Dr Ron Steinfeld ARC Research Fellow (Cryptography), Clayton School of IT, Monash University a Simple Encryption Method
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Imagination Game Storia E Fantasia in the Imitation Game
The Imagination Game storia e fantasia in The Imitation Game Cap. 2: Bletchley Park e Ultra Giovanni A. Cignoni – Progetto HMR 1/28 Bletchley Park e Ultra • Un’organizzazione poderosa • Bletchley Park • I luoghi, le strutture, le procedure • I meccanismi e gli appoggi • Il personale, le (tante) donne di BP • Ultra • Cos’era, come era nascosto • L’impatto sul conflitto, episodi e numeri Giovanni A. Cignoni – Progetto HMR 2/28 A lezione dai Polacchi • 1919, Biuro Szyfrów • Militari, Kowalewski, e matematici, Mazurkiewicz, Sierpiński, Leśniewski • Nel 1938 il 75% dei messaggi tedeschi intercettati era decifrato (Rejewski, Zygalski, Różycki) • Dopo il ’39 PC Bruno, Cadix, Boxmoor • In Inghilterra • Room40 (1914), GC&CS (1919), BP (1938) • Parigi (gennaio ’39), con Francesi e Polacchi • Pyry vicino Varsavia (luglio ’39) Giovanni A. Cignoni – Progetto HMR 3/28 Un posto strategico Bletchley Park - Gayhurst - Wavendon - Stanmore - Eastcote - Adstock Cambridge Banbury Letchworth Oxford London Giovanni A. Cignoni – Progetto HMR 4/28 Bletchley Park, 1942ca Giovanni A. Cignoni – Progetto HMR 5/28 Nel film, ci somiglia... Giovanni A. Cignoni – Progetto HMR 6/28 … ma non è Giovanni A. Cignoni – Progetto HMR 7/28 Il nume tutelare • 1941.10.21: Action this day! • In un momento di successo • Dopo una visita di Churchill • Le Bombe ci sono, mancano persone • Garanzie per i tecnici BTM • Personale per la catena • Intercettazione in grande • Risorse per una pesca industriale • Un po’ come “Echelon” Giovanni A. Cignoni – Progetto HMR 8/28 Il personale • Una grande industria • Da 9000 a 10000 persone, centinaia di macchine • Piuttosto stabile, circa 12000 nomi • Escluso l’indotto, fornitori e logistica • Reclutamento • Inizialmente diretto, da persona a persona • Poi attraverso controlli e selezioni metodiche • Soprattutto nell’ambito delle leve militari • Ma con un occhio anche ai civili Giovanni A. -
Code Breaking at Bletchley Park
Middle School Scholars’ CONTENTS Newsletter A Short History of Bletchley Park by Alex Lent Term 2020 Mapplebeck… p2-3 Alan Turing: A Profile by Sam Ramsey… Code Breaking at p4-6 Bletchley Park’s Role in World War II by Bletchley Park Harry Martin… p6-8 Review: Bletchley Park Museum by Joseph Conway… p9-10 The Women of Bletchley Park by Sammy Jarvis… p10-12 Bill Tutte: The Unsung Codebreaker by Archie Leishman… p12-14 A Very Short Introduction to Bletchley Park by Sam Corbett… p15-16 The Impact of Bletchley Park on Today’s World by Toby Pinnington… p17-18 Introduction A Beginner’s Guide to the Bombe by Luca “A gifted and distinguished boy, whose future Zurek… p19-21 career we shall watch with much interest.” This was the parting remark of Alan Turing’s Headmaster in his last school report. Little The German Equivalent of Bletchley could he have known what Turing would go on Park by Rupert Matthews… 21-22 to achieve alongside the other talented codebreakers of World War II at Bletchley Park. Covering Up Bletchley Park: Operation Our trip with the third year academic scholars Boniface by Philip Kimber… p23-25 this term explored the central role this site near Milton Keynes played in winning a war. 1 intercept stations. During the war, Bletchley A Short History of Bletchley Park Park had many cover names, which included by Alex Mapplebeck “B.P.”, “Station X” and the “Government Communications Headquarters”. The first mention of Bletchley Park in records is in the Domesday Book, where it is part of the Manor of Eaton. -
MTAT.07.006 Research Seminar in Cryptography the Enigma Cipher Machine
MTAT.07.006 Research Seminar in Cryptography The Enigma Cipher Machine Kadri Hendla November 28, 2005 Abstract 3.1 The Rotors The aim of this survey is to give a brief overview on Rotors are the most important part of an Enigma Enigma cipher machine and its cryptanalysis before machine. A rotor is a disc about 10 cm in diameter and during the Second World War. The survey is and it’s usually made of hard rubber or bakelite. mostly based on the articles [1] and [7] on Enigma On one face are 26 brass pins forming a circle; on from Wikipedia. the other side are corresponding electrical contacts. Each pin represents a letter in the alphabet. Inside the rotor are 26 wires connecting the pins on one 1 Introduction side to the contacts on the other side; the wiring is different for each rotor. The rotor also has a finger Enigma is a portable cipher machine, famous for wheel for turning the rotor by hand and an alpha- the role it played in World War II. The breaking of bet ring, so the operator can see the rotor position. Enigma codes is considered to be one of the reasons In the earlier versions of Enigma the alphabet ring for the Allies victory. was fixed; the later versions allowed adjusting the alphabet ring relative to the core wiring. This po- sition of the ring is known as the ring settings. The 2 History of Enigma rotors are placed in the machine side by side, which causes the pins and contacts of the neighbouring In 1918 German engineer Arthur Scherbius applied rotors to form an electrical connection. -
The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life: Plus the Secrets of Enigma
The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life: Plus The Secrets of Enigma B. Jack Copeland, Editor OXFORD UNIVERSITY PRESS The Essential Turing Alan M. Turing The Essential Turing Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life plus The Secrets of Enigma Edited by B. Jack Copeland CLARENDON PRESS OXFORD Great Clarendon Street, Oxford OX2 6DP Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Taipei Toronto Shanghai With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan South Korea Poland Portugal Singapore Switzerland Thailand Turkey Ukraine Vietnam Published in the United States by Oxford University Press Inc., New York © In this volume the Estate of Alan Turing 2004 Supplementary Material © the several contributors 2004 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2004 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above. -
Agnes Meyer Driscoll Vs. the Enigma and the Bombe Colin Burke
Colin Burke 1-2001 © Agnes Meyer Driscoll vs. the Enigma and the Bombe Colin Burke ABSTRACT: Documents in Britain‘s National Archives/ Public Record Office and in the U.S. National Archive‘s Record Groups RG457 and RG38 indicate that in mid-1941 the United States Navy‘s codebreaking organization, OP-20-G ignored an opportunity to gain full knowledge of Britain‘s anti-Enigma methods and machines. Spending a year and one-half working on what it felt was a unique and much more effective method– but one that failed--OP-20-G‘s, staff, at a critical time in U.S.- British relations ,did not inform America‘s decision makers of Britain‘s willingness to share its crypto-secrets . As a result, American leaders believed that England‘s GC&CS had deliberately withheld vital information that would have allowed the development of an independent American attack on Naval Enigma. That belief lasted Colin Burke 1-2001 © throughout the war and caused friction between the two nations. Other consequences of OP-20-G‘s mid-1941 decision were to delay the adoption of the British Bombe and its allied methods and to waste perhaps six months of the vital time of the new team of cryptanalysts and engineers assigned, in early 1942, to develop an American Bombe. KEYWORDS: OP-20-G, Enigma, Driscoll, Denniston, GC&CS, Bombe, Safford, Wenger, Weeks, Currier, Engstrom, catalog, Banburismus, hot-point, cold-point, Tiltman. Introduction: A Fragile British-American Crypto-Alliance By the end of World War II Great Britain and the United States had forged uniquely close relationships--even among their intelligence agencies.1 Much had to be overcome to achieve the long-lasting 1 Robert Louis Benson, A History of U.S. -
WWII Innovations - Codebreaking, Radar, Espionage, New Bombs, and More
Part 6: WWII Innovation s - Codebreaking, Radar, Espionage, New Bombs, and More. Part 7: WWII Innovations - Codebreaking, Radar, Espionage, New Bombs, and More. Objective: How new innovations impacted the war, people in the war, and people after the war. Assessment Goals: 1. Research and understand at least three of the innovations of WWII that made a difference on the war and after the war. (Learning Target 3) 2. Determine whether you think dropping the atomic bombs on Hiroshima and Nagasaki was a wise decision or not. (Learning Target 2) Resources: Resources in Binder (Video links, websites, and articles) Note Graph (Create something similar in your notes): Use this graph for researching innovations: Innovation #1: ______________________ Innovation #2: ______________________ Innovation #3: ______________________ (Specific notes about impact on war and after) (Specific notes about impact on war and after) (Specific notes about impact on war and after) Use the graph on the next page to organize your research about the atomic bomb. Evidence that dropping the bombs was wise: Evidence that dropping the bombs was not wise: (Include quotes, document citations, and (Include quotes, document citations, and statistics) statistics) ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● My position: My overall thoughts about the choice to drop the bombs: If I were a Japanese civilian, what would I have wanted to happen and why? If I were a U.S. soldier, what would I have wanted to happen and why? Resources: Part 7 - WW2 Innovations - Codebreaking, -
The Enigma Cipher Machine
MTAT.07.006 Research Seminar in Cryptography The Enigma Cipher Machine Kadri Hendla University of Tartu kadri [email protected] Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla 1 Overview • Description of Enigma • Enigma in Use • Cryptanalysis of Enigma Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla 2 History of Enigma • Enigma is most known for its part in World War II. • In 1918 Arthur Scherbius applied for a patent for Enigma. • German military adopted Enigma in 1926. • There were many different versions of Enigma. Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla 3 The Enigma Machine Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla 4 Description of Enigma: Working Principle • Scrambler (3 rotors and a reflector) • Lamps • Keyboard • Plugboard Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla 5 Description of Enigma: Rotors • 1. notched ring • 2. marking dot for ”A” contact • 3. alphabet ring • 4. plate contacts • 5. wire connections • 6. pin contacts • 7. spring-loaded ring adjusting lever • 8. hub • 9. finger wheel • 10. ratchet wheel Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla 6 Description of Enigma: Reflector The reflector gave two important properties to Enigma: • Encryption was the same as decryption. • No letter could be encrypted to itself. Research Seminar in Cryptography, 05.12.2005 The Enigma Cipher Machine, Kadri Hendla -
Jack Copeland on Enigma
Enigma Jack Copeland 1. Turing Joins the Government Code and Cypher School 217 2. The Enigma Machine 220 3. The Polish Contribution, 1932–1940 231 4. The Polish Bomba 235 5. The Bombe and the Spider 246 6. Naval Enigma 257 7. Turing Leaves Enigma 262 1. Turing Joins the Government Code and Cypher School Turing’s personal battle with the Enigma machine began some months before the outbreak of the Second World War.1 At this time there was no more than a handful of people in Britain tackling the problem of Enigma. Turing worked largely in isolation, paying occasional visits to the London oYce of the Government Code and Cypher School (GC & CS) for discussions with Dillwyn Knox.2 In 1937, during the Spanish Civil War, Knox had broken the type of Enigma machine used by the Italian Navy.3 However, the more complicated form of Enigma used by the German military, containing the Steckerbrett or plug-board, was not so easily defeated. On 4 September 1939, the day following Chamberlain’s announcement of war with Germany, Turing took up residence at the new headquarters of the Govern- ment Code and Cypher School, Bletchley Park.4 GC & CS was a tiny organization 1 Letters from Peter Twinn to Copeland (28 Jan. 2001, 21 Feb. 2001). Twinn himself joined the attack on Enigma in February 1939. Turing was placed on Denniston’s ‘emergency list’ (see below) in March 1939, according to ‘StaV and Establishment of G.C.C.S.’ (undated), held in the Public Record OYce: National Archives (PRO), Kew, Richmond, Surrey (document reference HW 3/82). -
Alan Turing 1 Alan Turing
Alan Turing 1 Alan Turing Alan Turing Turing at the time of his election to Fellowship of the Royal Society. Born Alan Mathison Turing 23 June 1912 Maida Vale, London, England, United Kingdom Died 7 June 1954 (aged 41) Wilmslow, Cheshire, England, United Kingdom Residence United Kingdom Nationality British Fields Mathematics, Cryptanalysis, Computer science Institutions University of Cambridge Government Code and Cypher School National Physical Laboratory University of Manchester Alma mater King's College, Cambridge Princeton University Doctoral advisor Alonzo Church Doctoral students Robin Gandy Known for Halting problem Turing machine Cryptanalysis of the Enigma Automatic Computing Engine Turing Award Turing test Turing patterns Notable awards Officer of the Order of the British Empire Fellow of the Royal Society Alan Mathison Turing, OBE, FRS ( /ˈtjʊərɪŋ/ TEWR-ing; 23 June 1912 – 7 June 1954), was a British mathematician, logician, cryptanalyst, and computer scientist. He was highly influential in the development of computer science, giving a formalisation of the concepts of "algorithm" and "computation" with the Turing machine, which can be considered a model of a general purpose computer.[1][2][3] Turing is widely considered to be the father of computer science and artificial intelligence.[4] During World War II, Turing worked for the Government Code and Cypher School (GC&CS) at Bletchley Park, Britain's codebreaking centre. For a time he was head of Hut 8, the section responsible for German naval cryptanalysis. He devised a number of techniques for breaking German ciphers, including the method of the bombe, an electromechanical machine that could find settings for the Enigma machine. -
El Héroe Alan Turing
El h´eroe Alan Turing: Aportaciones de la Criptolog´ıaa la victoria aliada en la Segunda Guerra Mundial Guillermo Morales-Luna Departamento de Computaci´on Centro de Investigaci´ony de Estudios Avanzados del IPN, Cinvestav-IPN [email protected] 7 de mayo de 2013 Resumen En la segunda mitad de la d´ecada de los 30, funcionaba en Inglaterra una modesta oficina gubernamen- tal: la Government Code and Cypher School (GC & CS) que en 1937 descifraba, entre otros documentos, la correspondencia de unidades militares italianas participantes en la Guerra Civil Espa~nola. En 1939 la GC & CS se estableci´oen Bletchley Park y el 4 de septiembre, Alan Turing se incorpor´oa ella para dirigir la Barraca 8. Turing desarroll´oun important´ısimotrabajo en la primera mitad de la d´ecadade los 40 descifrando las comunicaciones secretas alemanas. Winston Churchill consideraba a Bletchley Park como su arma secreta y en alguna parte en sus memorias escribi´oque \nunca antes se hab´ıapeleado una guerra en la que una parte estaba al tanto de los movimientos a realizar por sus contrincantes". Sin duda, el quebrantamiento de Turing de las comunicaciones cifradas alemanas aminor´olos efectos que los ataques alemanes habr´ıanpodido ocasionar en el Reino Unido, y propici´oel triunfo ingl´esen la Batalla del Atl´antico. Fue tan importante el trabajo realizado en Bletchley Park que se orden´oel desmantelamiento total de ese centro criptol´ogicoal final de la guerra. Los cifrados alemanes se realizaban con la m´aquinaEnigma, cuyas primeras versiones fueron quebran- tadas por geniales cript´ologospolacos, inventores de las primeras bombas criptol´ogicas, quienes transmi- tieron luego su experiencia a los ingleses. -
Jewel Theatre Audience Guide Addendum: Alan Turing Biography
Jewel Theatre Audience Guide Addendum: Alan Turing Biography directed by Kirsten Brandt by Susan Myer Silton, Dramaturg © 2019 ALAN TURING The outline of the following overview of Turing’s life is largely based on his biography on Alchetron.com (https://alchetron.com/Alan-Turing), a “social encyclopedia” developed by Alchetron Technologies. It has been embellished with additional information from sources such as Andrew Hodges’ books, Alan Turing: The Enigma (1983) and Turing (1997) as well as his website, https://www.turing.org.uk. The following books have also provided additional information: Prof: Alan Turing Decoded (2015) by Dermot Turing, who is Alan’s nephew by way of his only sibling, John; The Turing Guide by B. Jack Copeland, Jonathan Bowen, Mark Sprevak, and Robin Wilson (2017); and Alan M. Turing, written by his mother, Sara, shortly after he died. The latter was republished in 2012 as Alan M. Turing – Centenary Edition with an Afterword entitled “My Brother Alan” by John Turing. The essay was added when it was discovered among John’s writings following his death. The republication also includes a new Foreword by Martin Davis, an American mathematician known for his model of post-Turing machines. Extended biographies of Christopher Morcom, Dillwyn Knox, Joan Clarke (the character of Pat Green in the play) and Sara Turing, which are provided as Addendums to this Guide, provide additional information about Alan. Beginnings Alan Mathison Turing was an English computer scientist, mathematician, logician, cryptanalyst, philosopher and theoretical biologist. He was born in a nursing home in Maida Vale, a tony residential district of London, England on June 23, 1912. -
Alan Turing: Life and Legacy of a Great Thinker
Alan Turing: Life and Legacy of a Great Thinker Bearbeitet von Christof Teuscher, D Hofstadter 1st ed. 2003. 2nd printing 2005. Buch. xxviii, 542 S. Hardcover ISBN 978 3 540 20020 8 Format (B x L): 15,5 x 23,5 cm Gewicht: 1116 g Weitere Fachgebiete > EDV, Informatik > EDV, Informatik: Allgemeines, Moderne Kommunikation > EDV & Informatik: Geschichte Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Alan Turing at Bletchley Park in World War II Tony Sale Ex Museums Director, Bletchley Park, UK Summary. “There should be no question in anyone’s mind that Turing’s work was the biggest factor in Hut 8’s success [in breaking the German Naval Enigma]. In the early days he was the only cryptographer who thought the problem worth tackling and not only was he primarily responsible for the main theoretical work within the hut (particularly the developing of a satisfactory scoring technique for dealing with Banburismus) but he also shared with Welchman and Keen the chief credit for the invention of the Bombe. It is always difficult to say that anyone is absolutely indispensable but if anyone was indispensable to Hut 8it was Turing” [1]. 1 Alan Turing and the Enigma Machine The mathematician Alan Turing had been identified, at Cambridge, as a likely candidate for code breaking.