Velleia Paradoxa (Spur Velleia)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Origin of the Bifurcating Style in Asteraceae (Compositae)
Annals of Botany 117: 1009–1021, 2016 doi:10.1093/aob/mcw033, available online at www.aob.oxfordjournals.org The origin of the bifurcating style in Asteraceae (Compositae) Liliana Katinas1,2,*, Marcelo P. Hernandez 2, Ana M. Arambarri2 and Vicki A. Funk3 1Division Plantas Vasculares, Museo de La Plata, La Plata, Argentina, 2Laboratorio de Morfologıa Comparada de Espermatofitas (LAMCE), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina and 3Department of Botany, NMNH, Smithsonian Institution, Washington D.C., USA *For correspondence. E-mail [email protected] Received: 20 November 2015 Returned for revision: 22 December 2015 Accepted: 8 January 2016 Published electronically: 20 April 2016 Background and Aims The plant family Asteraceae (Compositae) exhibits remarkable morphological variation in the styles of its members. Lack of studies on the styles of the sister families to Asteraceae, Goodeniaceae and Calyceraceae, obscures our understanding of the origin and evolution of this reproductive feature in these groups. The aim of this work was to perform a comparative study of style morphology and to discuss the relevance of im- portant features in the evolution of Asteraceae and its sister families. Methods The histochemistry, venation and general morphology of the styles of members of Goodeniaceae, Calyceraceae and early branching lineages of Asteraceae were analysed and put in a phylogenetic framework to dis- cuss the relevance of style features in the evolution of these families. Key Results The location of lipophilic substances allowed differentiation of receptive from non-receptive style papillae, and the style venation in Goodeniaceae and Calyceraceae proved to be distinctive. -
Velleia Paradoxa
Threatened Species Link www.tas.gov.au SPECIES MANAGEMENT PROFILE Velleia paradoxa spur velleia Group: Magnoliophyta (flowering plants), Magnoliopsida (dicots), Campanulales, Goodeniaceae Status: Threatened Species Protection Act 1995: vulnerable Environment Protection and Biodiversity Conservation Act 1999: Not listed Endemic Found in Tasmania and elsewhere Status: Velleia paradoxa (spur velleia) is a short-lived perennial herb, known in Tasmania from the Midlands and Derwent Valley, where it grows in grassy woodlands and grasslands. While the species has been recorded at over 30 sites, the current status of most sites is uncertain. For the species to persist, fire or other disturbance that creates bare ground is needed for recruitment from soil-stored seed. The main threats to the species are grazing by stock and clearance of its habitat for agriculture or urban expansion, a threat exacerbated by the possible absence of plants or presence in low numbers between recruitment events. Past clearing has resulted in a fragmented distribution, further risking the species through increased edge effects. A complete species management profile is not currently available for this species. Check for further information on this page and any relevant Activity Advice. Key Points Important: Is this species in your area? Do you need a permit? Ensure you’ve covered all the issues by checking the Planning Ahead page. Important: Different threatened species may have different requirements. For any activity you are considering, read the Activity Advice pages for background information and important advice about managing around the needs of multiple threatened species. Cutting or clearing trees or vegetation Key Survey reliability more info To ensure you follow the law - check whether your survey requires a permit. -
Plant Communities of Mt Barrow & Mt Barrow Falls
PLANT COMMUNITIES OF MT BARROW & MT BARROW FALLS John B. Davies Margaret J. Davies Consultant Queen Victoria and Art and Plomley Foundation II Mt Barrow J.B. & M.J. (1990) of Mt Barrow and Mt Barrow No.2 © Queen Victoria and Art Wellington St., Launceston,Tasmania 1990 CONTENTS ACKNOWLEDGEMENTS 3 BACKGROUND 4 SURVEY MT BARROW 11 OF MT BARROW PLANT COMMUNITIES 14 AND THEIR RESERVATION COMPARISON THE VEGETATION AT 30 BARROW AND LOMOND BOTANICAL OF MT BARROW RESERVE 31 DESCRIPTION THE COMMUNITIES BARROW FALLS THEIR APPENDIX 1 36 APPENDIX 2 MAP 3 39 APPENDIX 4 APPENDIX 5 APPENDIX 6 SPECIES 49 ACKNOWLEDGEMENTS Thanks are due to a number of people for assistance with this project. Firstly administrative assistance was by the Director of the Victoria Museum and Art Gallery, Mr Chris TasselL assistance was Michael Body, Kath Craig Reid and Mary Cameron. crt>''Y'it>,nt" are also due to Telecom for providing a key to the on the plateau, the Department of Lands, Parks and for providing a transparency base map of the area, and to Mr Mike Brouder and Mr John Harris Commission), for the use of 1 :20,000 colour aerial photographs of the area. Taxonomic was provided by Cameron (Honorary Research Associate, Queen Victoria Museum and Art Gallery) who also mounted all the plant collected, and various staff of the Tasmanian Herbarium particularly Mr Alex Dr Tony Orchard, Mr D. 1. Morris and Dr Winifred Curtis. thanks are due to Dr Brad Potts (Botany Department, of Tasmania) for assistance with data and table production and to Prof Kirkpatrick and Environmental ..J'U'U'~;'" of Tasmania) for the use and word-processing. -
Vegetation Inventory Report: Truganina Cemetery Grassland
Vegetation Inventory Report: Truganina Cemetery Grassland Melbourne Strategic Assessment © The State of Victoria Department of Environment, Land, Water and Planning 2016 This work is licensed under a Creative Commons Attribution 3.0 Australia licence. You are free to re-use the work under that licence, on the condition that you credit the State of Victoria as author. The licence does not apply to any images, photographs or branding, including the Victorian Coat of Arms, the Victorian Government logo and the Department of Environment, Land, Water and Planning logo. To view a copy of this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en ISBN 978-1-74146-791-8 (pdf) Accessibility If you would like to receive this publication in an alternative format, please telephone the DELWP Customer Service Centre on 136186, email [email protected], or via the National Relay Service on 133 677 www.relayservice.com.au. This document is also available on the internet at www.delwp.vic.gov.au Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. Cover photo Magenta Stork’s-bill (Pelargonium rodneyanum): Steve Sinclair. Contents Terms and abbreviations 2 Introduction 3 Purpose and scope 3 The survey area 4 Previous -
Native Plants for NSW V48 N4.Pdf
NNativeNativeative PPlantsPlantslants fforforor NNewNewew SSouthSouthouth WWalesWalesales JJournalournal ooff tthehe AAustralianustralian PPlantslants SSocietyociety NNSWSWNative LLtdtd Plants VVolol 448 October8 NNoo 4 2013 OOctoberc t—o bPageer 22013 1013 Native Plants for NSW Published quarterly in January, April, July and Contents October by the Australian Plants Society NSW Introduction ...................................... 3 Ltd ACN 002 680 408 Innocents Abroad............................. 4 Editor: David Crawford August Gathering – Mt Annan ......... 8 Proof Reading: Rhonda Daniels Jan Douglas Myrtle rust & Leptospermum ..........11 Layout: Lachlan McLaine scoparium November Gathering – Castle Hill .. 12 The Journal is a forum for the exchange of views of members and others and their Coates Wildlife Tours .....................14 experiences of propagating, conserving and gardening with Australian plants. Inverawe Gardens ......................... 14 Contributions are warmly welcomed. They Collecting Ladies ........................... 15 may be typed or handwritten and accompanied Nominations Life Membership ....... 16 by photographs and drawings. If handwritten, please print botanical names and names of Nominations Conservation Award .. 17 people. Goodeniaceae ............................... 18 Photographs may be submitted as either high APS Out & About ........................... 22 resolution digital les, such as jpg, or prints. Wild About the Natives .................. 23 APS NSW Of ce Mail: PO Box 5026 Eucalyptus cypellocarpa -
The Vegetation of the Western Australian Deserts
©Reinhold-Tüxen-Gesellschaft (http://www.reinhold-tuexen-gesellschaft.de/) Ber. d. Reinh.-Tüxen-Ges. 18, 219-228. Hannover 2006 The Vegetation of the Western Australian Deserts - Erika and Sandro Pignatti, Rom - Abstract The internal area of W. Australia has arid climate and conditions for plant growth are particularly difficult. The surface of this huge, almost uninhabited territory consists of four landscape systems: the Great Sandy Desert, the Little Sandy Desert, the Great Victoria Desert, the Gibson Desert. The four deserts extend between 21-26° of south- ern latitude, linking to the central Australian deserts and the Nullarbor Plain in the South. Meteorological stations are only in settlements of the surrounding semi-desert areas (Wiluna, Meekatharra, Cue, Warburton), and all show around 200-250 mm year- ly rainfall; in the centre of the deserts rainfall is still much lower, and indicated as “erratic and unreliable”; some areas may lack rain for several years. Despite of the par- ticularly severe ecological conditions, most of the surface is covered by vegetation (at least a discontinuous one) and during expeditions in 2001 and 2002 over 700 species were collected and more than 350 phytosociological relevés were carried out.Two main habitat types can be recognized: Mulga – scattered growth of treelets (Acacia aneura, generally about 3-4 m height), with open understorey (Senna, Eremophila, Solanum) and herbs usually covering less than 20 % of the surface; in the Gibson Desert mulga occurs mainly on hard rock sub- strate (granite, laterite). Because of the discontinuous plant cover, fire can spread only over limited areas. Spinifex – Quite a compact cover of perennial grasses (several species of Triodia, with sharply pointed leaves in dense tussocks 3-5 dm high, panicles up to 1 m and high- er) in monospecific populations covering 60-80 % of the surface; in the sandy deserts, on siliceous sand. -
Report on the Grimwade Plant Collection of Percival St John and Botanical Exploration of Mt Buffalo National Park (Victoria, Australia)
Report on the Grimwade Plant Collection of Percival St John and Botanical Exploration of Mt Buffalo National Park (Victoria, Australia) Alison Kellow Michael Bayly Pauline Ladiges School of Botany, The University of Melbourne July, 2007 THE GRIMWADE PLANT COLLECTION, MT BUFFALO Contents Summary ...........................................................................................................................3 Mt Buffalo and its flora.....................................................................................................4 History of botanical exploration........................................................................................5 The Grimwade plant collection of Percival St John..........................................................8 A new collection of plants from Mt Buffalo - The Miegunyah Plant Collection (2006/2007) ....................................................................................................................................13 Plant species list for Mt Buffalo National Park...............................................................18 Conclusion.......................................................................................................................19 Acknowledgments...........................................................................................................19 References .......................................................................................................................20 Appendix 1 Details of specimens in the Grimwade Plant Collection.............................22 -
Employing Hypothesis Testing and Data from Multiple Genomic Compartments to Resolve Recalcitrant Backbone Nodes in Goodenia S.L. T (Goodeniaceae) ⁎ Rachel S
Molecular Phylogenetics and Evolution 127 (2018) 502–512 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Employing hypothesis testing and data from multiple genomic compartments to resolve recalcitrant backbone nodes in Goodenia s.l. T (Goodeniaceae) ⁎ Rachel S. Jabailya,b, , Kelly A. Shepherdc, Pryce S. Michenerb, Caroline J. Bushb, Rodrigo Riverod,e, Andrew G. Gardnerf, Emily B. Sessad,g a Department of Organismal Biology & Ecology, Colorado College, Colorado Springs, CO 80903, USA b Department of Biology, Rhodes College, Memphis, TN 38112, USA c Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia d Department of Biology, University of Florida, Gainesville, FL 32607, USA e Department of Natural Resources and Environmental Management, University of Hawaii– Mānoa, Honolulu, HI 96822, USA f Department of Biological Sciences, California State University, Stanislaus, One University Circle, Turlock, CA 95382, USA g Genetics Institute, University of Florida, Gainesville, FL 32607, USA ARTICLE INFO ABSTRACT Keywords: Goodeniaceae is a primarily Australian flowering plant family with a complex taxonomy and evolutionary Chloroplast genome history. Previous phylogenetic analyses have successfully resolved the backbone topology of the largest clade in Conserved ortholog set (COS) the family, Goodenia s.l., but have failed to clarify relationships within the species-rich and enigmatic Goodenia Genome skimming clade C, a prerequisite for taxonomic revision of the group. We used genome skimming to retrieve sequences for Goodeniaceae chloroplast, mitochondrial, and nuclear markers for 24 taxa representing Goodenia s.l., with a particular focus on Mitochondrial genome Goodenia clade C. We performed extensive hypothesis tests to explore incongruence in clade C and evaluate Phylogeny Rapid radiation statistical support for clades within this group, using datasets from all three genomic compartments. -
On the Flora of Australia
L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3. -
Bremer Et Al. 2001
Plant Syst. Evol. 229: 137±169 <2001) A phylogenetic analysis of 100+ genera and 50+ families of euasterids based on morphological and molecular data with notes on possible higher level morphological synapomorphies K. Bremer1, A. Backlund2, B. Sennblad3, U. Swenson4, K. Andreasen5, M. Hjertson1, J. Lundberg1, M. Backlund1, and B. Bremer1 1Department of Systematic Botany, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden 2Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden 3Stockholm Bioinformatics Center, Stockholm University, Stockholm, Sweden 4Department of Botany, University of Stockholm, Stockholm, Sweden 5Molecular Systematics Laboratory, Swedish Museum of Natural History, Stockholm, Sweden Received August 28, 2000 Accepted August 7, 2001 Abstract. A data matrix of 143 morphological and epigynous ¯owers, ``late sympetaly'' with distinct chemical characters for 142 genera of euasterids petal primordia, free stamen ®laments, and indehi- according to the APG system was compiled and scent fruits. It is unclear which of these characters complemented with rbcL and ndhF sequences for represent synapomorphies and symplesiomorphies most of the genera. The data were subjected to for the two groups, respectively, and there are parsimony analysis and support was assessed by numerous expections to be interpreted as reversals bootstrapping. Strict consensus trees from analyses and parallelisms. of morphology alone and morphology + rbcL+ ndhF are presented. The morphological data re- Key words: Angiosperms, asterids, euasterids, cover several groups supported by molecular data Asteridae, Apiales, Aquifoliales, Asterales, but at the level of orders and above relationships Dipsacales, Garryales, Gentianales, Lamiales, are only super®cially in agreement with molecular Solanales, Adoxaceae. Cladistics, phylogeny, studies. The analyses provide support for mono- morphology, rbcL, ndhF. -
MAULES CREEK COAL PROJECT Biodiversity Offset Management Plan
MAULES CREEK COAL PROJECT Biodiversity Offset Management Plan For: Hansen Bailey December 2011 Final Draft PO Box 2474, Carlingford Court 2118 www.cumberlandecology.com.au Report No. 9125RP3 The preparation of this report has been in accordance with the brief provided by the Client and has relied upon the data and results collected at or under the times and conditions specified in the report. All findings, conclusions or recommendations contained within the report are based only on the aforementioned circumstances. The report has been prepared for use by the Client and no responsibility for its use by other parties is accepted by Cumberland Ecology. Revision Date Issued Reviewed by Approved by Date Approved Revision Type 1 David R David R 17/11/11 First draft 2 David R David R 22/11/11 Second draft 3 David R David R 30/11/11 Third draft 4 David R David R 01/12/11 Final Draft Approved by: David Robertson Position: Director Signed: Date: 1 December, 2011 MAULES CREEK COAL PROJECT FINAL DRAFT HANSEN BAILEY 1DECEMBER 2011 Table Of Contents 1 INTRODUCTION 1.1 Purpose 1.1 1.2 Background 1.1 1.2.1 Assessment and Approval Context 1.1 1.2.2 Description of the Impacts 1.2 1.2.3 Consistency with Recovery Plans and Conservation 1.3 Advices 1.2.4 Integration with Local Strategies 1.3 1.3 Aims and Objectives 1.3 1.4 Structure of the Biodiversity Offset Management Plan 1.4 1.5 Terms and Abbreviations 1.5 2 DESCRIPTION OF THE OFFSETS 2.1 General Description 2.1 2.1.1 Northern Offsets 2.1 2.1.2 Eastern and Western Offsets 2.6 2.1.3 Shared Offset Property -
Characterizing Floral Symmetry in the Core Goodeniaceae with Geometric Morphometrics
RESEARCH ARTICLE Characterizing Floral Symmetry in the Core Goodeniaceae with Geometric Morphometrics Andrew G. Gardner1¤*, Jonathan N. Fitz Gerald1, John Menz1, Kelly A. Shepherd2, Dianella G. Howarth3, Rachel S. Jabaily1 1 Department of Biology, Rhodes College, 2000 N. Parkway, Memphis, Tennessee, United States of America, 2 Science and Conservation Division, Department of Parks and Wildlife, Kensington, Western Australia, Australia, 3 Department of Biological Sciences, St. John’s University, Queens, New York, United States of America ¤ Current address: Department of Biological Sciences, California State University, Stanislaus, Turlock, California, United States of America * [email protected] a11111 Abstract Core Goodeniaceae is a clade of ~330 species primarily distributed in Australia. Considerable variation in flower morphology exists within this group and we aim to use geometric morpho- metrics to characterize this variation across the two major subclades: Scaevola sensu lato (s. OPEN ACCESS l.) and Goodenia s.l., the latter of which was hypothesized to exhibit greater variability in floral Citation: Gardner AG, Fitz Gerald JN, Menz J, symmetry form. We test the hypothesis that floral morphological variation can be adequately Shepherd KA, Howarth DG, Jabaily RS (2016) characterized by our morphometric approach, and that discrete groups of floral symmetry Characterizing Floral Symmetry in the Core morphologies exist, which broadly correlate with subjectively determined groups. From 335 Goodeniaceae with Geometric Morphometrics. PLoS ONE 11(5): e0154736. doi:10.1371/journal. images of 44 species in the Core Goodeniaceae, two principal components were computed pone.0154736 that describe >98% of variation in all datasets. Increasing values of PC1 ventralize the dorsal Editor: Lorenzo Peruzzi, Università di Pisa, ITALY petals (increasing the angle between them), whereas increasing values of PC2 primarily ven- tralize the lateral petals (decreasing the angle between them).