Chemical Pesticides: Mode of Action and Toxicology / Jørgen Stenersen

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Pesticides: Mode of Action and Toxicology / Jørgen Stenersen CHEMICAL PESTICIDES MODE OF ACTION AND TOXICOLOGY ©2004 by Jørgen Stenersen CHEMICAL PESTICIDES MODE OF ACTION AND TOXICOLOGY Jørgen Stenersen CRC PRESS Boca Raton London New York Washington, D.C. ©2004 by Jørgen Stenersen Library of Congress Cataloging-in-Publication Data Stenersen, Jørgen. Chemical pesticides: mode of action and toxicology / Jørgen Stenersen. p. cm. Includes bibliographical references and index. ISBN 0-7484-0910-6 1. Pesticides--Toxicology. I. Title. RA1270.P4S74 2004 615.9'02--dc22 2004043568 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. Visit the CRC Press Web site at www.crcpress.com ©2004 by Jørgen Stenersen No claim to original U.S. Government works International Standard Book Number 0-748-40910-6 Library of Congress Card Number 2004043568 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper ©2004 by Jørgen Stenersen Dedication To Eira, my grandchild Without your inspiration, references from 2002 and 2003 would have been missing and the book already outdated! Although much wisdom can be extracted from Tomlin’s The Pesticide Manual, even more is found in The Norwegian Folk Tales and Astrid Lindgren’s Pippi Langstrømpe, which you for long periods gave me an excuse to concentrate upon. ©2004 by Jørgen Stenersen About the Author Jørgen H.V. Stenersen, Dr. Philos., is a professor in ecotoxicology at the Biological Institute, University of Oslo. He graduated as Cand. Real. in biochemistry in 1964 (University of Oslo) and subsequently worked at the Norwegian Plant Protection Institute on research related to possible side effects of pesticides. His first interests were the mechanisms behind insect resistance to insecticides, with emphasis on DDT resistance in stable flies. He was also engaged in studies of the extent of DDT contamination of soil, fauna, and humans as a result of DDT usage in orchards. During a one-year stay at the Agricultural Research Laboratory in Lon- don, Ontario, Canada, he became interested in the effects of pesticides on earthworms at the biochemical level. This became his research focus for some years. A stay at the Biochemical Institute of the University of Stockholm led to research in the comparative biochemistry of biotransformation enzymes (glutathione transferases). In 1985, Dr. Stenersen was a senior lecturer in ecotoxicology at the University of Oslo, becoming a professor in 1994. Since then he has been devoted to the education of environmental toxicologists. It is his opinion that the basic knowledge of health-oriented toxicologists and ecotoxicolo- gists should be the same, or at least overlap so they can compete in the same job market and “speak the same language.” He is a member of the Norwe- gian Committee for Approval of EUROTOX Registered Toxicologists and is responsible for the master’s and Ph.D. studies of toxicology at the Biological Institute, University of Oslo. The mode of action of pesticides, development of resistance, and their side effects are central topics in this pursuit. The present book is an enlarged revision of an earlier book written in Norwegian (Kjemiske plantevernmidler, 1988, Yrkeslitteratur as, Oslo, pp. 218), and is suited to introductory courses in general toxicology. Dr. Stenersen’s current research interest is the appli- cation of biochemical methods in terrestrial ecotoxicology. ©2004 by Jørgen Stenersen Acknowledgments I thank in particular Professor John Ormerod at the Department of Biology, University of Oslo; Senior Scientist Avi Ring at the Norwegian Defense Research Institute; and Senior Scientist Christian Thorstensen at the Norwe- gian Plant Protection Institute for reviewing the many chapters, correcting, and proposing rewriting. Thanks also go to Baard Johannessen for providing materials to the chapter about interaction. I also thank my students that had to hear and learn more about pesticides than they actually needed for their exams and future jobs. I also thank Catherine Russel at Taylor & Francis for her difficult job of correcting my English. ©2004 by Jørgen Stenersen Contents Chapter 1 Introduction 1.1 Motivation 1.2 Pesticides and opinion 1.2.1 The fly in the soup 1.2.2 Low-tech food production 1.2.3 Conclusion 1.3 A great market 1.3.1 The number of chemicals used as pesticides 1.3.2 Amounts of pesticides produced 1.3.3 Marketing 1.3.4 Dirty dozens 1.4 Nomenclature, definitions, and terminology 1.4.1 Toxicology, ecotoxicology, and environmental toxicology 1.4.2 Pesticides, biocides, common names, chemical names, and trade names 1.4.3 Chemical structures are versatile Helpful reading Biochemistry and cell biology General toxicology Insect biochemistry, plant physiology, and neurophysiology Pesticides Side effects of pesticides Chapter 2 Why is a toxicant poisonous? 2.1 Seven routes to death 2.1.1 Enzyme inhibitors 2.1.2 Disturbance of the chemical signal systems 2.1.3 Toxicants that generate very reactive molecules that destroy cellular components 2.1.4 Weak organic bases or acids that degrade the pH gradients across membranes 2.1.5 Toxicants that dissolve in lipophilic membranes and disturb their physical structure 2.1.6 Toxicants that disturb the electrolytic or osmotic balance or the pH ©2004 by Jørgen Stenersen 2.1.7 Strong electrophiles, alkalis, acids, oxidants, or reductants that destroy tissue, DNA, or proteins 2.2 How to measure toxicity 2.2.1 Endpoints 2.2.1.1 Endpoints in ecotoxicology and pest control 2.2.1.2 Endpoints in human toxicology 2.2.2 Dose and effect 2.2.3 Dose and response 2.2.3.1 Dose–response curves for the stable fly 2.2.3.2 Scatter in dose–response data 2.2.4 LD50 and related parameters 2.2.5 Acute and chronic toxicity 2.3 Interactions 2.3.1 Definitions 2.3.2 Isoboles 2.3.3 Mechanisms of interactions 2.3.4 Examples 2.3.4.1 Piperonyl butoxide 2.3.4.2 Deltamethrin and fenitrothion 2.3.4.3 Atrazine and organophosphate insecticides Chapter 3 Pesticides interfering with processes important to all organisms 3.1 Pesticides that disturb energy production 3.1.1 Anabolic and catabolic processes 3.1.2 Synthesis of acetyl coenzyme A and the toxic mechanism of arsenic 3.1.3 The citric acid cycle and its inhibitors 3.1.3.1 Fluoroacetate 3.1.3.2 Inhibitors of succinic dehydrogenase 3.1.4 The electron transport chain and production of ATP 3.1.4.1 Rotenone 3.1.4.2 Inhibitors of electron transfer from cytochrome b to c1 3.1.4.3 Inhibitors of cytochrome oxidase 3.1.4.4 Uncouplers 3.1.5 Inhibition of ATP production 3.1.5.1 Organotin compounds 3.1.5.2 Diafenthiuron 3.1.5.3 Summary 3.2 Herbicides that inhibit photosynthesis 3.2.1 Weak organic acids 3.2.2 Free radical generators 3.2.3 D1 blockers 3.2.3.1 Urea derivatives 3.2.3.2 Triazines ©2004 by Jørgen Stenersen 3.2.4 Inhibitors of carotene synthesis 3.2.4.1 Amitrole 3.2.4.2 Aclonifen 3.2.4.3 Beflubutamid 3.2.5 Protoporphyrinogen oxidase inhibitors 3.3 General SH reagents and free radical generators 3.3.1 Mercury 3.3.2 Other multisite fungicides 3.3.2.1 Perhalogenmercaptans 3.3.2.2 Alkylenebis(dithiocarbamate)s and dimethyldithiocarbamates 3.3.2.3 Fungicides with copper 3.4 Pesticides interfering with cell division 3.4.1 Fungicides 3.4.1.1 Benomyl 3.4.1.2 Thiofanate-methyl 3.4.1.3 Carbendazim 3.4.1.4 Thiabendazole 3.4.1.5 Diethofencarb 3.4.2 Herbicides 3.4.2.1 Trifluralin 3.4.2.2 Carbetamide 3.5 Pesticides inhibiting enzymes in nucleic acid synthesis 3.5.1 Sporulation-inhibiting fungicides 3.5.2 Inhibition of incorporation of uridine into RNA Chapter 4 Bacillus thuringiensis and its toxins 4.1 The mechanism of action of δ-endotoxins 4.2 Biotechnology 4.3 Engineered plants 4.4 Biology 4.5 Commercial products Chapter 5 Specific enzyme inhibitors 5.1 Inhibitors of ergosterol synthesis 5.1.1 Inhibition of HMG-CoA reductase 5.1.2 Inhibition of squalene epoxidase 5.1.3 DMI fungicides 5.1.4 Examples of DMI fungicides from each group 5.1.4.1 Azoles and triazoles 5.1.4.2 Pyridines and pyrimidines 5.1.4.3 Piperazines 5.1.4.4 Amines 5.1.4.5 Morpholines 5.1.5 Conclusions ©2004 by Jørgen Stenersen 5.2 Herbicides that inhibit synthesis of amino acids 5.2.1 The mode of action of glyphosate 5.2.2 Degradation of glyphosate 5.2.3 Selectivity 5.2.4 Mode of action of glufosinate 5.2.5 Inhibitors of acetolactate synthase 5.3 Inhibitors of chitin synthesis 5.3.1 Insecticides 5.3.2 Fungicides 5.4 Inhibitors of cholinesterase 5.4.1 Acetylcholinesterase 5.4.2 Organophosphates 5.4.2.1 Naturally occurring organophosphorus insecticides 5.4.3 Carbamates 5.4.3.1
Recommended publications
  • (12) United States Patent (10) Patent No.: US 7,687,533 B2 Critcher Et Al
    USOO7687533B2 (12) United States Patent (10) Patent No.: US 7,687,533 B2 Critcher et al. (45) Date of Patent: Mar. 30, 2010 (54) N-(1-ARYLPYRAZOL-4L) SULFONAMIDES EP 546391 6, 1993 AND THEIR USE AS PARASITICDES EP 59.4291 4f1994 EP 626.375 11, 1994 (75) Inventors: Douglas James Critcher, Sandwich EP 1319657 6, 2003 (GB); Nigel Derek Arthur Walshe, WO WO87,03781 7, 1987 Sandwich (GB); Christelle Lauret, WO WO91f11172 8, 1991 Sandwich (GB) WO WO93, 19053 9, 1993 WO WO93,25543 12/1993 (73) Assignees: Pfizer Inc., New York, NY (US); Pfizer WO WO94/O2518 2, 1994 Products Inc., Groton, CT (US) WO WO94, 15944 T 1994 - WO WO94,21606 9, 1994 (*) Notice: Subject to any disclaimer, the term of this WO WO95/22552 8, 1995 patent is extended or adjusted under 35 WO WO96, 11945 4f1996 U.S.C. 154(b) by 607 days. WO WO96, 15121 5, 1996 WO WO98,24767 6, 1998 (21) Appl. No.: 10/593,133 WO WO98.28278 7, 1998 WO WO98,55148 12/1998 (22) PCT Filed: Mar. 7, 2005 WO WO98,57937 12/1998 (86). PCT No.: PCT/B2005/000597 W WS 1 3. S 371 (c)(1) WO WOO1, 19798 3, 2001 (2), (4) Date: Nov.30, 2006 WO WOO2/O58690 8, 2002 WO WOO3,O37274 5, 2003 (87) PCT Pub. No.: WO2005/090313 WO WOO3,051833 6, 2003 WO WO2004/OOO318 12/2003 PCT Pub. Date: Sep. 29, 2005 WO WO2004/043951 5, 2004 WO WO2004/043951 A1 * 5, 2004 (65) Prior Publication Data WO WO2004/049797 6, 2004 US 2008/O26 1940 A1 Oct.
    [Show full text]
  • Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
    Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq.
    [Show full text]
  • Insecticides - Development of Safer and More Effective Technologies
    INSECTICIDES - DEVELOPMENT OF SAFER AND MORE EFFECTIVE TECHNOLOGIES Edited by Stanislav Trdan Insecticides - Development of Safer and More Effective Technologies http://dx.doi.org/10.5772/3356 Edited by Stanislav Trdan Contributors Mahdi Banaee, Philip Koehler, Alexa Alexander, Francisco Sánchez-Bayo, Juliana Cristina Dos Santos, Ronald Zanetti Bonetti Filho, Denilson Ferrreira De Oliveira, Giovanna Gajo, Dejane Santos Alves, Stuart Reitz, Yulin Gao, Zhongren Lei, Christopher Fettig, Donald Grosman, A. Steven Munson, Nabil El-Wakeil, Nawal Gaafar, Ahmed Ahmed Sallam, Christa Volkmar, Elias Papadopoulos, Mauro Prato, Giuliana Giribaldi, Manuela Polimeni, Žiga Laznik, Stanislav Trdan, Shehata E. M. Shalaby, Gehan Abdou, Andreia Almeida, Francisco Amaral Villela, João Carlos Nunes, Geri Eduardo Meneghello, Adilson Jauer, Moacir Rossi Forim, Bruno Perlatti, Patrícia Luísa Bergo, Maria Fátima Da Silva, João Fernandes, Christian Nansen, Solange Maria De França, Mariana Breda, César Badji, José Vargas Oliveira, Gleberson Guillen Piccinin, Alan Augusto Donel, Alessandro Braccini, Gabriel Loli Bazo, Keila Regina Hossa Regina Hossa, Fernanda Brunetta Godinho Brunetta Godinho, Lilian Gomes De Moraes Dan, Maria Lourdes Aldana Madrid, Maria Isabel Silveira, Fabiola-Gabriela Zuno-Floriano, Guillermo Rodríguez-Olibarría, Patrick Kareru, Zachaeus Kipkorir Rotich, Esther Wamaitha Maina, Taema Imo Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work.
    [Show full text]
  • View As Separate Document
    Ecotao Enterprises cc [email protected] iTEM NO. Available microscope slides. Note that there is an administrative and freight fee with any order A MICRO-SPECIMENS A1 plant WM A 1-1 CELL AND TISSUE---micro-specimens BB-QP0001 Letter A Slide BB-QP0002 Letter B Slide BB-QP0003 Onion Epidermis W.M BB-QP0004 Pepper Epidermal (showing simple pit pair)W.M BB-QP0005 Piasmodesma(Persimmon sndosperm) BB-QP0006 Onion root tip L.S BB-QP0007 Onion chromosome W.M BB-QP0008 Hydrilla stem tips L.S( showing shoot apical meristem) BB-QP0009 Clove Bud S.L BB-QP0010 Corn stalk inter apical meristem L.S BB-QP0011 Hosta leaf lower epidermis W.M BB-QP0012 Wheat leaf lower epidermis W.M BB-QP0013 Broad bean leaf lower epidermis W.M BB-QP0014 Corn leaf lower epidermis W.M BB-QP0015 Chrysanthemum leaf lower epidermis W.M(showing stoma) BB-QP0016 Apple leaf lower epidermis W.M(showing epidermi cells) BB-QP0017 Sycamore branch-shaped down W.M BB-QP0018 Geranium leaf lower epidermis W.M(Showing glandular hair) BB-QP0019 Mintleaf leaf lower epidermis W.M(showing glandular scale) BB-QP0020 Sweet potato root W.M(showing storage tissue) BB-QP0021 Hydrilla stem C.S(showing aceration tissue) BB-QP0022 Myriophyllum spicatum stem C.S(showing aceration tissue) BB-QP0023 Waterlily leaf C.S(showing aceration tissue) BB-QP0024 Amaranthus stems (showing vascular) BB-QP0025 Pumpkin stem C.S(showing tracheid) BB-QP0026 Pumpkin stem L.S (showing vascular type) BB-QP0027 Pumpkin stem isolation W.M (showing vascular type) BB-QP0028 Sunflower stem L.S BB-QP0029 Gossypium hirsutum
    [Show full text]
  • Laboratory Test Report
    Aromatic Plant Research Center 230 N 1200 E STE 100 Lehi, UT 84043 www.aromaticplant.org Laboratory Test Report SAMPLE NAME : Cypress CLIENT NAME : ACHS CLIENT LOT # : 36186C Column: ZB5 (60 m length × 0.25 mm inner diameter × 0.25 μm film thickness) Instrument: Shimadzu GCMS-QP2010 Ultra Carrier gas: Helium 80 psi Temperature ramp: 2 degrees Celsius per minute up to 260-degree Celsius Split ratio: 30:1 Sample preparation: 5% w/v solution with Dichloromethane Interpretation on sample: This analysis of Cypress essential oil meets the standard chemical profile of Cupressus sempervirens essential oil. Analyzed by: Dr. Prabodh Satyal Reviewed by: Ambika Poudel Issued Date: 9/25/2020 Copyright © 2020 by Aromatic Plant Research Center (APRC). All rights reserved. The information contained in this document may not be used, published or redistributed, including online, without the prior written consent of APRC. 1 / 4 24,426,457 Chromatogram Injection Volume Lot# Client Name Sample Name Sample Type Analyzed Analyzed by Sample Information www.aromaticplant.org UT Lehi, 84043 100 STE 230N E 1200 Center Aromatic Plant Research 10.856 Copyright © 2020 by Aromatic Plant Research Center (APRC). All rights reserved. Copyright information The All (APRC). rights reserved. this document contained in Center may © 2020by Aromatic Plantnot be used, published Research or 11.74611.898 13.37013.18113.088 12.429 14.335 14.41714.716 15.343 16.015 16.405 16.628 17.032 17.18317.501 18.00417.910 17.812 20.0 18.866 19.30119.646 21.153 21.744 21.445 22.392 : : : 0.30 : : : : ACHS Cy Esse 9/25/2020 7:12:23 AM AM 7:12:23 9/25/2020 Dr.
    [Show full text]
  • Transgenic Crops.Pdf
    MICHEL TEMER President of the Republic ELISEU PADILHA Chief of Staff of the Presidency of the Republic JOSÉ RICARDO ROSENO Special Secretary for Family Farming and Agrarian Development JEFFERSON CORITEAC Deputy Executive Secretary of for Family Farming and Agrarian Development JOSÉ ROBERTO VIEIRA SANTOS Subsecretary of Planning and Management RAQUEL SANTORI Subsecretary of de Agrarian Reordering EVERTON AUGUSTO PAIVA FERREIRA Subsecretary of Family Farming MARCELO MARTINS Subsecretary of Rural Development SORRIVAL DE LIMA Subsecretary of Land Regularization in the Legal Amazon CARLOS EDUARDO BOVO Director of the Coordination of Strategic Management, Monitoring and Evaluation (CGMA / NEAD) WILLY DE LA PIEDRA MESONES Coordinator-General for Strategic Management, Monitoring and Evaluation (CGMA / NEAD) Copyright 2017 MDA mda.gov.br Series NEAD Debate 27 Agrarian Studies and Rural Development Centre/ Coordination of Strategic Management, Monitoring and Evaluation (NEAD) Esplanada dos Ministérios, Bloco C, 5º andar – sala 543 CEP 70.046-900 Brasília/DF Editorial staff Editorial production: Ana Carolina Fleury and Mariana Camargo Spelling and grammar review: Ana Carolina Fleury, Mariana Camargo and Grafica Ideal Graphic and editorial design: Aline Pereira - Ascom/MDA Transgenic Crops – hazards and uncertainties: More than 750 studies disregarded by the GMOs regulatory bodies / Gilles Ferment ... [ et al. ].– Brasília: Ministry of Agrarian Development, 2017. 450p. _ ( Nead debate ; 27 ) ISBN 978-85- 8354-015- 1 1. Trangenic plants. 2. Agrobiodiversity.
    [Show full text]
  • 4C Pesticide Lists
    4C PESTICIDE LISTS Version 4.0 II 4C PESTICIDE LISTS Copyright notice © 2020 4C Services GmbH This document is protected by copyright. It is freely available from the 4C website or upon request. No part of this copyrighted document may be changed or amended. The document may not be duplicated or copied in any form or by any means for commercial purpose without permission of 4C Services. Document Title: 4C Pesticide Lists Version 4.0 Valid from: 01 July 2020 III Content List of Tables ........................................................................................................................ IV Abbreviations ....................................................................................................................... IV 4C PESTICIDE LISTS 1 Introduction ................................................................................................................... 5 2 Selection Criteria Used for the 4C Pesticide Lists .......................................................... 5 3 4C Red List Pesticides: 4C Code of Conduct Requirements and Actions to be Promoted .................................. 6 4 4C Yellow List Pesticides: 4C Code of Conduct Requirements and Actions to be Promoted .................................. 7 © 4C Services GmbH IV List of Tables Table 1: 4C list of unacceptable pesticides ............................................................................ 8 Table 2: 4C red pesticide list ................................................................................................. 9 Table
    [Show full text]
  • Metabolism of Methiocarb and Carbaryl by Rat and Human Livers and Plasma, and Effect on Their PXR, CAR and Pparα Activities
    The Journal of Toxicological Sciences (J. Toxicol. Sci.) 677 Vol.41, No.5, 677-691, 2016 Original Article Metabolism of methiocarb and carbaryl by rat and human livers and plasma, and effect on their PXR, CAR and PPARα activities Chieri Fujino1, Yuki Tamura2, Satoko Tange1, Hiroyuki Nakajima3,4, Seigo Sanoh1, Yoko Watanabe2, Naoto Uramaru2, Hiroyuki Kojima5, Kouichi Yoshinari3,4, Shigeru Ohta1 and Shigeyuki Kitamura2 1Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan 2Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan 3Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai 980-8578, Japan 4School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan 5Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819, Japan (Received April 14, 2016; Accepted August 2, 2016) ABSTRACT — The oxidative, reductive, and hydrolytic metabolism of methiocarb and the hydrolyt- ic metabolism of carbaryl by liver microsomes and plasma of rats or humans were examined. The effects of the metabolism of methiocarb and carbaryl on their nuclear receptor activities were also examined. When methiocarb was incubated with rat liver microsomes in the presence of NADPH, methiocarb sul- foxide, and a novel metabolite, methiocarb sulfone were detected. Methiocarb sulfoxide was oxidized to the sulfone by liver microsomes and reduced back to methiocarb by liver cytosol. Thus, the intercon- version between methiocarb and the sulfoxide was found to be a new metabolic pathway for methiocarb by liver microsomes.
    [Show full text]
  • Lists for Pesticide Management
    Rainforest Alliance Lists for Pesticide Management Lists of Prohibited and Risk Mitigation Use Pesticides July, 2017 Version 1.3 D.R. © 2017 Red de Agricultura Sostenible, A.C. This document is provided by Red de Agricultura Sostenible, A.C. (also known as Sustainable Agriculture Network) to Rainforest Alliance, Inc. and/or to its successors, under the terms and subject to the limitations set forth in the perpetual, exclusive, non-transferrable license granted by Red de Agricultura Sostenible, A.C. in favor of Rainforest Alliance, Inc., or its successors under the terms and conditions set forth in an agreement between the parties (the “Agreement”), in the understanding that: 1. All content of this document, including, but not limited to text, logos, if any, graphics, photographs, trade names, etc. of Red de Agricultura Sostenible, A.C, is subject to copyright protection in favor of the Red de Agricultura Sostenible, A.C. and third party owners who have duly authorized the inclusion of their work, under the provisions of the Mexican Federal Law on Copyright (Ley Federal del Derecho de Autor) and other related national and / or international laws. The Rainforest Alliance name and trademarks are the sole property of Rainforest Alliance. 2. Rainforest Alliance, Inc., and / or its successors, shall only use the copyrighted material under the terms and conditions of the Agreement. 3. Under no circumstance shall it be understood that a license, of any kind, over this document has been granted to any third party different from Rainforest Alliance, Inc., or its successors. 4. Except for the terms and conditions set forth in the Agreement, under no circumstance shall it be understood that Red de Agricultura Sostenible, A.C.
    [Show full text]
  • Pesticide Expanded Multi-Residue Screens
    www.merieuxnutrisciences.com/us Expanded Multi-Residue Screen (PEST-GCLC) Tel: +1 (312) 938-5151 3-OH-carbofuran 0.001 Chloridazon 0.002 Dioxathion 0.002 Abamectin 0.005 Chlorimuron ethyl 0.001 Diphenamid 0.001 Acephate 0.002 Chlormephos 0.002 Diphenylamine 0.001 Acetamipred 0.002 Chlorobenzilate 0.001 Dipropetryn 0.001 Acetochlor 0.001 Chloroneb 0.001 Disulfoton 0.002 Acibenzolar-s-methyl 0.002 Chloropropilate 0.001 Disulfoton sulfone 0.001 Aclonifen 0.005 Chlorothalonil 0.001 Diuron 0.001 Alachlor 0.001 Chloroxuron 0.001 Dodemorph 0.001 Aldicarb 0.002 Chlorpropham 0.003 EPN 0.001 Aldicarb sulfone 0.002 Chlorpyrifos 0.001 EPTC 0.003 Aldicarb sulfoxide 0.002 Chlorpyrifos-methyl 0.001 Edifenphos 0.001 Aldrin 0.001 Chlorthiamid 0.002 Emamectin 0.001 Allidochlor 0.001 Chlorthion 0.002 Endosulfan alpha 0.002 Ametryn 0.001 Chlorthiophos 0.002 Endosulfan beta 0.003 Aminocarb 0.001 Chlortoluron 0.001 Endosulfan sulfate 0.001 Anilofos 0.001 Chlozolinate 0.001 Endrin 0.002 Aramite I 0.002 Clodinafop-propargyl 0.001 Epoxyconazole 0.001 Aramite II 0.003 Clomazone 0.001 Erbon 0.003 Aspon 0.001 Cloquintocet-methyl 0.001 Esfenvalerate 0.001 Atrazine 0.002 Clothianidin 0.001 Etaconazole 0.002 Atrazine-desethyl 0.002 Coumaphos 0.002 Ethaluralin 0.002 Azaconazole 0.001 Crotoxyphos 0.003 Ethiofencarb 0.001 Azinphos-ethyl 0.002 Cruformate 0.001 Ethiofencarb sulfone 0.001 Azinphos-methyl 0.006 Cyanazine 0.002 Ethiofencarb sulfoxide 0.001 Azoxystrobin 0.003 Cyanofenphos 0.001 Ethion 0.001 BHC alpha isomer 0.001 Cyanophos 0.001 Ethiprole 0.001 BHC beta isomer
    [Show full text]
  • Natural Products (Secondary Metabolites)
    Biochemistry & Molecular Biology of Plants, B. Buchanan, W. Gruissem, R. Jones, Eds. © 2000, American Society of Plant Physiologists CHAPTER 24 Natural Products (Secondary Metabolites) Rodney Croteau Toni M. Kutchan Norman G. Lewis CHAPTER OUTLINE Introduction Introduction Natural products have primary ecological functions. 24.1 Terpenoids 24.2 Synthesis of IPP Plants produce a vast and diverse assortment of organic compounds, 24.3 Prenyltransferase and terpene the great majority of which do not appear to participate directly in synthase reactions growth and development. These substances, traditionally referred to 24.4 Modification of terpenoid as secondary metabolites, often are differentially distributed among skeletons limited taxonomic groups within the plant kingdom. Their functions, 24.5 Toward transgenic terpenoid many of which remain unknown, are being elucidated with increas- production ing frequency. The primary metabolites, in contrast, such as phyto- 24.6 Alkaloids sterols, acyl lipids, nucleotides, amino acids, and organic acids, are 24.7 Alkaloid biosynthesis found in all plants and perform metabolic roles that are essential 24.8 Biotechnological application and usually evident. of alkaloid biosynthesis Although noted for the complexity of their chemical structures research and biosynthetic pathways, natural products have been widely per- 24.9 Phenylpropanoid and ceived as biologically insignificant and have historically received lit- phenylpropanoid-acetate tle attention from most plant biologists. Organic chemists, however, pathway metabolites have long been interested in these novel phytochemicals and have 24.10 Phenylpropanoid and investigated their chemical properties extensively since the 1850s. phenylpropanoid-acetate Studies of natural products stimulated development of the separa- biosynthesis tion techniques, spectroscopic approaches to structure elucidation, and synthetic methodologies that now constitute the foundation of 24.11 Biosynthesis of lignans, lignins, contemporary organic chemistry.
    [Show full text]
  • Author's Blurb
    Author’s Blurb TK Lim (Tong Kwee Lim) obtained his bachelor’s and plant products into and out of Australia from and master’s degrees in Agricultural Science and for the Middle East and Asian region. During from the University of Malaya and his PhD his time with ACIAR, he oversaw and managed (Botanical Sciences) from the University of international research and development programs Hawaii. He worked in the Agricultural University in plant protection and horticulture, covering a of Malaysia for 20 years as a Lecturer and wide array of crops that included fruit, plantation Associate Professor; as Principal Horticulturist crops, vegetables, culinary and medicinal herbs for 9 years for the Department of Primary and spices mainly in southeast Asia and the Industries and Fisheries, Darwin, Northern Pacifi c. In the course of his four decades of work- Territory; for 6 years as Manager of the Asia and ing career, he has travelled extensively world- Middle East Team in Plant Biosecurity Australia, wide to many countries in South Asia, East Asia, Department of Agriculture, Fisheries and Southeast Asia, Middle East, Europe, the Pacifi c Forestry, Australia, and for 4 years as Research Islands, USA and England and also throughout Program Manager with the Australian Centre for Malaysia and Australia. Since his tertiary educa- International Agriculture Research (ACIAR), tion days, he always had a strong passion for Department of Foreign Affairs and Trade, crops and took an avid interest in edible and Australia, before he retired from public service. medicinal
    [Show full text]