Compressible Flow

Total Page:16

File Type:pdf, Size:1020Kb

Compressible Flow Compressible Flow Compressible FLow We know that fluids are classified as Incompressible and Compressible fluids. Incompressible fluids do not undergo significant changes in density as they flow. In general, liquids are incompressible;water being an excellent example. In contrast compressible fluids do undergo density changes. Gases are generally compressible;air being the most common compressible fluid we can find. Compressibility of gases leads to many interesting features such as shocks, which are absent for incompressible fluids. Gasdynamics is the discipline that studies the flow of compressible fluids and forms an important branch of Fluid Mechanics. In this book we give a broad introduction to the basics of compressible fluid flow. Figure 1.1: Classification of Fluids Though gases are compressible, the density changes they undergo at low speeds may not be considerable. Take air for instance. Fig. 1.2 shows the density changes plotted as a function of Mach Number. Density change is represented as where is the air density at zero speed (i.e., Zero Mach Number). file:///E|/Fluid%20Mechanics/Compressible%20Flow.htm (1 of 67)2/8/2007 1:12:29 AM Compressible Flow Figure 1.2: Density change as a function of Mach Number We observe that for Mach numbers up to 0.3, density changes are within about 5% of . So for all practical purposes one can ignore density changes in this region. But as the Mach Number increases beyond 0.3, changes do become appreciable and at a Mach Number of 1, it is 36.5% . it is interesting to note that at a Mach Number of 2, the density changes are as high as 77%. It follows that air flow can be considered incompressible for Mach Numbers below 0.3. Another important difference between incompressible and compressible flows is due to temperature changes. For an incompressible flow temperature is generally constant. But in a compressible flow one will see a significant change in temperature and an exchange between the modes of energy. Consider a flow at a Mach Number of 2. It has two important modes of energy-Kinetic and Internal. At this Mach Number, these are of magnitudes 2.3 x 105 Joules and 2 x 105 Joules. You will recognise that these are of the same order of magnitude. This is in sharp contrast to incompressible flows where only the kinetic energy is important. In addition when the Mach 2 flow is brought to rest as happens at a stagnation point, all the kinetic energy gets converted into internal energy according to the principle of conservation of energy. Consequently the temperature increases at the stagnation point. When the flow Mach number is 2 at a temperature of 200C, the stagnation temperature is as high as 260 0C as indicated in Fig. 1.3. file:///E|/Fluid%20Mechanics/Compressible%20Flow.htm (2 of 67)2/8/2007 1:12:29 AM Compressible Flow Figure 1.3: stagnation Temperature. A direct consequence of these facts is that while calculating compressible flows energy equation has to be considered (not done for incompressible flows). Further, to handle the exchange in modes of energy one has to understand the thermodynamics of the flow. Accordingly we begin with a review of the concepts in thermodynamics. Thermodynamics is a vast subject. Many great books have been written describing the concepts in it and their application. It is not the intention here to give a detailed treatise than it is to review the basic concepts which hep us understand gasdynamics. Reader is referred to exclusive books on thermodynamics for details. System, Surroundings and Control Volume Concepts in Thermodynamics are developed with the help of systems and control volumes. We define a System as an entity of fixed mass and concentrate on what happens to this fixed mass. Its boundary is not fixed and is allowed to vary depending upon the changes taking place within it. Consider the system sketched, namely water in a container placed on a heater. We are allowed to chose the system as is convenient to us. We could have system as defined in (a) or (b) or (c) as in Fig. 1.4. Everything outside of a system becomes the Surroundings. Properties of the system are usually measured by noting the changes it makes in the surrounding. For example, temperature of water in system (a) is measured by a the raise of the mercury column in a thermometer which is not a part of the Figure 1.4: Definition of a System system. Sometimes the system and the surroundings are together called the Universe. Control Volume should now be familiar to you. Most of Integral Approach to Fluid Dynamics exploits file:///E|/Fluid%20Mechanics/Compressible%20Flow.htm (3 of 67)2/8/2007 1:12:29 AM Compressible Flow control volumes, which can be defined as a window in a flow with a fixed boundary. Mass, momentum and energy can cross its boundary. Density, pressure, temperature, etc become properties of a given system. Note that these are all measurable quantities. In addition, these properties also a characterise a system. To define the state of a system (Fig. 1.5) uniquely we need to specify two properties say (p,T), (p, ), (T,s) etc., where p, T, , s are pressure, temperature, density and specific entropy respectively. Figure 1.5: State of a System Properties can be Extensive or Intensive. Extensive properties depend on the mass of the system. On the other hand, Intensive properties are independent of the mass. Volume , , Energy, E, Entropy, S, Enthalpy, H are Extensive properties. Corresponding intensive properties are Specific Volume, v, Specific Energy, e, Specific Entropy, s, and Specific Enthalpy, h, and are obtained by considering extensive properties per unit mass. In other words, (1.1) Laws of Thermodynamics Thermodynamics centers around a few laws. We will consider them briefly so that the concepts in gasdynamics can be easily developed. Zeroth Law of Thermodynamics This laws helps define Temperature. It states - "Two systems which are in thermal equilibrium with a file:///E|/Fluid%20Mechanics/Compressible%20Flow.htm (4 of 67)2/8/2007 1:12:29 AM Compressible Flow third system are themselves in thermal equilibrium." Figure 1.6: Zeroth Law of Thermodynamics When in thermal equilibrium, we say that the two systems are at the same temperature. In the figure 1.6, system A and Bare independently in equilibrium with system C. It follows that Aand B are themselves in thermal equilibrium and they are at the same temperature. First Law of Thermodynamics The first law of Thermodynamics is a statement of the principle of conservation of energy. It is simply stated as "Energy of a system and surroundings is conserved." Consider a system S. If one adds dq amount of heat per unit mass into the system and the work done by the system is dw per unit mass we have the change in internal energy of the system, du given by, du = dq - dw (1.2) where u is Internal Energy. Bringing in Specific Enthalpy defined as (1.3) the statement for the first law can also be written as dh = dq + v.dp (1.4) While writing Eqn.1.4 we have included only one form of energy, namely, internal. Other forms such as the kinetic energy have been ignored. Of course, it is possible to account for all the forms of energy. Second Law of Thermodynamics file:///E|/Fluid%20Mechanics/Compressible%20Flow.htm (5 of 67)2/8/2007 1:12:29 AM Compressible Flow Second Law of Thermodynamics has been a subject of extensive debate and explanation. Its realm ranges from physics, chemistry to biology, life and even philosophy. There are numerous websites and books which discuss these topics. They form an exciting reading in their own right. Our application however is restricted to gasdynamics. The first law is just a statement that energy is conserved during a process. (The term Process stands for the mechanism which changes the state of a system). It does not "worry" about the direction of the process whereas the second law does. It determines the direction of a process. In addition it involves another property - Entropy. Figure 1.7: Second Law of Thermodynamics There are numerous statements of the Second Law. Consider a Reversible Process. Suppose a system at state A undergoes changes, say by an addition of heat Q, and attains state B. While doing so the surroundings change from A' to B'. Let us try to bring the state of the system back to A by removing an amount of heat equal to Q. In doing so if we can bring the surroundings also back to state A' then the process is said to be reversible. This is possible only under ideal conditions. In any real process there is friction which dissipates heat. Consequently it is not possible to bring the system back to state A and at the same time, surroundings back to A'. Assuming the process to be reversible the second law defines entropy such that (1.5) where s is Specific Entropy. For small changes, the above equation is written as file:///E|/Fluid%20Mechanics/Compressible%20Flow.htm (6 of 67)2/8/2007 1:12:29 AM Compressible Flow (1.6) Generalising the equation 1.6, we have (1.7) where an '=' sign is used for reversible processes and > is used for ireversibe processes. Thus with any natural process, entropy of the system and universe increases. In the event the process is reversible entropy remains constant. Such a process is called an Isentropic process. Perfect Gas Law It is well known that a perfect gas obeys (1.8) where R is the Gas constant.
Recommended publications
  • Che 253M Experiment No. 2 COMPRESSIBLE GAS FLOW
    Rev. 8/15 AD/GW ChE 253M Experiment No. 2 COMPRESSIBLE GAS FLOW The objective of this experiment is to familiarize the student with methods for measurement of compressible gas flow and to study gas flow under subsonic and supersonic flow conditions. The experiment is divided into three distinct parts: (1) Calibration and determination of the critical pressure ratio for a critical flow nozzle under supersonic flow conditions (2) Calculation of the discharge coefficient and Reynolds number for an orifice under subsonic (non- choked) flow conditions and (3) Determination of the orifice constants and mass discharge from a pressurized tank in a dynamic bleed down experiment under (choked) flow conditions. The experimental set up consists of a 100 psig air source branched into two manifolds: the first used for parts (1) and (2) and the second for part (3). The first manifold contains a critical flow nozzle, a NIST-calibrated in-line digital mass flow meter, and an orifice meter, all connected in series with copper piping. The second manifold contains a strain-gauge pressure transducer and a stainless steel tank, which can be pressurized and subsequently bled via a number of attached orifices. A number of NIST-calibrated digital hand held manometers are also used for measuring pressure in all 3 parts of this experiment. Assorted pressure regulators, manual valves, and pressure gauges are present on both manifolds and you are expected to familiarize yourself with the process flow, and know how to operate them to carry out the experiment. A process flow diagram plus handouts outlining the theory of operation of these devices are attached.
    [Show full text]
  • Laws of Similarity in Fluid Mechanics 21
    Laws of similarity in fluid mechanics B. Weigand1 & V. Simon2 1Institut für Thermodynamik der Luft- und Raumfahrt (ITLR), Universität Stuttgart, Germany. 2Isringhausen GmbH & Co KG, Lemgo, Germany. Abstract All processes, in nature as well as in technical systems, can be described by fundamental equations—the conservation equations. These equations can be derived using conservation princi- ples and have to be solved for the situation under consideration. This can be done without explicitly investigating the dimensions of the quantities involved. However, an important consideration in all equations used in fluid mechanics and thermodynamics is dimensional homogeneity. One can use the idea of dimensional consistency in order to group variables together into dimensionless parameters which are less numerous than the original variables. This method is known as dimen- sional analysis. This paper starts with a discussion on dimensions and about the pi theorem of Buckingham. This theorem relates the number of quantities with dimensions to the number of dimensionless groups needed to describe a situation. After establishing this basic relationship between quantities with dimensions and dimensionless groups, the conservation equations for processes in fluid mechanics (Cauchy and Navier–Stokes equations, continuity equation, energy equation) are explained. By non-dimensionalizing these equations, certain dimensionless groups appear (e.g. Reynolds number, Froude number, Grashof number, Weber number, Prandtl number). The physical significance and importance of these groups are explained and the simplifications of the underlying equations for large or small dimensionless parameters are described. Finally, some examples for selected processes in nature and engineering are given to illustrate the method. 1 Introduction If we compare a small leaf with a large one, or a child with its parents, we have the feeling that a ‘similarity’ of some sort exists.
    [Show full text]
  • Aerodynamics Material - Taylor & Francis
    CopyrightAerodynamics material - Taylor & Francis ______________________________________________________________________ 257 Aerodynamics Symbol List Symbol Definition Units a speed of sound ⁄ a speed of sound at sea level ⁄ A area aspect ratio ‐‐‐‐‐‐‐‐ b wing span c chord length c Copyrightmean aerodynamic material chord- Taylor & Francis specific heat at constant pressure of air · root chord tip chord specific heat at constant volume of air · / quarter chord total drag coefficient ‐‐‐‐‐‐‐‐ , induced drag coefficient ‐‐‐‐‐‐‐‐ , parasite drag coefficient ‐‐‐‐‐‐‐‐ , wave drag coefficient ‐‐‐‐‐‐‐‐ local skin friction coefficient ‐‐‐‐‐‐‐‐ lift coefficient ‐‐‐‐‐‐‐‐ , compressible lift coefficient ‐‐‐‐‐‐‐‐ compressible moment ‐‐‐‐‐‐‐‐ , coefficient , pitching moment coefficient ‐‐‐‐‐‐‐‐ , rolling moment coefficient ‐‐‐‐‐‐‐‐ , yawing moment coefficient ‐‐‐‐‐‐‐‐ ______________________________________________________________________ 258 Aerodynamics Aerodynamics Symbol List (cont.) Symbol Definition Units pressure coefficient ‐‐‐‐‐‐‐‐ compressible pressure ‐‐‐‐‐‐‐‐ , coefficient , critical pressure coefficient ‐‐‐‐‐‐‐‐ , supersonic pressure coefficient ‐‐‐‐‐‐‐‐ D total drag induced drag Copyright material - Taylor & Francis parasite drag e span efficiency factor ‐‐‐‐‐‐‐‐ L lift pitching moment · rolling moment · yawing moment · M mach number ‐‐‐‐‐‐‐‐ critical mach number ‐‐‐‐‐‐‐‐ free stream mach number ‐‐‐‐‐‐‐‐ P static pressure ⁄ total pressure ⁄ free stream pressure ⁄ q dynamic pressure ⁄ R
    [Show full text]
  • A Semi-Hydrostatic Theory of Gravity-Dominated Compressible Flow
    Generated using version 3.2 of the official AMS LATEX template 1 A semi-hydrostatic theory of gravity-dominated compressible flow 2 Thomas Dubos ∗ IPSL-Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France Fabrice voitus CNRM-Groupe d’étude de l’Atmosphere Metéorologique, Météo-France, Toulouse, France ∗Corresponding author address: Thomas Dubos, LMD, École Polytechnique, 91128 Palaiseau, France. E-mail: [email protected] 1 3 Abstract 4 From Hamilton’s least action principle, compressible equations of motion with density diag- 5 nosed from potential temperature through hydrostatic balance are derived. Slaving density 6 to potential temperature suppresses the degrees of freedom supporting the propagation of 7 acoustic waves and results in a sound-proof system. The linear normal modes and dispersion 8 relationship for an isothermal state of rest on f- and β- planes are accurate from hydrostatic 9 to non-hydrostatic scales, except for deep internal gravity waves. Especially the Lamb wave 10 and long Rossby waves are not distorted, unlike with anelastic or pseudo-incompressible 11 systems. 12 Compared to similar equations derived by Arakawa and Konor (2009), the semi-hydrostatic 13 system derived here possesses an additional term in the horizontal momentum budget. This 14 term is an apparent force resulting from the vertical coordinate not being the actual height 15 of an air parcel, but its hydrostatic height, i.e. the hypothetical height it would have after 16 the atmospheric column it belongs to has reached hydrostatic balance through adiabatic 17 vertical displacements of air parcels. The Lagrange multiplier λ introduced in Hamilton’s 18 principle to slave density to potential temperature is identified as the non-hydrostatic ver- 19 tical displacement, i.e.
    [Show full text]
  • Chapter 5 Dimensional Analysis and Similarity
    Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences.
    [Show full text]
  • Introduction to Compressible Computational Fluid Dynamics James S
    Introduction to Compressible Computational Fluid Dynamics James S. Sochacki Department of Mathematics James Madison University [email protected] Abstract This document is intended as an introduction to computational fluid dynamics at the upper undergraduate level. It is assumed that the student has had courses through three dimensional calculus and some computer programming experience with numer- ical algorithms. A course in differential equations is recommended. This document is intended to be used by undergraduate instructors and students to gain an under- standing of computational fluid dynamics. The document can be used in a classroom or research environment at the undergraduate level. The idea of this work is to have the students use the modules to discover properties of the equations and then relate this to the physics of fluid dynamics. Many issues, such as rarefactions and shocks are left out of the discussion because the intent is to have the students discover these concepts and then study them with the instructor. The document is used in part of the undergraduate MATH 365 - Computation Fluid Dynamics course at James Madi- son University (JMU) and is part of the joint NSF Grant between JMU and North Carolina Central University (NCCU): A Collaborative Computational Sciences Pro- gram. This document introduces the full three-dimensional Navier Stokes equations. As- sumptions to these equations are made to derive equations that are accessible to un- dergraduates with the above prerequisites. These equations are approximated using finite difference methods. The development of the equations and finite difference methods are contained in this document. Software modules and their corresponding documentation in Fortran 90, Maple and Matlab can be downloaded from the web- site: http://www.math.jmu.edu/~jim/compressible.html.
    [Show full text]
  • Compressible Flow
    94 c 2004 Faith A. Morrison, all rights reserved. Compressible Fluids Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004 Chemical engineering is mostly concerned with incompressible flows in pipes, reactors, mixers, and other process equipment. Gases may be modeled as incompressible fluids in both microscopic and macroscopic calculations as long as the pressure changes are less than about 20% of the mean pressure (Geankoplis, Denn). The friction-factor/Reynolds-number correlation for incompressible fluids is found to apply to compressible fluids in this regime of pressure variation (Perry and Chilton, Denn). Compressible flow is important in selected application, however, including high-speed flow of gasses in pipes, through nozzles, in tur- bines, and especially in relief valves. We include here a brief discussion of issues related to the flow of compressible fluids; for more information the reader is encouraged to consult the literature. A compressible fluid is one in which the fluid density changes when it is subjected to high pressure-gradients. For gasses, changes in density are accompanied by changes in temperature, and this complicates considerably the analysis of compressible flow. The key difference between compressible and incompressible flow is the way that forces are transmitted through the fluid. Consider the flow of water in a straw. When a thirsty child applies suction to one end of a straw submerged in water, the water moves - both the water close to her mouth moves and the water at the far end moves towards the lower- pressure area created in the mouth. Likewise, in a long, completely filled piping system, if a pump is turned on at one end, the water will immediately begin to flow out of the other end of the pipe.
    [Show full text]
  • O N Viscous, Inviscid and Centrifugal Instability M
    On viscous, inviscid and centrifugal instability mechanisms in compressible boundary layers, including non-linear vortex/wave interaction and the effects of large Mach number on transition. Submitted to the University of London as a thesis for the degree of Doctor of Philosophy. Nicholas Derick Blackaby, University College. March 1991. 1 ProQuest Number: 10609861 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10609861 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 A b stract The stability and transition of a compressible boundary layer, on a flat or curved surface, is considered using rational asymptotic theories based on the large size of the Reynolds numbers of concern. The Mach number is also treated as a large parameter with regard to hypersonic flow. The resulting equations are simpler than, but consistent with, the full Navier Stokes equations, but numer­ ical computations are still required. This approach also has the advantage that particular possible mechanisms for instability and/or transition can be studied, in isolation or in combination, allowing understanding of the underlying physics responsible for the breakdown of a laminar boundary layer.
    [Show full text]
  • Aerodynamic Heating at Hypersonic Speed
    10 Aerodynamic Heating at Hypersonic Speed Andrey B. Gorshkov Central Research Institute of Machine Building Russia 1. Introduction At designing and modernization of a reentry space vehicle it is required accurate and reliable data on the flow field, aerodynamic characteristics, heat transfer processes. Taking into account the wide range of flow conditions, realized at hypersonic flight of the vehicle in the atmosphere, it leads to the need to incorporate in employed theoretical models the effects of rarefaction, viscous-inviscid interaction, flow separation, laminar-turbulent transition and a variety of physical and chemical processes occurring in the gas phase and on the vehicle surface. Getting the necessary information through laboratory and flight experiments requires considerable expenses. In addition, the reproduction of hypersonic flight conditions at ground experimental facilities is in many cases impossible. As a result the theoretical simulation of hypersonic flow past a spacecraft is of great importance. Use of numerical calculations with their relatively small cost provides with highly informative flow data and gives an opportunity to reproduce a wide range of flow conditions, including the conditions that cannot be reached in ground experimental facilities. Thus numerical simulation provides the transfer of experimental data obtained in laboratory tests on the flight conditions. One of the main problems that arise at designing a spacecraft reentering the Earth’s atmosphere with orbital velocity is the precise definition of high convective heat fluxes (aerodynamic heating) to the vehicle surface at hypersonic flight. In a dense atmosphere, where the assumption of continuity of gas medium is true, a detailed analysis of parameters of flow and heat transfer of a reentry vehicle may be made on the basis of numerical integration of the Navier-Stokes equations allowing for the physical and chemical processes in the shock layer at hypersonic flight conditions.
    [Show full text]
  • Pub Date Abstract
    DOCUMENT RESUME ED 058 456 VT 014 597 TITLE Exploring in Aeronautics. An Introductionto Aeronautical Sciences. INSTITUTION National Aeronautics and SpaceAdministration, Cleveland, Ohio. Lewis Research Center. REPORT NO NASA-EP-89 PUB DATE 71 NOTE 398p. AVAILABLE FROMSuperintendent of Documents, U.S. GovernmettPrinting Office, Washington, D.C. 20402 (Stock No.3300-0395; NAS1.19;89, $3.50) EDRS PRICE MF-$0.65 HC-$13.16 DESCRIPTORS Aerospace Industry; *AerospaceTechnology; *Curriculum Guides; Illustrations;*Industrial Education; Instructional Materials;*Occupational Guidance; *Textbooks IDENTIFIERS *Aeronatics ABSTRACT This curriculum guide is based on a year oflectures and projects of a contemporary special-interestExplorer program intended to provide career guidance and motivationfor promising students interested in aerospace engineering and scientific professions. The adult-oriented program avoidstechnicality and rigorous mathematics and stresses real life involvementthrough project activity and teamwork. Teachers in high schoolsand colleges will find this a useful curriculum resource, w!th manytopics in various disciplines which can supplement regular courses.Curriculum committees, textbook writers and hobbyists will also findit relevant. The materials may be used at college level forintroductory courses, or modified for use withvocationally oriented high school student groups. Seventeen chapters are supplementedwith photographs, charts, and line drawings. A related document isavailable as VT 014 596. (CD) SCOPE OF INTEREST NOTICE The ERIC Facility has assigned this document for processing to tri In our judgement, thisdocument is also of interest to the clearing- houses noted to the right. Index- ing should reflect their special points of view. 4.* EXPLORING IN AERONAUTICS an introduction to Aeronautical Sciencesdeveloped at the NASA Lewis Research Center, Cleveland, Ohio.
    [Show full text]
  • Potential Equations and Pressure Coefficient For
    International Journal of Theoretical & Applied Sciences, 9(1): 35-42(2017) ISSN No. (Print): 0975-1718 ISSN No. (Online): 2249-3247 Potential Equations and Pressure Coefficient for Compressible Flow: Comparison between Compressible and Incompressible Flow in Aerodynamics Menka Yadav * and Santosh Kumar Yadav ** *Research Scholar, J.J.T. University. Rajasthan, India ** Director (A&R), J.J.T. University, Rajasthan, India (Corresponding author: (Corresponding author: Menka Yadav) (Received 02 March, 2017 accepted 05 April, 2017) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: We derive the potential equation for slender bodies and seek to understand the flow field equations for subsonic, supersonic and transonic flow in framework of small perturbation. Large amount of heat and mass can be transferred in a efficient way between the surface and fluid when flow is released against the surface. When aircraft passes through several distinct regions, the flow develops a velocity and pressure profile. In stagnation-region large scale turbulent flow affects transfer coefficient. At the face of object total pressure is higher than behind the object. Profile slopes shows that compressible and incompressible flows are related via certain equations. Zero Mach number incompressible medium causes pressure disturbances to move uniformly in all directions. Flow of heat and mass transfer is strongly affected by the geometry of the device. Keywords: Mach number, Pressure drag, Shock wave, Slender bodies, Velocity profile. I. INTRODUCTION called lift, which acts on the wing. Velocity varies along the wing chord and in the direction normal to its surface. Flow having significant changes in fluid density are The region adjacent to the wall, where the velocity known as compressible flow or flow with Mach number increases from zero to freestream value is known as the greater than 0.3 is treated as compressible.
    [Show full text]
  • Eberhard Schneider, Klaus Thoma the ERNST-MACH-INSTITUT: PRESENT FIELDS of RESEARCH CONTINUATION of MACH’S SHOCK WAVE INVESTIGATIONS
    Eberhard Schneider, Klaus Thoma THE ERNST-MACH-INSTITUT: PRESENT FIELDS OF RESEARCH CONTINUATION OF MACH’S SHOCK WAVE INVESTIGATIONS The present research program of the Ernst-Mach-Institut is presented. The Institute is one of 58 institutes of the Fraunhofer-Gesellschaft, all of which are working in fields of applied research. It was founded in 1959 by Hubert Schardin, a famous physicist working in fluid dynamics and ballistics. The institute’s name was chosen in honour of the great achievements and merits in physics of Ernst Mach, especially in the fields of shock waves in air and high speed photography. It is presented how these topics have been further investigated for many years. Shock wave studies have also been extended for solid materials by means of special acceleration techniques. The main tools for this purpose are a variety of light gas guns - their operation principle is explained - forming a unique research facility in Europe. Respective masses of milligrams up to many kilograms can be accelerated from m/s up to 10 km/s. The main applications for this technology are the following: Experimental space debris simulation for spacecraft protection; Simulation of natural high-speed impact phenomena; Ballistic missile defence tests; Terminal ballistic research. Other fields of work at the institute are the following: Dynamic material testing at very high deformation rates; Detonics; Development of high-speed visualization and testing equipment; Development of numerical simulation methods and material models; Security research. A fundamental working principle of the institute is doing both numerical and experimental studies in combination, whenever possible. SCHNEIDER, Eberhard a Klaus THOMA.
    [Show full text]