R Graphics Output

Total Page:16

File Type:pdf, Size:1020Kb

R Graphics Output type gene transcript exon start_codon stop_codon UTR 10 8 6 cn 4 2 0 ● 4 ●●●●● ●● ● ●●●●●●●●●● ●●●● ●●●● ●●●●●●● ●●● ●● ●●● ● ● ● ●●● ● ●● 3 ● ● ● ●●●●● ● ratio ● ● ●●● ●● ●●● ● ●● ●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●● ● ●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 2 ● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ● ● ●● ● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● 1 0 ● ● ● ● ●●●●●●●●●●●●●●●●●●●● DAND5 CTC−425F1.2CTC−425F1.4RAD23ACALR AC005943.4UQCR11MBD3 AD000092.3SYCE2FARSAGCDH RN7SL477PADAMTSL5HMHA1REEP6 CTD−2659N19.10CTD−2265O21.3CTD−2265O21.7MAST1 AC011558.5RNU6−2ABCA7CNN2 C19orf43MIR5684PRDX2JUNB AC004528.1AC004528.4TMEM259GRIN3B SLC44A2CTD−2192J16.26CTD−2659N19.4ILF3 SNORD41TNPO2 AC005391.2ARID3AKISS1RWDR18 RN7SL528PAC011498.1 HNRNPMRAB11BCTC−429L19.3CDKN2DZNF625−ZNF20CTD−2666L21.1AP1M2CTC−359D24.3KRI1 DHPS CTD−3131K8.3SLC27A1 R3HDM4RNU6−9MED16CFDMOB3AAP3D1SF3A2CTB−50L17.16CTB−50L17.7CTB−50L17.9MIR4746 CTD−2550O8.7RAB11B−AS1AC010323.1ANGPTL4 P2RY11RAVER1EIF3GICAM3RNA5SP467RSL24D1P8CTC−250I14.6ZNF788ZNF20 CTD−2521M24.10AC010319.1TMEM221NXNL1 MIR3187ELANEPRTN3AC005306.3RN7SL226PAZU1AC007136.1MKNK2CTB−50L17.5AC007292.6CHAF1AUBXN6 RPL7P50VAV1SNAPC2TIMM44CTXN1KANK3CTD−2240E14.4SNORD105BSNORD105ANGPTL6RNA5SP465ZNF440CTC−250I14.3ZNF878ZNF844DNASE2STX10IER2 EMR2CTC−429P9.2CTD−2521M24.4CTD−2521M24.8TMEM38A CTC−260E6.8CTC−513N18.5CTC−513N18.6 AC006273.7CSNK1G2−AS1MIR4745PTBP1LPPR3AC012615.1CSNK1G2BTBD2 NCLNAC007292.4AC007292.1AC007292.3SH3GL1CTD−2396E7.10CTD−2396E7.7CTD−2396E7.8CTD−3193O13.13CTD−3193O13.1TNFSF9TGFBR3LMAP2K7 MIR5589COL5A3OLFM2CTC−499B15.4RDH8CTC−499B15.1CTD−2659N19.2CTD−2659N19.9ZNF441ZNF491HOOK2RTBDNRN7SL842PAC090427.1ITGB1P1EMR3AC004510.3CTC−429P9.4CTD−2521M24.5CTD−2521M24.9UCA1AP1M1MVB12AAC004447.2PDE4CKLHL26CTC−559E9.8CRTC1CTC−260E6.11CTC−260E6.9ZNF253 AC006273.4AC006273.5CTB−31O20.9PALMMISPABHD17ASCAMP4ADAT3AC005262.4AC005264.2GNA15S1PR4AC007292.7TMIGD2MPNDSHDCTD−2396E7.9SLC25A23DENND1CTUBB4ARNA5SP463RN7SL115PAC010336.1LRRC8EAC008752.1RPL10P15SNORA70UBL5CTC−398G3.2RN7SL833PAC020947.2CTD−2192J16.15CTD−2192J16.22CNN1MAN2B1WDR83RN7SL337PLLNLR−249E10.1CLEC17ANDUFB7MIR639CYP4F24PZNF861POR10H2CTD−2278I10.4CTD−2278I10.1ANO8DDA1AC005253.2AC005253.4CTC−559E9.2CTC−559E9.6CTC−559E9.5UBA52CRLF1ZNF506 CTB−175P5.4ZNF91 AC004156.3RPS2P52PRSS57CTB−31O20.6CTB−31O20.8CTB−31O20.2FSTL3KLF16AC005944.2AC005262.2GNA11RN7SL84PAESANKRD24CCDC94EBI3CTB−180A7.6CTB−180A7.8SLC25A41MIR3940CLEC4GP1EXOSC3P2CLEC4MEVI5LCTD−2623N2.3AC008752.2UBE2L4FBXL12CTC−510F12.2RN7SL192PSMARCA4RN7SL669PCTD−2192J16.11RNA5SP466ZNF433AC005546.2ZNF490NACC1AC012318.3DNAJB1GIPC1TECRCYP4F10PCTD−2538G9.3CYP4F12CTC−429P9.5CYP4F8CYP4F3NWD1MRPL34AC068499.10AC010335.1PIK3R2RAB3AAC138430.4CTC−559E9.4CTC−575C13.1HAPLN4TM6SF2MIR1270−1ZNF826PCTD−2579N5.5CTD−2579N5.3CTD−2579N5.4CTB−87J17.2 LLNLR−299G3.1AC004449.6RNF126CTB−31O20.3CTB−31O20.4FGF22MIR1909REXO1AC006277.2CTD−2622I13.3ZNF77TLE6TLE2MAP2K2ZBTB7ASIRT6 CTD−3214H19.16ALKBH7GTF2F1PSPNCLPPRPL21P129TRAPPC5RETNCTC−325H20.7ZNF559ZNF177ZNF812MIR1181CTC−398G3.6CTC−499B15.6CDC37PDE4ACTD−3105H18.11MIR638CTD−2192J16.20ELAVL3ZNF653PPIAP20ASNA1CTC−548K16.6DDX39APTGER1PKN1AD000091.3AD000091.2CYP4F23PCTD−3222D19.5RPL23AP2CTC−429P9.1CTC−429P9.3SMIM7SNORA68RPS18P13SLC5A5AC005932.1RNU6−1028PJAK3HOMER3CTC−260E6.6DDX49AC006539.3AC006539.2AC078899.8CTD−2561J22.6LINC00664CTC−457E21.9ZNF429CTC−451A6.5CTC−451A6.4ZNF849P AC005559.3AC005559.2POLRMTRNU6−1223PHCN2AC005256.1ONECUT3ATP8B3AC006130.1AC006130.4AC119403.1ZNF57AC016586.1SNORD37PIAS4EEF2CTB−66B24.1CTC−503J8.4ACSBG2CTD−3214H19.4CTD−3214H19.6MLLT1STXBP2PCP2CTD−2369P2.10CTD−2369P2.12OR7E18POR7E24ZNF699OR7D4FDX1LICAM5CTD−3105H18.10CTD−3105H18.8CTD−3105H18.9CCDC151PRKCSHsnoU13EPORZNF709CTD−2189E23.2CTC−548K16.2CTC−548K16.1CTC−548K16.5CTB−187L3.1CTD−3222D19.11CTD−3222D19.10PGLYRP2CYP4F22RASAL3CTD−3149D2.3SLC35E1CTD−3149D2.4MED26B3GNT3FCHO1RN7SL155PAC005197.2AC002985.3AC011477.1AC007204.1LINC00663COPEAC006539.1CTD−3030D20.2CTD−2561J22.1CTD−2561J22.2CTC−457E21.4CTC−457E21.7ZNF738AC011516.2ZNF492 AC009005.2CDC34GZMMAC027307.1AC005943.5BSGMEX3DTCF3AC006130.3ZNF554ZNF555ZNF556RN7SL202PNMRK2MIR637DAPK3RPL32P34CTC−232P5.3CTC−232P5.4RANBP3CTD−2207O23.10ACER1MCOLN1PNPLA6CTD−2529P6.3PET100TCEB1P29OR7E16PCTD−2369P2.5CTD−2369P2.4RN7SL94POR7D2DKFZP761J1410CTD−2342J14.6ICAM4CTD−3105H18.16CTD−3105H18.18C19orf52CTD−3105H18.7SWSAP1RNA5SP464CTC−239J10.1CTD−2189E23.1PRKACASAMD1LPHN1AC005785.2CTD−3222D19.7MIR1470AKAP8LAKAP8RN7SL146PCTD−3131K8.1C19orf44CHERPCOLGALT1FAM129CUNC13ATMEM59LCTC−412M14.5C19orf60CTC−559E9.9KXD1CERS1AC007204.2ZNF14RNA5SP469AC010620.1VN1R81PZNF714CTC−457E21.6CTC−457E21.5RN7SL860PAC011467.1 AC005775.2MADCAM1ODF3L2CTB−25B13.6CTB−25B13.9TPGS1AC027307.2AC006538.1PLK5SLC39A3THOP1SGTAATCAYFTLP5MATKZFR2MIR4747CTC−232P5.1UHRF1KDM4BCTC−503J8.2PTPRSCTB−180A7.3CTD−2207O23.12CTD−2207O23.11RFX2C19orf45ZNF358AC092316.2AC092316.1AC130469.2ADAMTS10CTC−543D15.1C19orf82ZNF426ZNF561RNU7−140PAC011475.1ILF3−AS1CTD−2006C1.6MIR1238HNRNPA1P10CTD−2192J16.24ELOF1ACP5WDR83OSPGK1P2ZNF791EEF1DP1LLNLR−246C6.1C19orf67IL27RAPALM3AC004257.3AC005776.1CTD−2013N17.1CTD−2013N17.4CTD−3222D19.2BRD4RN7SL844PCTD−2521M24.11CTD−2521M24.6CTD−3137H5.1AC005387.2MAP1SBST2CTC−412M14.6CTC−559E9.12COMPELLCTD−2542C24.3ATP13A1CTD−2542C24.7CTD−2542C24.9ZNF101KRT18P40CTC−457E21.10CTC−457E21.2CTC−457E21.3RNU6−1179P RNA5SP462AC010641.1CTB−25B13.12C2CD4CSHC2C19orf25CTC−265F19.3CTC−265F19.1PCSK4APC2AC006538.4DIRAS1AC005954.3AC005777.3MRPL54AC027319.2AC027319.1RAX2ARRDC5AC104532.2AC104532.4PLIN3VMACCAPSCTB−133G6.1CTB−133G6.2AC010311.1ARHGEF18CTC−325H20.4CTC−325H20.2MARCH2MIR4999RPS28MYO1FCTC−539A10.7ZNF266ZNF121ZGLP1KEAP1TYK2CTD−2192J16.21CCDC159ZNF833PECSITRGL3ZNF799ZNF443FBXW9CTB−55O6.4MIR181DC19orf57DCAF15RNU6−782PCTD−2231E14.8CTD−2562J15.4NOTCH3SYDE1ILVBLCTD−2278I10.6FAM32AEPS15L1CTD−3131K8.2ANKLE1ABHD8AC008397.1ISYNA1SSBP4FKBP8AC002306.1CTD−2626G11.2CTD−2626G11.3PHF5CPLPAR2GMIPVN1R79PZNF66AC003973.1AC003973.5ZNF257ZNF676VN1R91PZNF728SNX6P1ZNF730 CTD−3113P16.5CTB−25B13.13PPAP2CMIER2AC027307.3THEGDAZAP1CTC−265F19.2RPS15RNU6−993PTCEB1P28GNG7AC004637.1AC005954.4CTC−518P12.6APBA3AC005523.2TJP3TICAM1AC024592.12FEM1AAC104532.3NDUFA11CTB−25J19.9FUT5CTD−3020H12.3CTD−3020H12.4MBD3L3ZNF557INSRNDUFA7CERS4OR7E25PCTD−2369P2.8OR7D1POR7H1PZNF317CTC−510F12.4CTC−510F12.6MIR4322MRPL4S1PR2CTD−3105H18.14CTD−3105H18.5CTD−3105H18.4TMEM205RAB3DZNF442MIR24−2NANOS3MIR27AMIR23AOR7A11POR7A15POR7A3PSLC1A6LINC00661OR1AB1PSNX33P1RAB8AAC010646.3BABAM1USHBP1NR2F6RN7SL513PPGPEP1CTC−260F20.3LRRC25LSM4CTD−2332E11.2NDUFA13CTD−2542C24.2YJEFN3PBX4VN1R78PZNF626AC092364.2CTB−159G17.2CTD−2291D10.4ZNF100ZNF208ZNF43VN1R88PZNF99RNA5−8SP4ZNF254 CTD−3113P16.7CTD−3113P16.9AC098474.1VN2R11PAC004623.2AC005329.7NDUFS7GAMTAC005624.2GADD45BTIMM13LMNB2CACTIN−AS1PIP5K1CTBXA2RCACTINAC005783.1AC005523.3MIR7−3HGMIR7−3AC024592.9CTB−25J19.1NRTNCTD−3193O13.14FUT6FUT3CTD−2325M2.1MBD3L5MBD3L4MBD3L2CCL25FBN3PPAN−P2RY11CTD−2369P2.2OR1M1OR7G2OR7G1OR7G3DNMT1RN7SL298PPPANCTD−2666L21.3CTD−2666L21.2C19orf80DOCK6KANK2ZNF563ZNF44CTD−3252C9.2AC008686.1C19orf53ZSWIM4AC005255.5AC005255.6OR7A18POR7A1PAC005336.4AC004609.1CTD−2528A14.3CTD−2528A14.5CYP4F11CYP4F2RN7SL823PMEF2BNB−MEF2BOCEL1AC007192.6RPL39P38ARRDC2IL12RB1MEF2BCTC−513N18.7AC078899.1AC078899.2NCANAC078899.3TSSK6CTD−3233P19.7RPL36AP51VN1R83PCTC−457E21.1VN1R84PAC025811.3AC025811.1VN1R87PCTB−92J24.3CTB−92J24.2RPSAP58ZNF92P3 RNU6−1076PAC092299.8AC092299.7LINC01002AC005330.2RPS15P9LLfos−48D6.1EFNA2MUM1AC004410.3TMPRSS9SPPL2BAC005786.5AC005786.3HMG20BGIPC3AC005339.2AC005594.3C19orf10CTB−54O9.9AC011499.1DPP9CTC−312O10.2PRR22DUS3LCTD−3193O13.11AC020895.1AC025278.1CTD−3193O13.9CTD−3193O13.8EMR4PCTD−2596O15.1CTD−2529P6.4ELAVL1MBD3L1OR1M4PAC008752.3C19orf66CTD−2006C1.12PIN1C3P1CTD−2006C1.2CARM1YIPF2SPC24LDLRCTC−250I14.1ZNF625ZNF136AC092069.1CACNA1ACTB−55O6.12TRMT1RN7SL231PAC004699.1RLN3AC004257.1ZNF333CTD−2562J15.6EPHX3CTD−2538G9.5OR10H3TPM4KLF2GTPBP3PLVAPUSE1RPL18ACTB−184G21.3MIR3188MIR3189GDF15GATAD2ACTC−513N18.4CTC−513N18.3GDF1MIR640MIR1270−2CTD−2561J22.3CTD−2561J22.5ZNF93ZNF85AC003973.4ZNF493CTD−2291D10.1AC025811.2AC004004.2ZNF209PZNF725PVN1R93PZNF675HAVCR1P1 AC016626.2AC092192.1AC092299.6CICP19CIRBP−AS1C19orf24CIRBPMIDNC19orf35LINGO3OAZ1LSM7AC005786.7SNORD38C19orf71MFSD12CTB−50L17.2RN7SL121PTNFAIP8L1LRG1CATSPERDHSD11B1LCTD−3128G10.6C19orf70LONP1CTD−3193O13.10SH2D3ATRIP10EMR1CTD−2557P19.4CLEC4GFCER2CD209CTD−2623N2.11CTD−2623N2.5CTD−2553C6.1ZNF558OR2Z1MUC16ZNF846CTC−215O4.4AC007229.3CTD−2006C1.10C19orf38TMED1GADD45GIP1ZNF700ZNF763ZNF69AC007787.2MIR5695hsa−mir−1199NFIXPODNL1ASF1BRFX1CTD−2231E14.4CTD−2231E14.5CCDC105OR10B1PCASP14OR1I1LINC00905CTD−3032J10.2CTD−3032J10.3CIB3MYO9BHAUS8KIAA1683MAST3JUNDIFI30MEF2BNBCTC−260E6.10CTC−575C13.2RFXANKSUGP1AC078899.4AC078899.5MAU2CTD−3233P19.8CTD−3030D20.1VN1R82PZNF708CTB−31C7.3AC011516.1RPL34P34CTB−175P5.1CTB−175P5.2ZNF98RPS27P29VN1R92P AC016626.1OR4G1POR4F17OR4F8PAC004221.2HMGB2P1C19orf26ATP5DMIR1227MIR4321JSRP1RN7SL866PAMHC19orf77CTB−50L17.14DOHHFZR1SEMA6BPLIN4PLIN5SNRPEP4SAFB2RPL36CTD−3214H19.12SAFBTNFSF14GPR108CD70CAMSAP3CTD−2586B10.1C19orf59C3AC092566.1RPL23AP78XAB2CTD−3116E22.6CTD−3116E22.7ACTL9RPS4XP22ZNF562MIR199A1CTC−499B15.7CTC−499B15.8MIR4748QTRT1DNM2ZNF823ZNF439RNASEH2AAC020934.1CTB−5E10.3BEST2RN7SL619PKLF1MIR181CCC2D1AOR7A10OR7A17OR7C1OR7C2AC005336.5CYP4F36PCTD−2528A14.1OR10H1OR10H4RN7SL835PCPAMD8SIN3BRNA5SP468CTB−52I2.4CTB−52I2.3KCNN1TMEM161ASLC25A42CTC−260E6.2ARMC6SUGP2AC006539.4ZNF486ZNF90AC012627.1RPL7AP10VN1R80PCTB−135N1.2ZNF430CTD−2291D10.3VN1R85PZNF92P2PCGF7PAC092329.1CTD−2017D11.3ZNF724PVN1R90P
Recommended publications
  • WO 2019/068007 Al Figure 2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/068007 Al 04 April 2019 (04.04.2019) W 1P O PCT (51) International Patent Classification: (72) Inventors; and C12N 15/10 (2006.01) C07K 16/28 (2006.01) (71) Applicants: GROSS, Gideon [EVIL]; IE-1-5 Address C12N 5/10 (2006.0 1) C12Q 1/6809 (20 18.0 1) M.P. Korazim, 1292200 Moshav Almagor (IL). GIBSON, C07K 14/705 (2006.01) A61P 35/00 (2006.01) Will [US/US]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., C07K 14/725 (2006.01) P.O. Box 4044, 7403635 Ness Ziona (TL). DAHARY, Dvir [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (21) International Application Number: Box 4044, 7403635 Ness Ziona (IL). BEIMAN, Merav PCT/US2018/053583 [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (22) International Filing Date: Box 4044, 7403635 Ness Ziona (E.). 28 September 2018 (28.09.2018) (74) Agent: MACDOUGALL, Christina, A. et al; Morgan, (25) Filing Language: English Lewis & Bockius LLP, One Market, Spear Tower, SanFran- cisco, CA 94105 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 62/564,454 28 September 2017 (28.09.2017) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 62/649,429 28 March 2018 (28.03.2018) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (71) Applicant: IMMP ACT-BIO LTD.
    [Show full text]
  • Olfactory Receptors in Non-Chemosensory Tissues
    BMB Reports Invited Mini Review Olfactory receptors in non-chemosensory tissues NaNa Kang & JaeHyung Koo* Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea Olfactory receptors (ORs) detect volatile chemicals that lead to freezing behavior (3-5). the initial perception of smell in the brain. The olfactory re- ORs are localized in the cilia of olfactory sensory neurons ceptor (OR) is the first protein that recognizes odorants in the (OSNs) in the olfactory epithelium (OE) and are activated by olfactory signal pathway and it is present in over 1,000 genes chemical cues, typically odorants at the molecular level, in mice. It is also the largest member of the G protein-coupled which lead to the perception of smell in the brain (6). receptors (GPCRs). Most ORs are extensively expressed in the Tremendous research was conducted since Buck and Axel iso- nasal olfactory epithelium where they perform the appropriate lated ORs as an OE-specific expression in 1991 (7). OR genes, physiological functions that fit their location. However, recent the largest family among the G protein-coupled receptors whole-genome sequencing shows that ORs have been found (GPCRs) (8), constitute more than 1,000 genes on the mouse outside of the olfactory system, suggesting that ORs may play chromosome (9, 10) and more than 450 genes in the human an important role in the ectopic expression of non-chemo- genome (11, 12). sensory tissues. The ectopic expressions of ORs and their phys- Odorant activation shows a distinct signal transduction iological functions have attracted more attention recently since pathway for odorant perception.
    [Show full text]
  • Sean Raspet – Molecules
    1. Commercial name: Fructaplex© IUPAC Name: 2-(3,3-dimethylcyclohexyl)-2,5,5-trimethyl-1,3-dioxane SMILES: CC1(C)CCCC(C1)C2(C)OCC(C)(C)CO2 Molecular weight: 240.39 g/mol Volume (cubic Angstroems): 258.88 Atoms number (non-hydrogen): 17 miLogP: 4.43 Structure: Biological Properties: Predicted Druglikenessi: GPCR ligand -0.23 Ion channel modulator -0.03 Kinase inhibitor -0.6 Nuclear receptor ligand 0.15 Protease inhibitor -0.28 Enzyme inhibitor 0.15 Commercial name: Fructaplex© IUPAC Name: 2-(3,3-dimethylcyclohexyl)-2,5,5-trimethyl-1,3-dioxane SMILES: CC1(C)CCCC(C1)C2(C)OCC(C)(C)CO2 Predicted Olfactory Receptor Activityii: OR2L13 83.715% OR1G1 82.761% OR10J5 80.569% OR2W1 78.180% OR7A2 77.696% 2. Commercial name: Sylvoxime© IUPAC Name: N-[4-(1-ethoxyethenyl)-3,3,5,5tetramethylcyclohexylidene]hydroxylamine SMILES: CCOC(=C)C1C(C)(C)CC(CC1(C)C)=NO Molecular weight: 239.36 Volume (cubic Angstroems): 252.83 Atoms number (non-hydrogen): 17 miLogP: 4.33 Structure: Biological Properties: Predicted Druglikeness: GPCR ligand -0.6 Ion channel modulator -0.41 Kinase inhibitor -0.93 Nuclear receptor ligand -0.17 Protease inhibitor -0.39 Enzyme inhibitor 0.01 Commercial name: Sylvoxime© IUPAC Name: N-[4-(1-ethoxyethenyl)-3,3,5,5tetramethylcyclohexylidene]hydroxylamine SMILES: CCOC(=C)C1C(C)(C)CC(CC1(C)C)=NO Predicted Olfactory Receptor Activity: OR52D1 71.900% OR1G1 70.394% 0R52I2 70.392% OR52I1 70.390% OR2Y1 70.378% 3. Commercial name: Hyperflor© IUPAC Name: 2-benzyl-1,3-dioxan-5-one SMILES: O=C1COC(CC2=CC=CC=C2)OC1 Molecular weight: 192.21 g/mol Volume
    [Show full text]
  • Functional Variability in the Human Odorant Receptor Repertoire
    ART ic LE s The missense of smell: functional variability in the human odorant receptor repertoire Joel D Mainland1–3, Andreas Keller4, Yun R Li2,6, Ting Zhou2, Casey Trimmer1, Lindsey L Snyder1, Andrew H Moberly1,3, Kaylin A Adipietro2, Wen Ling L Liu2, Hanyi Zhuang2,6, Senmiao Zhan2, Somin S Lee2,6, Abigail Lin2 & Hiroaki Matsunami2,5 Humans have ~400 intact odorant receptors, but each individual has a unique set of genetic variations that lead to variation in olfactory perception. We used a heterologous assay to determine how often genetic polymorphisms in odorant receptors alter receptor function. We identified agonists for 18 odorant receptors and found that 63% of the odorant receptors we examined had polymorphisms that altered in vitro function. On average, two individuals have functional differences at over 30% of their odorant receptor alleles. To show that these in vitro results are relevant to olfactory perception, we verified that variations in OR10G4 genotype explain over 15% of the observed variation in perceived intensity and over 10% of the observed variation in perceived valence for the high-affinity in vitro agonist guaiacol but do not explain phenotype variation for the lower-affinity agonists vanillin and ethyl vanillin. The human genome contains ~800 odorant receptor genes that have RESULTS been shown to exhibit high genetic variability1–3. In addition, humans High-throughput screening of human odorant receptors exhibit considerable variation in the perception of odorants4,5, and To identify agonists for a variety of odorant receptors, we cloned a variation in an odorant receptor predicts perception in four cases: library of 511 human odorant receptor genes for a high-throughput loss of function in OR11H7P, OR2J3, OR5A1 and OR7D4 leads to heterologous screen.
    [Show full text]
  • 1 Novel Expression Signatures Identified by Transcriptional Analysis
    ARD Online First, published on October 7, 2009 as 10.1136/ard.2009.108043 Ann Rheum Dis: first published as 10.1136/ard.2009.108043 on 7 October 2009. Downloaded from Novel expression signatures identified by transcriptional analysis of separated leukocyte subsets in SLE and vasculitis 1Paul A Lyons, 1Eoin F McKinney, 1Tim F Rayner, 1Alexander Hatton, 1Hayley B Woffendin, 1Maria Koukoulaki, 2Thomas C Freeman, 1David RW Jayne, 1Afzal N Chaudhry, and 1Kenneth GC Smith. 1Cambridge Institute for Medical Research and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK 2Roslin Institute, University of Edinburgh, Roslin, Midlothian, EH25 9PS, UK Correspondence should be addressed to Dr Paul Lyons or Prof Kenneth Smith, Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK. Telephone: +44 1223 762642, Fax: +44 1223 762640, E-mail: [email protected] or [email protected] Key words: Gene expression, autoimmune disease, SLE, vasculitis Word count: 2,906 The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Annals of the Rheumatic Diseases and any other BMJPGL products to exploit all subsidiary rights, as set out in their licence (http://ard.bmj.com/ifora/licence.pdf). http://ard.bmj.com/ on September 29, 2021 by guest. Protected copyright. 1 Copyright Article author (or their employer) 2009.
    [Show full text]
  • Chr CNV Start CNV Stop Gene Gene Feature 1 37261312 37269719
    chr CNV start CNV stop Gene Gene feature 1 37261312 37269719 Tmem131 closest upstream gene 1 37261312 37269719 Cnga3 closest downstream gene 1 41160869 41180390 Tmem182 closest upstream gene 1 41160869 41180390 2610017I09Rik closest downstream gene 1 66835123 66839616 1110028C15Rik in region 2 88714200 88719211 Olfr1206 closest upstream gene 2 88714200 88719211 Olfr1208 closest downstream gene 2 154840037 154846228 a in region 3 30065831 30417157 Mecom closest upstream gene 3 30065831 30417157 Arpm1 closest downstream gene 3 35476875 35495913 Sox2ot closest upstream gene 3 35476875 35495913 Atp11b closest downstream gene 3 39563408 39598697 Fat4 closest upstream gene 3 39563408 39598697 Intu closest downstream gene 3 94246481 94410611 Celf3 in region 3 94246481 94410611 Mrpl9 in region 3 94246481 94410611 Riiad1 in region 3 94246481 94410611 Snx27 in region 3 104311901 104319916 Lrig2 in region 3 144613709 144619149 Clca6 in region 3 144613709 144619149 Clca6 in region 4 108673 137301 Vmn1r2 closest downstream gene 4 3353037 5882883 6330407A03Rik in region 4 3353037 5882883 Chchd7 in region 4 3353037 5882883 Fam110b in region 4 3353037 5882883 Impad1 in region 4 3353037 5882883 Lyn in region 4 3353037 5882883 Mos in region 4 3353037 5882883 Penk in region 4 3353037 5882883 Plag1 in region 4 3353037 5882883 Rps20 in region 4 3353037 5882883 Sdr16c5 in region 4 3353037 5882883 Sdr16c6 in region 4 3353037 5882883 Tgs1 in region 4 3353037 5882883 Tmem68 in region 4 5919294 6304249 Cyp7a1 in region 4 5919294 6304249 Sdcbp in region 4 5919294
    [Show full text]
  • A Novel Chromosome 19P13.12 Deletion in a Child with Multiple Congenital Anomalies Daniel R
    RESEARCH ARTICLE A Novel Chromosome 19p13.12 Deletion in a Child With Multiple Congenital Anomalies Daniel R. Jensen,1 Donna M. Martin,2,3 Stephen Gebarski,4 Trilochan Sahoo,5 Ellen K. Brundage,5 A. Craig Chinault,5 Edgar A. Otto,2 Moumita Chaki,2 Friedhelm Hildebrandt,2,3,6 Sau Wai Cheung,5 and Marci M. Lesperance1* 1Division of Pediatric Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, Michigan 2Department of Pediatrics and Communicable Diseases, University of Michigan Health System, Ann Arbor, Michigan 3Department of Human Genetics, University of Michigan Health System, Ann Arbor, Michigan 4Division of Neuroradiology, Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan 5Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 6Howard Hughes Medical Institute, University of Michigan Health System, Ann Arbor, Michigan Received 17 March 2008; Accepted 21 November 2008 We describe a patient with multiple congenital anomalies in- cluding deafness, lacrimal duct stenosis, strabismus, bilateral How to Cite this Article: cervical sinuses, congenital cardiac defects, hypoplasia of the Jensen DR, Martin DM, Gebarski S, Sahoo T, corpus callosum, and hypoplasia of the cerebellar vermis. Muta- Brundage EK, Chinault AC, Otto EA, Chaki M, tion analysis of EYA1, SIX1, and SIX5, genes that underlie Hildebrandt F, Cheung SW, Lesperance MM. otofaciocervical and/or branchio-oto-renal syndrome, was neg- 2009. A novel chromosome 19p13.12 deletion ative. Pathologic diagnosis of the excised cervical sinus tracts was in a child with multiple congenital anomalies. revised on re-examination to heterotopic salivary gland tissue.
    [Show full text]
  • Clinical, Molecular, and Immune Analysis of Dabrafenib-Trametinib
    Supplementary Online Content Chen G, McQuade JL, Panka DJ, et al. Clinical, molecular and immune analysis of dabrafenib-trametinib combination treatment for metastatic melanoma that progressed during BRAF inhibitor monotherapy: a phase 2 clinical trial. JAMA Oncology. Published online April 28, 2016. doi:10.1001/jamaoncol.2016.0509. eMethods. eReferences. eTable 1. Clinical efficacy eTable 2. Adverse events eTable 3. Correlation of baseline patient characteristics with treatment outcomes eTable 4. Patient responses and baseline IHC results eFigure 1. Kaplan-Meier analysis of overall survival eFigure 2. Correlation between IHC and RNAseq results eFigure 3. pPRAS40 expression and PFS eFigure 4. Baseline and treatment-induced changes in immune infiltrates eFigure 5. PD-L1 expression eTable 5. Nonsynonymous mutations detected by WES in baseline tumors This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/30/2021 eMethods Whole exome sequencing Whole exome capture libraries for both tumor and normal samples were constructed using 100ng genomic DNA input and following the protocol as described by Fisher et al.,3 with the following adapter modification: Illumina paired end adapters were replaced with palindromic forked adapters with unique 8 base index sequences embedded within the adapter. In-solution hybrid selection was performed using the Illumina Rapid Capture Exome enrichment kit with 38Mb target territory (29Mb baited). The targeted region includes 98.3% of the intervals in the Refseq exome database. Dual-indexed libraries were pooled into groups of up to 96 samples prior to hybridization.
    [Show full text]
  • Personal Receptor Repertoires: Olfaction As a Model
    Olender et al. BMC Genomics 2012, 13:414 http://www.biomedcentral.com/1471-2164/13/414 RESEARCH ARTICLE Open Access Personal receptor repertoires: olfaction as a model Tsviya Olender1*, Sebastian M Waszak2, Maya Viavant1, Miriam Khen1, Edna Ben-Asher1, Alejandro Reyes3, Noam Nativ1, Charles J Wysocki4, Dongliang Ge5 and Doron Lancet1* Abstract Background: Information on nucleotide diversity along completely sequenced human genomes has increased tremendously over the last few years. This makes it possible to reassess the diversity status of distinct receptor proteins in different human individuals. To this end, we focused on the complete inventory of human olfactory receptor coding regions as a model for personal receptor repertoires. Results: By performing data-mining from public and private sources we scored genetic variations in 413 intact OR loci, for which one or more individuals had an intact open reading frame. Using 1000 Genomes Project haplotypes, we identified a total of 4069 full-length polypeptide variants encoded by these OR loci, average of ~10 per locus, constituting a lower limit for the effective human OR repertoire. Each individual is found to harbor as many as 600 OR allelic variants, ~50% higher than the locus count. Because OR neuronal expression is allelically excluded, this has direct effect on smell perception diversity of the species. We further identified 244 OR segregating pseudogenes (SPGs), loci showing both intact and pseudogene forms in the population, twenty-six of which are annotatively “resurrected” from a pseudogene status in the reference genome. Using a custom SNP microarray we validated 150 SPGs in a cohort of 468 individuals, with every individual genome averaging 36 disrupted sequence variations, 15 in homozygote form.
    [Show full text]
  • OR7C2 (NM 012377) Human Tagged ORF Clone – RC214145
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC214145 OR7C2 (NM_012377) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: OR7C2 (NM_012377) Human Tagged ORF Clone Tag: Myc-DDK Symbol: OR7C2 Synonyms: CIT-HSP-87M17; OR7C3; OR19-18 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC214145 representing NM_012377 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGAAAGAGGAAACCAAACAGAAGTTGGAAACTTTCTCCTCCTGGGATTCGCAGAGGACTCTGACATGC AGCTTCTCCTCCATGGGCTGTTCCTCTCCATGTACCTGGTTACCATCATCGGAAACCTGCTCATCATCCT GACCATCAGTTCAGACTCCCACCTCCACACCCCCATGTACTTCTTCCTCTCCAACCTGTCCTTTGCTGAC ATCTGTTTCACATCCACGACTGTCCCAAAGATGCTGGTGAATATCCAAACACAAAGCAAAATGATCACTT TTGCAGGCTGCCTCACTCAGATATTTTTTTTCATTGCATTTGGATGCCTGGACAATTTGCTCCTGACCAT GACGGCCTATGACCGCTTCGTGGCCATCTGTTACCCCCTGCACTACACGGTCATCATGAACCCCCGGCTC TGTGGACTGCTGGTTCTGGGGTCCTGGTGCATCAGTGTCATGGGTTCCTTGCTTGAGACCTTGACCATTT TGAGGCTGTCCTTCTGCACAAATATGGAAATTCCGCACTTTTTTTGTGATCCTTCCGAAGTCCTGAAGCT GGCCTGTTCTGACACCTTCATCAATAACATCGTGATGTATTTTGTGACCATTGTCCTGGGTGTTTTTCCT CTCTGTGGAATCCTATTCTCTTATTCTCAGATTTTCTCCTCCGTCCTAAGAGTATCTGCCAGAGGCCAGC ACAAAGCCTTTTCCACCTGTGGTTCCCACCTCTCAGTGGTCAGCTTGTTCTATGGCACTGGCCTTGGGGT CTATCTCAGTTCTGCAGTTACACCACCTTCTAGGACAAGTCTGGCAGCCTCGGTGATGTACACCATGGTC ACCCCCATGCTGAACCCCTTCATCTACAGCCTGAGGAACAAGGACATGAAGGGGTCACTGGGGAGACTCC
    [Show full text]
  • OR7C1 (NM 198944) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC216280L4V OR7C1 (NM_198944) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: OR7C1 (NM_198944) Human Tagged ORF Clone Lentiviral Particle Symbol: OR7C1 Synonyms: CIT-HSP-146E8; HSTPCR86P; OR7C4; OR19-5; TPCR86 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) ACCN: NM_198944 ORF Size: 960 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC216280). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_198944.1, NP_945182.1 RefSeq Size: 963 bp RefSeq ORF: 963 bp Locus ID: 26664 UniProt ID: O76099, A0A126GWU6 Protein Families: Transmembrane Protein Pathways: Olfactory transduction MW: 35.5 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 OR7C1 (NM_198944) Human Tagged ORF Clone Lentiviral Particle – RC216280L4V Gene Summary: Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell.
    [Show full text]
  • SUPPLEMENTAL FIGURE LEGEND Supplemental Figure 1. Representative HGA Histology of (A) Greater Than Median, and (B) Less Than
    SUPPLEMENTAL FIGURE LEGEND Supplemental figure 1. Representative HGA histology of (A) greater than median, and (B) less than median tumor infiltration of helper T-cells (CD4; brown), (C) greater than median, and (D) less than median tumor infiltration of cytotoxic T-cells (CD8; red), (E) greater than 75th percentile, and (F) less than 75% percentile tumor infiltration of microglia/macrophages (AIF1; brown). Immunohistochemistry was performed using FFPE tumor sections and with hematoxylin counterstaining (400x magnification). Supplemental table IA. High grade astrocytoma long-term survivor patient details. Sample Survival Dead Age Karnofsky/ Dx detail location of Extent of Therapy received Used in ID (yrs) at Lansky tumor surgery microarray Dx performance study (yrs) score HGA1 17.0 N 34 100 AA pons biopsy radiation and BCNU HGA2 16.5 N 8 80 AA cerebrum GTR carboplatin, etoposide, CCNU, vincristine and radiation HGA3 16.0 N 47 90 GBM 1o cerebrum STR radiation and temozolmide HGA4 11.0 N 45 60 GBM, giant cell cerebrum GTR none HGA5 10.5 N 27 100 GBM 1o, cerebrum GTR radiation, CCNU, irinotecan, and temozolmide epithelioid HGA6 8.5 Y 21 100 RIG cerebellum STR radiation and temozolmide HGA7 8.5 N 2 80 GBM 1o thalamus/ STR cisplatin, vincristine, cytoxan, etoposide, carboplatin, cerebrum thiotepa HGA8 8.5 N 42 100 GBM 2o cerebrum GTR radiation, CCNU, irinotecan and temozolmide HGA9 8.5 N 46 80 GBM 1o cerebrum GTR radiation, CCNU, erlotinib and temozolmide yes HGA10 7.0 N 10 80 GBM 1o thalamus biopsy radiation and temozolmide HGA11 7.0 Y 24
    [Show full text]