Make small, irregular webs of hackled threads Often found near the tips of plants SMC ________________________________________________________________________ Family Agelenidae (funnel web spiders) Web is a silk mat with a funnel-shaped retreat at one end in which the spider waits in ambush -
Web-Book Catalog 2021-05-10
Lehigh Gap Nature Center Library Book Catalog Title Year Author(s) Publisher Keywords Keywords Catalog No. National Geographic, Washington, 100 best pictures. 2001 National Geogrpahic. Photographs. 779 DC Miller, Jeffrey C., and Daniel H. 100 butterflies and moths : portraits from Belknap Press of Harvard University Butterflies - Costa 2007 Janzen, and Winifred Moths - Costa Rica 595.789097286 th tropical forests of Costa Rica Press, Cambridge, MA rica Hallwachs. Miller, Jeffery C., and Daniel H. 100 caterpillars : portraits from the Belknap Press of Harvard University Caterpillars - Costa 2006 Janzen, and Winifred 595.781 tropical forests of Costa Rica Press, Cambridge, MA Rica Hallwachs 100 plants to feed the bees : provide a 2016 Lee-Mader, Eric, et al. Storey Publishing, North Adams, MA Bees. Pollination 635.9676 healthy habitat to help pollinators thrive Klots, Alexander B., and Elsie 1001 answers to questions about insects 1961 Grosset & Dunlap, New York, NY Insects 595.7 B. Klots Cruickshank, Allan D., and Dodd, Mead, and Company, New 1001 questions answered about birds 1958 Birds 598 Helen Cruickshank York, NY Currie, Philip J. and Eva B. 101 Questions About Dinosaurs 1996 Dover Publications, Inc., Mineola, NY Reptiles Dinosaurs 567.91 Koppelhus Dover Publications, Inc., Mineola, N. 101 Questions About the Seashore 1997 Barlowe, Sy Seashore 577.51 Y. Gardening to attract 101 ways to help birds 2006 Erickson, Laura. Stackpole Books, Mechanicsburg, PA Birds - Conservation. 639.978 birds. Sharpe, Grant, and Wenonah University of Wisconsin Press, 101 wildflowers of Arcadia National Park 1963 581.769909741 Sharpe Madison, WI 1300 real and fanciful animals : from Animals, Mythical in 1998 Merian, Matthaus Dover Publications, Mineola, NY Animals in art 769.432 seventeenth-century engravings. -
Sexual Selection Research on Spiders: Progress and Biases
Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters. -
SEXUAL CONFLICT in ARACHNIDS Ph.D
MASARYK UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF BOTANY AND ZOOLOGY SEXUAL CONFLICT IN ARACHNIDS Ph.D. Dissertation Lenka Sentenská Supervisor: prof. Mgr. Stanislav Pekár, Ph.D. Brno 2017 Bibliographic Entry Author Mgr. Lenka Sentenská Faculty of Science, Masaryk University Department of Botany and Zoology Title of Thesis: Sexual conflict in arachnids Degree programme: Biology Field of Study: Ecology Supervisor: prof. Mgr. Stanislav Pekár, Ph.D. Academic Year: 2016/2017 Number of Pages: 199 Keywords: Sexual selection; Spiders; Scorpions; Sexual cannibalism; Mating plugs; Genital morphology; Courtship Bibliografický záznam Autor: Mgr. Lenka Sentenská Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Název práce: Konflikt mezi pohlavími u pavoukovců Studijní program: Biologie Studijní obor: Ekologie Vedoucí práce: prof. Mgr. Stanislav Pekár, Ph.D. Akademický rok: 2016/2017 Počet stran: 199 Klíčová slova: Pohlavní výběr; Pavouci; Štíři; Sexuální kanibalismus; Pohlavní zátky; Morfologie genitálií; Námluvy ABSTRACT Sexual conflict is pervasive in all sexually reproducing taxa and is especially intense in carnivorous species, because the interaction between males and females encompasses the danger of getting killed instead of mated. Carnivorous arachnids, such as spiders and scorpions, are notoriously known for their cannibalistic tendencies. Studies of the conflict between arachnid males and females focus mainly on spiders because of the frequent occurrence of sexual cannibalism and unique genital morphology of both sexes. The morphology, in combination with common polyandry, further promotes the sexual conflict in form of an intense sperm competition and male tactics to reduce or avoid it. Scorpion females usually mate only once per litter, but the conflict between sexes is also intense, as females can be very aggressive, and so males engage in complicated mating dances including various components considered to reduce female aggression and elicit her cooperation. -
Howard Associate Professor of Natural History and Curator Of
INGI AGNARSSON PH.D. Howard Associate Professor of Natural History and Curator of Invertebrates, Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086 E-mail: [email protected]; Web: http://theridiidae.com/ and http://www.islandbiogeography.org/; Phone: (+1) 802-656-0460 CURRICULUM VITAE SUMMARY PhD: 2004. #Pubs: 138. G-Scholar-H: 42; i10: 103; citations: 6173. New species: 74. Grants: >$2,500,000. PERSONAL Born: Reykjavík, Iceland, 11 January 1971 Citizenship: Icelandic Languages: (speak/read) – Icelandic, English, Spanish; (read) – Danish; (basic) – German PREPARATION University of Akron, Akron, 2007-2008, Postdoctoral researcher. University of British Columbia, Vancouver, 2005-2007, Postdoctoral researcher. George Washington University, Washington DC, 1998-2004, Ph.D. The University of Iceland, Reykjavík, 1992-1995, B.Sc. PROFESSIONAL AFFILIATIONS University of Vermont, Burlington. 2016-present, Associate Professor. University of Vermont, Burlington, 2012-2016, Assistant Professor. University of Puerto Rico, Rio Piedras, 2008-2012, Assistant Professor. National Museum of Natural History, Smithsonian Institution, Washington DC, 2004-2007, 2010- present. Research Associate. Hubei University, Wuhan, China. Adjunct Professor. 2016-present. Icelandic Institute of Natural History, Reykjavík, 1995-1998. Researcher (Icelandic invertebrates). Institute of Biology, University of Iceland, Reykjavík, 1993-1994. Research Assistant (rocky shore ecology). GRANTS Institute of Museum and Library Services (MA-30-19-0642-19), 2019-2021, co-PI ($222,010). Museums for America Award for infrastructure and staff salaries. National Geographic Society (WW-203R-17), 2017-2020, PI ($30,000). Caribbean Caves as biodiversity drivers and natural units for conservation. National Science Foundation (IOS-1656460), 2017-2021: one of four PIs (total award $903,385 thereof $128,259 to UVM). -
A Summary List of Fossil Spiders
A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature. -
Research Article ISSN 2336-9744 (Online) | ISSN 2337-0173 (Print) the Journal Is Available on Line At
Research Article ISSN 2336-9744 (online) | ISSN 2337-0173 (print) The journal is available on line at www.biotaxa.org/em New faunistic data on the cave-dwelling spiders in the Balkan Peninsula (Araneae) MARIA V. NAUMOVA1, STOYAN P. LAZAROV2, BOYAN P. PETROV2, CHRISTO D. DELTSHEV2 1Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1, Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria, E-mail: [email protected] 2National Museum of Natural History, Bulgarian Academy of Sciences, 1, Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria, E-mail: [email protected], [email protected], [email protected] Corresponding author: Christo Deltshev Received 15 October 2016 │ Accepted 7 November 2016 │ Published online 9 November 2016. Abstract The contribution summarizes previously unpublished data and adds records of newly collected cave-dwelling spiders from the Balkan Peninsula. New data on the distribution of 91 species from 16 families, found in 157 (27 newly established) underground sites (caves and artificial galleries) are reported due to 337 original records. Twelve species are new to the spider fauna of the caves of the Balkan Peninsula. The species Histopona palaeolithica (Brignoli, 1971) and Hoplopholcus longipes (Spassky, 1934) are reported for the first time for the territory of Balkan Peninsula, Centromerus cavernarum (L. Koch, 1872), Diplocephalus foraminifer (O.P.-Cambridge, 1875) and Lepthyphantes notabilis Kulczyński, 1887 are new for the fauna of Bosnia and Herzegovina, Cataleptoneta detriticola Deltshev & Li, 2013 is new for the fauna of Greece, Asthenargus bracianus Miller, 1938 and Centromerus europaeus (Simon, 1911) are new for the fauna of Montenegro and Syedra gracilis (Menge, 1869) is new for the fauna of Turkey. -
Estimating Spider Species Richness in a Southern Appalachian Cove Hardwood Forest
1996. The Journal of Arachnology 24:111-128 ESTIMATING SPIDER SPECIES RICHNESS IN A SOUTHERN APPALACHIAN COVE HARDWOOD FOREST Jonathan A. Coddington: Dept. of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560 USA Laurel H. Young and Frederick A. Coyle: Dept. of Biology, Western Carolina University, Cullowhee, North Carolina 28723 USA ABSTRACT. Variation in species richness at the landscape scale is an important consideration in con- servation planning and natural resource management. To assess the ability of rapid inventory techniques to estimate local species richness, three collectors sampled the spider fauna of a "wilderness" cove forest in the southern Appalachians for 133 person-hours during September and early October 1991 using four methods: aerial hand collecting, ground hand collecting, beating, and leaf litter extraction. Eighty-nine species in 64 genera and 19 families were found. To these data we applied various statistical techniques (lognormal, Poisson lognormal, Chao 1, Chao 2, jackknife, and species accumulation curve) to estimate the number of species present as adults at this site. Estimates clustered between roughly 100-130 species with an outlier (Poisson lognormal) at 182 species. We compare these estimates to those from Bolivian tropical forest sites sampled in much the same way but less intensively. We discuss the biases and errors such estimates may entail and their utility for inventory design. We also assess the effects of method, time of day and collector on the number of adults, number of species and taxonomic composition of the samples and discuss the nature and importance of such effects. Method, collector and method-time of day interaction significantly affected the numbers of adults and species per sample; and each of the four methods collected clearly different sets of species. -
NLP Analysis of Folksonomies
NLP Analysis of Folksonomies An examination of the Matukar language Jonathan Gluck 1 Abstract Folk taxonomies are powerful cultural tools for the categorization and utilization of the world in which a people live. The English language, for example, has a few folk taxa remaining; including 'fruits', 'vegetables', 'pets', 'farm animals', and 'evergreens'. Folk taxa are categories or logical groupings, usually referring to nature, which may have social and cultural relevance, but not necessarily possessing any scientific relatedness amongst their members. They are useful in day-to-day dealings with the environment, providing a catalogue grouped by salient features. Finding a language's folk taxonomy can often be difficult, with the lines drawn between categories not readily apparent. With this work I examine the theory behind folk taxonomic classification and attempt to devise methods for unearthing folk taxonomies with the help of Natural Language Processing. The subject language of this inquiry is Matukar. Matukar is an Austroneasian language, spoken by only about 430 villagers on the North Eastern coast of Papua New Guinea. The language is spoken in a rural area and exhibits many onomatopoetic words reminiscent of the ambient sounds of their surroundings (Harrison, Anderson and Mathieu-Reeves 2010). It is a language threatened by the rising popularities of competing languages, such as English and the local creole Tok 1 Pisin. The folk taxonomy of Matukar has never before been examined, and is the focus of this work. The job of unearthing a folk taxonomy involves sifting through large quantities of target lexical entries and searching for patterns in word form. -
140063122.Pdf
Dtet specia|isatlon and ďverslÍlcatlon oftlrc sf,der genrs Dysdara (Araneae: Dysdertdae) Summaryof PhD. thesis Tho main aim of my sfudy is to pr€s€nt now knowledge about the diet specialisation antl diversiÍicationóf ttre ipider genusDys&ra. This PhD. lhesis, ďvided in two parts' is tre summary of Íive papers. 1. Diet specialisatlon 1.1. Řezíě M., Pekór s. & I'bin Y.: Morphologlcal and behavlourď adapations for onlscophagr lnDysderassden (Araneae: Dysdertnne) [acoeptedby Journal of Zoologfl Very little is known about predators feeding on woodlioe. Spiders of the genus Dyidera (Dysderidae) were long suspeotedto be onisoophagous,but evidenoe for lheir díet speoialisation hás beenrlaoking. These spidas are chareotorised by an unusual morphological variability oftheir mouth-parts,partioularly tho ohelioaae, suggosting dietary sfrcialisation któróukazuje na potavní specializaci. Thus, we investigatedthe rebtiónsirip between mouthpertmorphology, prey pÍeferenoeand predatory belraviour of ťrvespecies represerrtingdiffoent chelioenď types. Resulb obtained sugg€st that sfudiedĎysdera spidas diffo in prey specialisetion for woďlioo. The species with unmodified chelicerae reatlity oapturedvarious artkopďs but refused woodlice while speoieswith modified ohetóerae oapfuredwoodlice' Particularly,Dysdera erythrina ind D. spinrcrus captured woodlioe as freque,lrtý as ďternativo pfey typ€s. Dysdera abdomiialis andD. dubrovnlnrii sigrificantly preforred woodlice to alternative prey. Cheliooď modifioations were found to detormine the grasping bohaviour. Species 'pinoers with elongated chelicerae used a taotio" i.e. insertd one chelicera into the soft ventil side and plaoed lhe olher on the dorsal side of woodlouse. Species with .fork dorsally ooncave chálicerae used a tactio': they fuckod thom quiokly under woodlóuse in order to bite the vental side of woodlouse body. Specios with flattonď .key chelicerae usď a tactic': lhey inserted a flattraredchelicera betweon sclerites of the armouredwoodlouse.