{FREE} Frog Is Frog Ebook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NC2006 (Fauna) Doc
NC2006 (fauna) Doc. 6 (English only/Únicamente en inglés/Seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Nomenclature Committee Fauna Lima (Peru), 10 July 2006 AMPHIBIAN REFERENCE UPDATE 1. This document has been submitted by the zoologist of the Nomenclature Committee. 2. An extract from the current online reference "D.R. FROST, Amphibian Species of the World, Version 3.0 as of 2004" (see following pages) has been produced for the CITES listed species. Comparing it to the Taxonomic Checklist of CITES listed Amphibians provided by the former zoological Co-Chair of the Nomenclature Committee which was based on the FROST online-version 2.21 of 2002 the following nomenclature changes have been identified: Present Reference as adopted under Resolution Frost (2004): Amphibian Species of the World Conf. 12.11 (Rev. CoP13) Epipedobates femoralis Allobates femoralis Epipedobates zaparo Allobates zaparo not included Dendrobates amazonicus not included Dendrobates duellmani not included Dendrobates flavovittatus Dendrobates labialis Epipedobates labialis not included Dendrobates rubrocephalus included in Dendrobates imitator Dendrobates sirensis included in Dendrobates ventrimaculatus Dendrobates variabilis included in Epipedobates tricolor Epipedobates anthonyi not included Epipedobates pongoensis Minyobates spp. all species transferred to genus Dendrobates 3. The participants in the meeting are invited to comment on the reference, which will be proposed for adoption at the 14th meeting of the Conference of the Parties. NC2006 (fauna) Doc. 6 – p. 1 NC2006 (fauna) Doc. 6 – p. 2 Taxonomic Checklist of CITES listed Amphibians - Draft - Information extracted from FROST, D. R. (2004) "Amphibian Species of the World, an online Reference" V. -
Endangered Species (Protection, Conser Va Tion and Regulation of Trade)
ENDANGERED SPECIES (PROTECTION, CONSER VA TION AND REGULATION OF TRADE) THE ENDANGERED SPECIES (PROTECTION, CONSERVATION AND REGULATION OF TRADE) ACT ARRANGEMENT OF SECTIONS Preliminary Short title. Interpretation. Objects of Act. Saving of other laws. Exemptions, etc., relating to trade. Amendment of Schedules. Approved management programmes. Approval of scientific institution. Inter-scientific institution transfer. Breeding in captivity. Artificial propagation. Export of personal or household effects. PART I. Administration Designahem of Mana~mentand establishment of Scientific Authority. Policy directions. Functions of Management Authority. Functions of Scientific Authority. Scientific reports. PART II. Restriction on wade in endangered species 18. Restriction on trade in endangered species. 2 ENDANGERED SPECIES (PROTECTION, CONSERVATION AND REGULA TION OF TRADE) Regulation of trade in species spec fled in the First, Second, Third and Fourth Schedules Application to trade in endangered specimen of species specified in First, Second, Third and Fourth Schedule. Export of specimens of species specified in First Schedule. Importation of specimens of species specified in First Schedule. Re-export of specimens of species specified in First Schedule. Introduction from the sea certificate for specimens of species specified in First Schedule. Export of specimens of species specified in Second Schedule. Import of specimens of species specified in Second Schedule. Re-export of specimens of species specified in Second Schedule. Introduction from the sea of specimens of species specified in Second Schedule. Export of specimens of species specified in Third Schedule. Import of specimens of species specified in Third Schedule. Re-export of specimens of species specified in Third Schedule. Export of specimens specified in Fourth Schedule. PART 111. -
Guía Aves Y Naturaleza 2017.Pdf
Zamora ciudad abierta al turismo de observación de la naturaleza La ciudad de Zamora y su término municipal cuenta con importantes enclaves de gran riqueza medio ambiental. Sin duda el río Duero, que la atraviesa de Este a Oeste, constituye uno de sus grandes recursos paisajísticos, pero también lo es el bosque de Valorio, dotado además de una considerable fuerza simbólica y sentimental para los zamoranos, así como los montes que ro- dean a la ciudad, tan cercanos que apenas terminan las últimas edificaciones se entra de lleno en la naturaleza. Esto permite disfrutar de la observación de las aves y otras muchas especies, no solo en las zonas ribereñas sino también en el espacio urbano, donde el ritmo tranquilo de la ciudad per- mite avistar numerosas especies que eligen para su hábitat la cercanía humana y conviven con nosotros sin dificultad. Con esta publicación, que incluye diversas rutas por la ciudad y alrededores, el Ayuntamiento de Zamora quiere abrir la puerta a esta interesante tendencia de la observación y estudio de los espacios naturales, tal como hace el turismo ornitológico y medioambiental, que además de promover los recursos locales abre también otras posibilidades relacionadas con la interpretación ambiental y la educación. Pero de manera especial nos permite acercarnos a los distintos espacios que ofrece la ciudad con de- tallismo y respeto, al tiempo que se divulga una parte importante de la avifauna y del patrimonio natural de Zamora. Francisco Guarido Alcalde de Zamora Búho chico (Asio otus) } La observación y la fotografía de las aves silvestres y de otros especies de nuestra fauna, como mamíferos, anfibios, reptiles, mariposas, libélulas, se han convertido en actividades que implican a un número muy considerable y creciente de personas. -
The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae. -
Biology and Impacts of Pacific Island Invasive Species. 8
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service 2012 Biology and Impacts of Pacific Island Invasive Species. 8. Eleutherodactylus planirostris, the Greenhouse Frog (Anura: Eleutherodactylidae) Christina A. Olson Utah State University, [email protected] Karen H. Beard Utah State University, [email protected] William C. Pitt National Wildlife Research Center, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Olson, Christina A.; Beard, Karen H.; and Pitt, William C., "Biology and Impacts of Pacific Island Invasive Species. 8. Eleutherodactylus planirostris, the Greenhouse Frog (Anura: Eleutherodactylidae)" (2012). USDA National Wildlife Research Center - Staff Publications. 1174. https://digitalcommons.unl.edu/icwdm_usdanwrc/1174 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biology and Impacts of Pacific Island Invasive Species. 8. Eleutherodactylus planirostris, the Greenhouse Frog (Anura: Eleutherodactylidae)1 Christina A. Olson,2 Karen H. Beard,2,4 and William C. Pitt 3 Abstract: The greenhouse frog, Eleutherodactylus planirostris, is a direct- developing (i.e., no aquatic stage) frog native to Cuba and the Bahamas. It was introduced to Hawai‘i via nursery plants in the early 1990s and then subsequently from Hawai‘i to Guam in 2003. The greenhouse frog is now widespread on five Hawaiian Islands and Guam. -
Froglog95 New Version Draft1.Indd
March 2011 Vol. 95 FrogLogwww.amphibians.org News from the herpetological community The new face of the ASG “Lost” Frogs Red List The global search Updating South comes to an end. Africas Red Where next? Lists. Page 1 FrogLog Vol. 95 | March 2011 | 1 2 | FrogLog Vol. 95 | March 2011 CONTENTS The Sierra Caral of Guatemala a refuge for endemic amphibians page 5 The Search for “Lost” Frogs page 12 Recent diversifi cation in old habitats: Molecules and morphology in the endangered frog, Craugastor uno page 17 Updating the IUCN Red List status of South African amphibians 6 Amphibians on the IUCN Red List: Developments and changes since the Global Amphibian Assessment 7 The forced closure of conservation work on Seychelles Sooglossidae 8 Alien amphibians challenge Darwin’s naturalization hypothesis 9 Is there a decline of amphibian richness in Bellanwila-Attidiya Sanctuary? 10 High prevalence of the amphibian chytrid pathogen in Gabon 11 Breeding-site selection by red-belly toads, Melanophryniscus stelzneri (Anura: Bufonidae), in Sierras of Córdoba, Argentina 11 Upcoming meetings 20 | Recent Publications 20 | Internships & Jobs 23 Funding Opportunities 22 | Author Instructions 24 | Current Authors 25 FrogLog Vol. 95 | March 2011 | 3 FrogLog Editorial elcome to the new-look FrogLog. It has been a busy few months Wfor the ASG! We have redesigned the look and feel of FrogLog ASG & EDITORIAL COMMITTEE along with our other media tools to better serve the needs of the ASG community. We hope that FrogLog will become a regular addition to James P. Collins your reading and a platform for sharing research, conservation stories, events, and opportunities. -
Protection of Cultural Landscapes Extremadura and Mallorca
Protection of Cultural Landscapes Extremadura and Mallorca Annual Report 2012/2013 - II Global Nature Fund Extremadura The Dehesas of the Extremadura in the Spanish southwest are over 5,000 years old, which makes them one of the oldest cultural landscapes in the world. The Dehesas, like the Middle European meadow orchards, are traditional agriculture- forest-meadow systems. This means that there are various ways of using the area and multiple ways the space offers people a livelihood. An almost natural form of this has developed in the Extremadura over time. Ancient, highly adapted farm animal breeds as well as extensive use of the stone and cork oak trees for firewood, and the proximity to natural habitats such as the Monfragüe national park make biodiversity on a scale usually only seen in tropical rainforests pos- sible. Such biodiversity is unheard of elsewhere in Europe. Characteristic of the area are the Iberian pigs that are famous for providing the “pata negra” ham. But only if they live mainly off acorns in the Dehesas. Extensive use continues to be the key to preserving this unique landscape southwest of Madrid where visitors can still experience pure nature. Even the untrained observer can spot Black Vultures, Imperial Eagles, owls, lynx and genets as well as White and Black Storks, many songbird species, several species of snakes such as the rare Montpellier snake and countless beetles, moths and grasshoppers. The GNF’s Spanish sister organization, Fundación Global Nature (FGN), has been working since 1993 to preserve and protect the Dehesas of the Extremadura. The FGN works in many areas such as environmental education, which takes place in their own environmental education center. -
(CCAC) Guide to the Care and Use of Experimental Animals Volume
Canadian Council on Animal Care Conseil canadien de protection des animaux Guide to the Care and Use of Experimental Animals Volume 1, 2nd Edition Sections of this document that have been revised are replaced by links to the relevant documents. The remaining sections are undergoing revision; however, they will continue to be used for CCAC assessments until revised guidelines are published. Editors Dr E.D. Olfert Dr B.M. Cross Mrs A.A. McWilliam Director Asssistant Director Information Officer Animal Resources Centre Animal Resources Centre Canadian Council on Animal Care University of Saskatchewan University of Saskatchewan 1000-151 Slater Street Saskatoon, Saskatchewan Saskatoon, Saskatchewan Ottawa, Ontario K1P 5H3 S7N 0W0 S7N 0W0 In keeping with the CCAC policy of revising statements and guidelines as needed, users of this Guide are encouraged to forward any comments to the Secretariat. Citing certain devices or manufacturers is not to be perceived as the endorsement of the Canadian Council on Animal Care (CCAC) of one particular product over another. Publication Date: 1993 Revision Date: April 2020 © Canadian Council on Animal Care, 1993 ISBN: 0-919087-18-3 Canadian Council on Animal Care 190 O’Connor St., Suite 800 Ottawa, Ontario, K2P 2R3 http://www.ccac.ca Table of Contents TABLE OF CONTENTS DEDICATION ...................................................................................................................1 PREFACE.........................................................................................................................2 -
Early Tetrapod Relationships Revisited
Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria -
Episodic Correlations in Behavioural Lateralization Differ Between a Poison Frog and Its Mimic
Animal Behaviour xxx (xxxx) xxx Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Episodic correlations in behavioural lateralization differ between a poison frog and its mimic * Hannah M. Anderson a, , David N. Fisher a, b, Brendan L. McEwen a, Justin Yeager c, Jonathan N. Pruitt a, James B. Barnett a a Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada b School of Biological Sciences, University of Aberdeen, Aberdeen, U.K. c Biodiversidad Medio Ambiente y Salud (BIOMAS), Universidad de Las Americas, Quito, Ecuador article info Sensory and behavioural lateralization is thought to increase neural efficiency and facilitate coordinated Article history: behaviour across much of the animal kingdom. Complementary laterality, when tasks are lateralized to Received 5 August 2020 opposite sides, can increase the efficiency of multitasking, but predictable behaviour may increase Initial acceptance 17 September 2020 predation risk. Laterality is, however, variable in its scale, existing at both the population and individual Final acceptance 23 November 2020 level. Population level lateralization is thought to facilitate coordination of social behaviours whereas Available online xxx individual level biases may promote behavioural efficiency. We studied behavioural lateralization in MS. number: A20-00601R sympatric wild populations of two terrestrial frog species: the Ecuador poison frog, Ameerega bilinguis, and its Batesian mimic the sanguine poison -
Lotus Wind Power Project
Initial Environmental Examination – Appendix H Project Number: 54211-001 March 2021 Document Stage: Draft Viet Nam: Lotus Wind Power Project Prepared by ERM Vietnam for Lien Lap Wind Power Joint Stock Company, Phong Huy Wind Power Joint Stock Company, and Phong Nguyen Wind Power Joint Stock Company as a requirement of the Asian Development Bank. The initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “Terms of Use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Biodiversity survey Wet season report Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam 7 July 2020 Prepared by ERM’s Subcontractor for ERM Vietnam Document details Document title Biodiversity survey Wet season report Document subtitle Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam Date 7 July 2020 Version 1.0 Author ERM’s Subcontractor Client Name ERM Vietnam Document history Version Revision Author Reviewed by ERM approval to issue Comments Name Date Draft 1.0 Name Name Name 00.00.0000 Text Version: 1.0 Client: ERM Vietnam 7 July 2020 BIODIVERSITY SURVEY WET SEASON REPORT CONTENTS Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam CONTENTS 1. -
Phylogenetic Analyses Reveal Unexpected Patterns in the Evolution of Reproductive Modes in Frogs
ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2012.01715.x PHYLOGENETIC ANALYSES REVEAL UNEXPECTED PATTERNS IN THE EVOLUTION OF REPRODUCTIVE MODES IN FROGS Ivan Gomez-Mestre,1,2 Robert Alexander Pyron,3 and John J. Wiens4 1Estacion´ Biologica´ de Donana,˜ Consejo Superior de Investigaciones Cientıficas,´ Avda. Americo Vespucio s/n, Sevilla 41092, Spain 2E-mail: [email protected] 3Department of Biological Sciences, The George Washington University, Washington DC 20052 4Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794–5245 Received November 2, 2011 Accepted June 2, 2012 Understanding phenotypic diversity requires not only identification of selective factors that favor origins of derived states, but also factors that favor retention of primitive states. Anurans (frogs and toads) exhibit a remarkable diversity of reproductive modes that is unique among terrestrial vertebrates. Here, we analyze the evolution of these modes, using comparative methods on a phylogeny and matched life-history database of 720 species, including most families and modes. As expected, modes with terrestrial eggs and aquatic larvae often precede direct development (terrestrial egg, no tadpole stage), but surprisingly, direct development evolves directly from aquatic breeding nearly as often. Modes with primitive exotrophic larvae (feeding outside the egg) frequently give rise to direct developers, whereas those with nonfeeding larvae (endotrophic) do not. Similarly, modes with eggs and larvae placed in locations protected from aquatic predators evolve frequently but rarely give rise to direct developers. Thus, frogs frequently bypass many seemingly intermediate stages in the evolution of direct development. We also find significant associations between terrestrial reproduction and reduced clutch size, larger egg size, reduced adult size, parental care, and occurrence in wetter and warmer regions.