Same As Figure 3 but for Mouse Protein-Coding Genes. 80 400 CODING - 40 200 PROTEIN

Total Page:16

File Type:pdf, Size:1020Kb

Same As Figure 3 but for Mouse Protein-Coding Genes. 80 400 CODING - 40 200 PROTEIN 1000 100 10 average normalised counts per kilobase 0 0 1.1 2 3 4 5 7.5 11 gene length (kb) Supplementary Figure 1 | Same as Figure 3 but for mouse protein-coding genes. 80 400 CODING - 40 200 PROTEIN 0 0 40 80 20 40 PSEUDOGENES 0 0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 number of transcript isoforms number of transcript isoforms Supplementary Figure 2 | Olfactory receptors have several isoforms per gene. Barplots of the number of genes with the indicated number of different transcript isoforms. Genes have been split into protein-coding (top) and pseu- dogenes (bottom), and by species (human on the right, mouse on the left). A Ifi47 Olfr56 BC147437.1 BC141219.1 AK133471.1 AK53352.1, BB664859.1 162 5 7 2 2 172 17 B Olfr115 Olfr116 AA543264.1 279 3 Gm18213 8 28 26 4 21 3 3 174 15 14 C Olfr139 Olfr399 CB271224.1 29 9 5 15 2 10 6 23 Supplementary Figure 3 | Same as Figure 4 but for the additional mouse ORs that share a 5’ UTR with a neighbour- ing gene. mRNA, EST or PacBio clones supporting splice junctions between the two genes are indicated above the corresponding transcript. A OR7C1 OR7A5 DA117551.1 DB071724.1, HY003914.1 DA444957.1 84 239 14 5 6 8 20 4 5 3 9 3 2 3 168 18 2 67 4 54 177 72 129 2 3 2 8 25 36 31 B OR5V1 OR11A1 AA936177.1 OR12D3 13 5 2 62 148 4 4 3 23 2 9 2 41 221 2 2 19 2 73 2 C HBE1 OR51B5 BC022184.1 BE789678.1 BE074228.1 Pacbio_capture_seq_hsK562 BM450021.1 BG496706.1, BF699214.1 7 3 2 7 4 2 4 3 Supplementary Figure 4 | Same as Figure 4 but for the additional human ORs that share a 5’ UTR with a neighbour- ing gene. mRNA, EST or PacBio clones supporting splice junctions between the two genes are indicated above the corresponding transcript. Olfr680-ps1 Olfr681 Olfr682-ps1 64 50 CAACAAAGTAT--AAGAAGAGT reference 110 2 7 CAACAAAGTAT--AAGAAGAGT BALB/cJ 18 CAACAAAGTAT--AAGAAGAGT CBA/J 3 26 CAACAAAGTATAGAAGAAGAGT BUB/BnJ CAACAAAGTATAGAAGAAGAGT CAST/EiJ CAACAAAGTATAGAAGAAGAGT NOD/ShiLtJ CAACAGAGTATAGAAGAAGAGT SPRET/EiJ gtc atc ccc aag gt ag gtc ctg ctt atc Olfr682-ps1 V I P K V L L I gtc atc ctc aag gt ag gtc ctg ctt atc Olfr680-ps1 V I L K V L L I gtc att cct aag gt ag gtc ctg ctc atc Dog V I P K V L L I gtc atc cct aag gt ag gtc ctg ttc atc Cow V I P K V L F I gtc atc cct aag gt ag gtc ctg ctc atc Sheep V I P K V L L I 73 V I L C L T V I P K V L L I F W F N M K 93 Olfr682-ps1 73 V I L C L T V I L K V L L I F W F N M K 93 Olfr680-ps1 74 I I L C L T V I P K V L L I F W F N M K 94 Dog 74 V I L C L T V I P K V L F I F W F D M K 94 Cow 74 V I L C L T V I P K V L L I F W F D M K 94 Sheep Supplementary Figure 5 | Additional example of a split OR gene. On chromosome 7, Olfr682-ps1 was annotated as a pseudogene, but we identified an open reading frame (ORF) spanning two exons that codes for a 311 aa protein. This gene is a polymorphic pseudogene that, in the reference genome, contains a frameshift in the C-terminal domain (purple transcript); however, several mouse strains contain a 2bp indel at position 105,126,541 that restores the correct frame. The splice junction and protein sequence are conserved in several mammals, including dog, cow and sheep. Olfr682-ps1 has a close paralogue, Olfr680-ps1, which shares 97% identity at the protein level. Whereas Olfr680-ps1 lacks transcriptional evidence, we used the conservation with Olfr682-ps1 and other mammals to anno- tate a full-length split transcript structure..
Recommended publications
  • Genetic Variation Across the Human Olfactory Receptor Repertoire Alters Odor Perception
    bioRxiv preprint doi: https://doi.org/10.1101/212431; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genetic variation across the human olfactory receptor repertoire alters odor perception Casey Trimmer1,*, Andreas Keller2, Nicolle R. Murphy1, Lindsey L. Snyder1, Jason R. Willer3, Maira Nagai4,5, Nicholas Katsanis3, Leslie B. Vosshall2,6,7, Hiroaki Matsunami4,8, and Joel D. Mainland1,9 1Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA 2Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, USA 3Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA 4Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA 5Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil 6Howard Hughes Medical Institute, New York, New York, USA 7Kavli Neural Systems Institute, New York, New York, USA 8Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, USA 9Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA *[email protected] ABSTRACT The human olfactory receptor repertoire is characterized by an abundance of genetic variation that affects receptor response, but the perceptual effects of this variation are unclear. To address this issue, we sequenced the OR repertoire in 332 individuals and examined the relationship between genetic variation and 276 olfactory phenotypes, including the perceived intensity and pleasantness of 68 odorants at two concentrations, detection thresholds of three odorants, and general olfactory acuity.
    [Show full text]
  • Technologies Available for Licensing
    Technologies Available for Licensing Office of Innovation and Industry Alliances www.moffittip.com IMMUNOTHERAPIES CD40: CD40 Agonists for Improved ex vivo TIL Manufacturing 21MA018N T cell: T cells expressing anti-CD3 antibodies autoactivate and decrease expression of T cell receptors to treat GVHD, or make T cells suitable for off-the- 21MA013N shelf treatment of allogeneic subjects ITAM: Human ITAM Mutated Variants For Better Intracellular Signaling Domains 21MA008N For Gamma-Delta CAR T-Cell Activation ESR1: Cancer Vaccine Using Novel ESR1 Derived Peptides For Neoantigen 20MB062N Therapy NOTCH: Single-domain antibodies (nanobodies) targeting the notch ligand DLL4 to 20MB053N Disrupt the interaction of DLL4 and Notch1 for GVHD CD33 CD123 NKG2DL: Bispecific Gamma Delta CAR-T Cells that Recognize 20MB050N CD33, CD123 and NKG2D Ligands for the Treatment of Acute Myeloid Leukemia OR2H1 or OR5V1: Olfactory Receptor Targeting Chimeric Antigen Receptor 20MA027 Expressing T cell (CAR-T) for Solid Tumors HER-2: Combination Therapy of a HER2-DC1 Dendritic Cell Cancer Vaccine and a 20MA016N Probiotic TILs: 12 Chemokine Gene Expression Signature to Increase the Efficacy of 20MA013N Manufacturing Tumor Infiltrating Lymphocytes PERK, IRE1: Method of Enhancing Immunotherapy Using ER Stress Pathway 20MA005 Inhibitors PGC-1α: CAR T Cells Engineered to Express PGC-1 alpha Demonstrate Enhanced 19MB066 Metabolic Fitness PGC-1α: N-Terminal Mutant PGC-1α Overexpression Enhances Metabolic Fitness 19MB066T2 Reducing CAR-T Exhaustion while Maintaining Proliferative Capacity TILs: Fucose increases tumor cell HLA-DRB1 expression increasing CD4+ T-cell 19MB049N activation with synergistic tumor killing activity with anti-PD1 checkpoint inhibitors Antibodies: Fully Human Anti-BDNF Antibodies 19MB048N Antibodies: Fully Human Anti-TSPAN7 Antibodies 19MB047N T-Bet: T-Bet Transcription Factor Armed CAR-T Cells Maintain Memory 19MA035N Phenotypes and Rescue CD4 Cells Leading to Increased Persistence Haskell Adler PhD MBA CLP Charlie Shaw PhD Praba Soundararajan PhD Sr.
    [Show full text]
  • WO 2019/068007 Al Figure 2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/068007 Al 04 April 2019 (04.04.2019) W 1P O PCT (51) International Patent Classification: (72) Inventors; and C12N 15/10 (2006.01) C07K 16/28 (2006.01) (71) Applicants: GROSS, Gideon [EVIL]; IE-1-5 Address C12N 5/10 (2006.0 1) C12Q 1/6809 (20 18.0 1) M.P. Korazim, 1292200 Moshav Almagor (IL). GIBSON, C07K 14/705 (2006.01) A61P 35/00 (2006.01) Will [US/US]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., C07K 14/725 (2006.01) P.O. Box 4044, 7403635 Ness Ziona (TL). DAHARY, Dvir [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (21) International Application Number: Box 4044, 7403635 Ness Ziona (IL). BEIMAN, Merav PCT/US2018/053583 [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (22) International Filing Date: Box 4044, 7403635 Ness Ziona (E.). 28 September 2018 (28.09.2018) (74) Agent: MACDOUGALL, Christina, A. et al; Morgan, (25) Filing Language: English Lewis & Bockius LLP, One Market, Spear Tower, SanFran- cisco, CA 94105 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 62/564,454 28 September 2017 (28.09.2017) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 62/649,429 28 March 2018 (28.03.2018) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (71) Applicant: IMMP ACT-BIO LTD.
    [Show full text]
  • Sean Raspet – Molecules
    1. Commercial name: Fructaplex© IUPAC Name: 2-(3,3-dimethylcyclohexyl)-2,5,5-trimethyl-1,3-dioxane SMILES: CC1(C)CCCC(C1)C2(C)OCC(C)(C)CO2 Molecular weight: 240.39 g/mol Volume (cubic Angstroems): 258.88 Atoms number (non-hydrogen): 17 miLogP: 4.43 Structure: Biological Properties: Predicted Druglikenessi: GPCR ligand -0.23 Ion channel modulator -0.03 Kinase inhibitor -0.6 Nuclear receptor ligand 0.15 Protease inhibitor -0.28 Enzyme inhibitor 0.15 Commercial name: Fructaplex© IUPAC Name: 2-(3,3-dimethylcyclohexyl)-2,5,5-trimethyl-1,3-dioxane SMILES: CC1(C)CCCC(C1)C2(C)OCC(C)(C)CO2 Predicted Olfactory Receptor Activityii: OR2L13 83.715% OR1G1 82.761% OR10J5 80.569% OR2W1 78.180% OR7A2 77.696% 2. Commercial name: Sylvoxime© IUPAC Name: N-[4-(1-ethoxyethenyl)-3,3,5,5tetramethylcyclohexylidene]hydroxylamine SMILES: CCOC(=C)C1C(C)(C)CC(CC1(C)C)=NO Molecular weight: 239.36 Volume (cubic Angstroems): 252.83 Atoms number (non-hydrogen): 17 miLogP: 4.33 Structure: Biological Properties: Predicted Druglikeness: GPCR ligand -0.6 Ion channel modulator -0.41 Kinase inhibitor -0.93 Nuclear receptor ligand -0.17 Protease inhibitor -0.39 Enzyme inhibitor 0.01 Commercial name: Sylvoxime© IUPAC Name: N-[4-(1-ethoxyethenyl)-3,3,5,5tetramethylcyclohexylidene]hydroxylamine SMILES: CCOC(=C)C1C(C)(C)CC(CC1(C)C)=NO Predicted Olfactory Receptor Activity: OR52D1 71.900% OR1G1 70.394% 0R52I2 70.392% OR52I1 70.390% OR2Y1 70.378% 3. Commercial name: Hyperflor© IUPAC Name: 2-benzyl-1,3-dioxan-5-one SMILES: O=C1COC(CC2=CC=CC=C2)OC1 Molecular weight: 192.21 g/mol Volume
    [Show full text]
  • Functional Variability in the Human Odorant Receptor Repertoire
    ART ic LE s The missense of smell: functional variability in the human odorant receptor repertoire Joel D Mainland1–3, Andreas Keller4, Yun R Li2,6, Ting Zhou2, Casey Trimmer1, Lindsey L Snyder1, Andrew H Moberly1,3, Kaylin A Adipietro2, Wen Ling L Liu2, Hanyi Zhuang2,6, Senmiao Zhan2, Somin S Lee2,6, Abigail Lin2 & Hiroaki Matsunami2,5 Humans have ~400 intact odorant receptors, but each individual has a unique set of genetic variations that lead to variation in olfactory perception. We used a heterologous assay to determine how often genetic polymorphisms in odorant receptors alter receptor function. We identified agonists for 18 odorant receptors and found that 63% of the odorant receptors we examined had polymorphisms that altered in vitro function. On average, two individuals have functional differences at over 30% of their odorant receptor alleles. To show that these in vitro results are relevant to olfactory perception, we verified that variations in OR10G4 genotype explain over 15% of the observed variation in perceived intensity and over 10% of the observed variation in perceived valence for the high-affinity in vitro agonist guaiacol but do not explain phenotype variation for the lower-affinity agonists vanillin and ethyl vanillin. The human genome contains ~800 odorant receptor genes that have RESULTS been shown to exhibit high genetic variability1–3. In addition, humans High-throughput screening of human odorant receptors exhibit considerable variation in the perception of odorants4,5, and To identify agonists for a variety of odorant receptors, we cloned a variation in an odorant receptor predicts perception in four cases: library of 511 human odorant receptor genes for a high-throughput loss of function in OR11H7P, OR2J3, OR5A1 and OR7D4 leads to heterologous screen.
    [Show full text]
  • Technologies Available for Licensing Office of Innovation and Industry Alliances
    Technologies Available for Licensing Office of Innovation and Industry Alliances www.moffittip.com IMMUNOTHERAPIES CLEC12A: Novel CLEC12A scFv Targeting CAR-T cells for Acute Myeloid Leukemia 21MB064N Immunotherapy CD40: CD40 Agonists for Improved ex vivo TIL Manufacturing 21MA018N T cell: T cells expressing anti-CD3 antibodies autoactivate and decrease expression of T cell 21MA013N receptors to treat GVHD, or make T cells suitable for off-the-shelf treatment of allogeneic subjects ITAM: Human ITAM Mutated Variants For Better Intracellular Signaling Domains For Gamma-Delta 21MA008N CAR T-Cell Activation ESR1: Cancer Vaccine Using Novel ESR1 Derived Peptides For Neoantigen Therapy 20MB062N NOTCH: Single-domain antibodies (nanobodies) targeting the notch ligand DLL4 to Disrupt the 20MB053N interaction of DLL4 and Notch1 for GVHD CD33 CD123 NKG2DL: Bispecific Gamma Delta CAR-T Cells that Recognize CD33, CD123 and 20MB050N NKG2D Ligands for the Treatment of Acute Myeloid Leukemia OR2H1 or OR5V1: Olfactory Receptor Targeting Chimeric Antigen Receptor Expressing T cell 20MA027 (CAR-T) for Solid Tumors CD33 CD123: Novel Bispecific CD33 CD123 scFv CAR-T Cells for Acute Myeloid Leukemia 20MA024 Immunotherapy HER-2: Combination Therapy of a HER2-DC1 Dendritic Cell Cancer Vaccine and a Probiotic 20MA016N TILs: 12 Chemokine Gene Expression Signature to Increase the Efficacy of Manufacturing Tumor 20MA013N Infiltrating Lymphocytes PERK, IRE1: Method of Enhancing Immunotherapy Using ER Stress Pathway Inhibitors 20MA005 PGC-1α: CAR T Cells Engineered to Express PGC-1 alpha Demonstrate Enhanced Metabolic 19MB066 Fitness PGC-1α: N-Terminal Mutant PGC-1α Overexpression Enhances Metabolic Fitness Reducing CAR- 19MB066T2 T Exhaustion while Maintaining Proliferative Capacity TILs: Fucose increases tumor cell HLA-DRB1 expression increasing CD4+ T-cell activation with 19MB049N synergistic tumor killing activity with anti-PD1 checkpoint inhibitors Antibodies: Fully Human Anti-BDNF Antibodies 19MB048N Haskell Adler PhD MBA CLP Charlie Shaw PhD Praba Soundararajan PhD Sr.
    [Show full text]
  • Human Olfactory Receptors
    Human Olfactory Receptors: A journey from cell engineering for efficient in vitro functional assays to effective antagonists in human sensory assay Huysseune Sandra, Philippeau Magali, Moreau Cédric, Veithen Alex, Chatelain Pierre, Quesnel Yannick. ChemCom S.A., Route de Lennik 802, 1070 Anderlecht, Belgium. Cell lines Introduction: ChemCom's Entry ORs Literature data HEK293T HANA3 proprietary Many odorant compounds are perceived as unpleasant. They can be present in different contexts such as body-, home-, factory-, material-, or fabric-emitted 1 OR56A1 Adipietro et al., 2012 odors, so that humans are daily exposed to this olfactory pollution. In addition, odorant compounds can also taint food or beverages. Malodor and off-note 2 OR10J5 Saito et al., 2009 counteraction is a daily challenge for many different industries. 3 ORX116 - The first step of the odor perception corresponds to the interaction of olfactory receptors (ORs) with odorant molecules. Therefore, a selective inhibition of the 4 ORX069 - ORs by weakly odorant or odorless antagonists represents an innovative solution to malodor issues. The identification of such odor blockers requires an 5 OR10H5 - efficient technological platform to first fish out the receptors that interact with a malodor of interest and second, to screen libraries of potential antagonists of 6 OR8B3 Mainland et al., 2013 7 OR6P1 Mainland et al., 2013 these ORs. 8 ORX074B - 9 ORX126 - Materials and Methods: 10 ORX189 - 11 ORX081 - In vitro functional assay 12 ORX213 - Dilution-response analysis were performed in HEK293T, HANA3 and HEK293T-hRTP1S/hRTP2 cells using the CRE-luciferase reporter assay system. Briefly, each 13 OR1D2 Spehr et al., 2003 cell plated one day before was transfected with deorphanized ORs (identified at Chemcom S.A.) or empty vector plasmids using TransIT®-LT1 (Mirus) 14 OR7C1 Mainland et al., 2013 according to the manufacturer’s protocol.
    [Show full text]
  • A Systematic Genome-Wide Association Analysis for Inflammatory Bowel Diseases (IBD)
    A systematic genome-wide association analysis for inflammatory bowel diseases (IBD) Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Dipl.-Biol. ANDRE FRANKE Kiel, im September 2006 Referent: Prof. Dr. Dr. h.c. Thomas C.G. Bosch Koreferent: Prof. Dr. Stefan Schreiber Tag der mündlichen Prüfung: Zum Druck genehmigt: der Dekan “After great pain a formal feeling comes.” (Emily Dickinson) To my wife and family ii Table of contents Abbreviations, units, symbols, and acronyms . vi List of figures . xiii List of tables . .xv 1 Introduction . .1 1.1 Inflammatory bowel diseases, a complex disorder . 1 1.1.1 Pathogenesis and pathophysiology. .2 1.2 Genetics basis of inflammatory bowel diseases . 6 1.2.1 Genetic evidence from family and twin studies . .6 1.2.2 Single nucleotide polymorphisms (SNPs) . .7 1.2.3 Linkage studies . .8 1.2.4 Association studies . 10 1.2.5 Known susceptibility genes . 12 1.2.5.1 CARD15. .12 1.2.5.2 CARD4. .15 1.2.5.3 TNF-α . .15 1.2.5.4 5q31 haplotype . .16 1.2.5.5 DLG5 . .17 1.2.5.6 TNFSF15 . .18 1.2.5.7 HLA/MHC on chromosome 6 . .19 1.2.5.8 Other proposed IBD susceptibility genes . .20 1.2.6 Animal models. 21 1.3 Aims of this study . 23 2 Methods . .24 2.1 Laboratory information management system (LIMS) . 24 2.2 Recruitment. 25 2.3 Sample preparation. 27 2.3.1 DNA extraction from blood. 27 2.3.2 Plate design .
    [Show full text]
  • Clinical, Molecular, and Immune Analysis of Dabrafenib-Trametinib
    Supplementary Online Content Chen G, McQuade JL, Panka DJ, et al. Clinical, molecular and immune analysis of dabrafenib-trametinib combination treatment for metastatic melanoma that progressed during BRAF inhibitor monotherapy: a phase 2 clinical trial. JAMA Oncology. Published online April 28, 2016. doi:10.1001/jamaoncol.2016.0509. eMethods. eReferences. eTable 1. Clinical efficacy eTable 2. Adverse events eTable 3. Correlation of baseline patient characteristics with treatment outcomes eTable 4. Patient responses and baseline IHC results eFigure 1. Kaplan-Meier analysis of overall survival eFigure 2. Correlation between IHC and RNAseq results eFigure 3. pPRAS40 expression and PFS eFigure 4. Baseline and treatment-induced changes in immune infiltrates eFigure 5. PD-L1 expression eTable 5. Nonsynonymous mutations detected by WES in baseline tumors This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/30/2021 eMethods Whole exome sequencing Whole exome capture libraries for both tumor and normal samples were constructed using 100ng genomic DNA input and following the protocol as described by Fisher et al.,3 with the following adapter modification: Illumina paired end adapters were replaced with palindromic forked adapters with unique 8 base index sequences embedded within the adapter. In-solution hybrid selection was performed using the Illumina Rapid Capture Exome enrichment kit with 38Mb target territory (29Mb baited). The targeted region includes 98.3% of the intervals in the Refseq exome database. Dual-indexed libraries were pooled into groups of up to 96 samples prior to hybridization.
    [Show full text]
  • OR7C1 (NM 198944) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC216280L4V OR7C1 (NM_198944) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: OR7C1 (NM_198944) Human Tagged ORF Clone Lentiviral Particle Symbol: OR7C1 Synonyms: CIT-HSP-146E8; HSTPCR86P; OR7C4; OR19-5; TPCR86 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) ACCN: NM_198944 ORF Size: 960 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC216280). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_198944.1, NP_945182.1 RefSeq Size: 963 bp RefSeq ORF: 963 bp Locus ID: 26664 UniProt ID: O76099, A0A126GWU6 Protein Families: Transmembrane Protein Pathways: Olfactory transduction MW: 35.5 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 OR7C1 (NM_198944) Human Tagged ORF Clone Lentiviral Particle – RC216280L4V Gene Summary: Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell.
    [Show full text]
  • The Hypothalamus As a Hub for SARS-Cov-2 Brain Infection and Pathogenesis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.139329; this version posted June 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The hypothalamus as a hub for SARS-CoV-2 brain infection and pathogenesis Sreekala Nampoothiri1,2#, Florent Sauve1,2#, Gaëtan Ternier1,2ƒ, Daniela Fernandois1,2 ƒ, Caio Coelho1,2, Monica ImBernon1,2, Eleonora Deligia1,2, Romain PerBet1, Vincent Florent1,2,3, Marc Baroncini1,2, Florence Pasquier1,4, François Trottein5, Claude-Alain Maurage1,2, Virginie Mattot1,2‡, Paolo GiacoBini1,2‡, S. Rasika1,2‡*, Vincent Prevot1,2‡* 1 Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, DistAlz, UMR-S 1172, Lille, France 2 LaBoratorY of Development and PlasticitY of the Neuroendocrine Brain, FHU 1000 daYs for health, EGID, School of Medicine, Lille, France 3 Nutrition, Arras General Hospital, Arras, France 4 Centre mémoire ressources et recherche, CHU Lille, LiCEND, Lille, France 5 Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and ImmunitY of Lille (CIIL), Lille, France. # and ƒ These authors contriButed equallY to this work. ‡ These authors directed this work *Correspondence to: [email protected] and [email protected] Short title: Covid-19: the hypothalamic hypothesis 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.139329; this version posted June 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Analysis of Single-Cell Transcriptomes Links Enrichment of Olfactory Receptors with Cancer Cell Differentiation Status and Prognosis
    ARTICLE https://doi.org/10.1038/s42003-020-01232-5 OPEN Analysis of single-cell transcriptomes links enrichment of olfactory receptors with cancer cell differentiation status and prognosis Siddhant Kalra1,7, Aayushi Mittal1,7, Krishan Gupta 1,2, Vrinda Singhal1, Anku Gupta2, Tripti Mishra3, ✉ ✉ 1234567890():,; Srivatsava Naidu4, Debarka Sengupta 1,2,5,6 & Gaurav Ahuja 1 Ectopically expressed olfactory receptors (ORs) have been linked with multiple clinically- relevant physiological processes. Previously used tissue-level expression estimation largely shadowed the potential role of ORs due to their overall low expression levels. Even after the introduction of the single-cell transcriptomics, a comprehensive delineation of expression dynamics of ORs in tumors remained unexplored. Our targeted investigation into single malignant cells revealed a complex landscape of combinatorial OR expression events. We observed differentiation-dependent decline in expressed OR counts per cell as well as their expression intensities in malignant cells. Further, we constructed expression signatures based on a large spectrum of ORs and tracked their enrichment in bulk expression profiles of tumor samples from The Cancer Genome Atlas (TCGA). TCGA tumor samples stratified based on OR-centric signatures exhibited divergent survival probabilities. In summary, our compre- hensive analysis positions ORs at the cross-road of tumor cell differentiation status and cancer prognosis. 1 Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India. 2 Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India. 3 Pathfinder Research and Training Foundation, 30/7 and 8, Knowledge Park III, Greater Noida, Uttar Pradesh 201308, India.
    [Show full text]