Ocean Sci., 15, 853–864, 2019 https://doi.org/10.5194/os-15-853-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Tidal variability in the Hong Kong region Adam T. Devlin1,2,3, Jiayi Pan1,2,3, and Hui Lin1,2 1School of Geography and Environment, Jiangxi Normal University, Nanchang, Jiangxi, China 2Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China 3Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China Correspondence: Jiayi Pan (
[email protected]) Received: 15 May 2018 – Discussion started: 11 June 2018 Revised: 29 May 2019 – Accepted: 5 June 2019 – Published: 4 July 2019 Abstract. Mean sea level (MSL) is rising worldwide, and 1 Introduction correlated changes in ocean tides are also occurring. This combination may influence future extreme sea levels, pos- sibly increasing coastal inundation and nuisance flooding Ocean tides have long been thought of as a stationary pro- events in sensitive regions. Analyses of a set of tide gauges in cess as they are driven by the gravitational forcing of the Sun Hong Kong reveal complex tidal behavior. Most prominent and Moon whose motions are complex but highly predictable in the results are strong correlations of MSL variability to (Cartwright and Tayler, 1971). Yet, long-term changes in the tidal variability over the 31-year period of 1986–2016; these tides have been observed recently on regional (Ray, 2006; tidal anomaly correlations (TACs) express the sensitivity of Jay, 2009; Zaron and Jay, 2014; Rasheed and Chua, 2014; Feng et al., 2015; Ross et al., 2017) and global spatial scales tidal amplitudes and phases (M2, S2, K1, O1) to MSL fluctu- ations and are widely observed across the Hong Kong region.