An Ultra-Wideband Sensing Board for Radio Frequency Front-End in Iot Transmitters

Total Page:16

File Type:pdf, Size:1020Kb

An Ultra-Wideband Sensing Board for Radio Frequency Front-End in Iot Transmitters electronics Article An Ultra-Wideband Sensing Board for Radio Frequency Front-End in IoT Transmitters Alessandra Petrocchi 1,2, Antonio Raffo 2,*, Gianni Bosi 2 , Gustavo Avolio 3, Davide Resca 4, Giorgio Vannini 2 and Dominique Schreurs 1 1 Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium; [email protected] (A.P.); [email protected] (D.S.) 2 Department of Engineering, University of Ferrara, 44122 Ferrara, Italy; [email protected] (G.B.); [email protected] (G.V.) 3 Anteverta-mw B.V., 5656AE Eindhoven, The Netherlands; [email protected] 4 Microwave Electronics for Communications, MEC S.r.l, 40127 Bologna, Italy; [email protected] * Correspondence: antonio.raff[email protected] Received: 9 September 2019; Accepted: 15 October 2019; Published: 19 October 2019 Abstract: The upcoming technologies related to Internet of Things will be characterized by challenging requirements oriented toward the most efficient exploitation of the energy in electronic systems. The use of wireless communications in these devices makes this aspect particularly important, since the performance of radio transceivers is strongly dependent on the environmental conditions affecting the antenna electrical characteristics. The use of circuits capable of adapting themselves to the actual state of the environment can be a valuable solution, provided that the implemented sensing features have negligible impact on the overall performance and cost of the system. In this work, we present the design and verification of an innovative ultra-wideband sensing board to detect real-time variations of the antenna impedance in transmitters oriented to Internet of Things applications. The proposed sensing board was widely validated by means of small- and large-signal measurements carried out at microwave frequencies. Keywords: six-port junction; ultra-wideband; Internet of Things 1. Introduction Internet of Things (IoT) has become more and more common nowadays in the research community. Starting from [1,2], where the main concepts of IoT were addressed, the research around this topic has grown and, consequently, additional details have been defined about the requirements (e.g., low cost, energy efficiency, broad bandwidth). The basic idea about IoT is that things or objects become smart, which means that they obtain the ability to interact with each other and work together, even exploiting the capabilities of the internet network. The innovation regarding IoT is not necessarily related to the development of new electronic systems but also to the need to adapt existing systems by adding these smart functionalities. IoT devices will be used in applications for our daily life at home or in the industry. For instance, home devices include smart TVs, speakers, wearables, and smart appliances, whereas technologies dedicated to security systems and to sensor and monitor traffic or weather are dedicated to the industry [3]. The communication between devices can be delegated to common standards, such as multiband WLAN [4,5], although ultra-wideband (UWB) transmissions are nowadays spreading out as an effective solution, especially for short-range communications [6–9]. Their use is defined by strict regulations, since they exploit bandwidths already used by other services and applications and, therefore, the transmitted power must be limited to avoid any interference. For example, the US and Electronics 2019, 8, 1191; doi:10.3390/electronics8101191 www.mdpi.com/journal/electronics Electronics 2019, 8, 1191 2 of 16 European regulations allow UWB transmissions from 3.1 to 10.6 GHz with a maximum power of 41 dBm/Hz over a bandwidth of at least 500 MHz or 20% of the center frequency [9,10]. − Due to the vastness of possible applications, IoT capabilities should be integrated in low-cost objects and deployed under a huge variety of conditions. An important goal will be to equip these devices with the capability to adapt themselves according to the actual operating condition, in order to provide stable performance regardless of any environmental variation. Considering the radio communication environment for the aforementioned applications, the antenna near-field may change drastically in real operating conditions, and this will affect the antenna input impedance. This variation has the strongest impact at the transmitter side (composed of an antenna, a radio frequency (RF) front-end, and digital signal processing), especially on the RF front-end (e.g., power amplifier (PA)). Indeed, the antenna load variation jeopardizes the PA performance, for example, through reducing efficiency, gain, and linearity. In addition, a strong mismatch condition may have a considerable and detrimental impact on the system reliability, since it could lead to the active devices in the PA being close to their maximum rating specifications [11,12]. This is not the first time that this problem has been faced. Indeed, several approaches have been proposed in the literature to solve the mismatch problem between the PA and the antenna, including enhancement of the circuit architecture [13], reconfigurable matching networks [14], and signal adaptation. These approaches are not all compatible with IoT requirements: for example, making the circuit design more robust by means of an isolator would create additional losses which are not in line with the energy-efficiency goal of IoT. In this work, we will assume the PA is an off-the-shelf component, having no tight specifications in terms of robustness to load variations. We also assume that the load presented to the PA can be adjusted in real time by means of a reconfigurable matching network (RMN) (Figure1). In this scenario, the possibility of monitoring the RF front-end load condition to possibly compensate for load variations by means of the RMN is a crucial aspect for maximizing the overall performance of the system. RMNs can be implemented by using different technologies, such as switches, to select between stubs [15] or capacitors [16], microelectromechanical systems (MEMS) [17], and semiconductor varactors [18,19]. Whatever the choice, sensing of the antenna impedance is required in order to properly tune the RMN. To achieve this, multiple techniques have been proposed in the literature. The most common solutions can be divided into two main groups: those focusing on monitoring the amplitude only and with narrowband specification, and those with phase information and broadband implementation [20,21]. However, both approaches are not compatible with IoT devices. The first is not suitable because of the need for vectorial information over a large bandwidth. The second, despite being broadband, adopts a quadrature down converter which creates additional losses and power consumption. Another example is a commercial gain/phase detector [18,22] to acquire the reflection coefficient of the antenna. Being an active device, it requires a DC supply, which is clearly not suitable for low-cost high-efficiency applications. In this paper, the proposed approach consists of an ultra-wideband passive network able to detect the load variations in terms of both amplitude and phase. It is based on a six-port junction [23,24], which is a passive structure. It has been designed to achieve a bandwidth of 1 GHz, i.e., from 5 to 6 GHz, covering the unlicensed national infrastructure (U-NII) radio bands, the 5 GHz Wi-Fi band, and to be suitable for 802.11ac Wi-Fi access points (ACs). The availability of such a large bandwidth is a great advantage in terms of the possible applications, since it can be used to accommodate different services using the same RF front-end and antenna system, e.g., UWB localization [25] with 5-GHz WLAN capabilities for data transmission. To our best knowledge, this is the first time that such a kind of device is presented for an IoT wideband RF transmitter application. This paper is organized as follows. In Section2, the six-port junction and the detector topology and design are explained as well as the fabrication procedure. In Section3, the sensing board performance is validated by means of measurements. The fabricated device will be tested not only to verify Electronics 2019, 8, 1191 3 of 16 itsElectronics capability 2019, 8 to, x FOR achieve PEER theREVIEW correct impedance information but also in terms of nonlinearity3 of and 16 bandwidth. Finally, in Section4, some conclusions will be drawn. Electronics 2019, 8, x FOR PEER REVIEW 3 of 16 Figure 1. Simplified block scheme of a transmitter. 2. Sensing Board Design Figure 1. SimplifiedSimplified block scheme of a transmitter. 2. Sensing The block Board scheme Design of the proposed sensing technique for the detection of the front-end load impedance variations is shown in Figure 2. The six-port junction [23,24] solution has been chosen The block scheme of the proposed sensing techniquetechnique for the detection of the front-end load because it is simple to construct, low-cost, meets broadband requirements, and does not require any impedance variations is shown in FigureFigure2 2.. TheThe six-portsix-port junctionjunction [[23,24]23,24] solution has been chosen power supply. All of these aspects are compatible with IoT devices. The concept behind this passive because it is simple to construct, low-cost, meetsmeets broadband requirements, and does not require any structure is well-known in the literature [23,24], and it has already been used in various microwave power supply. All of these aspectsaspects areare compatiblecompatible withwith IoTIoT devices.devices.
Recommended publications
  • A Wide-Band RF Front-End with Linear Active Notch Filter for Mobile
    RMO2B-5 A Wide-Band RF Front-End with Linear Active Notch Filter for Mobile TV Applications Seung Hwan Jung, Kang Hyuk Lee, Young Jae Lee1, Hyun Kyu Yu1, Yun Seong Eo Radio Frequency Circuits and Systems Laboratory Kwangwoon University, Seoul Korea 1Electronics and Telecommunications Research Institute (ETRI), Daejeon Korea Abstract — This paper presents a wide-band RF front-end inductor has a poor linearity and cannot withstand the with linear active notch filter covering both T-DMB and strong GSM interferer even with the external GSM band DVB-H. A single to differential converter with the low amplitude/phase error and 6dB step RF VGA using the rejection SAW filter. To overcome these drawbacks, a capacitor are implemented. Also, highly linear and Q- newly proposed linear Q-enhanced active notch filter is enhanced tunable active inductor is proposed. The linear presented in this paper. In order to obtain a high linearity active notch filter rejects GSM band up to 23dB and achieves of the active inductor, the MGTR (Multiple Gated 20dB linearity improvement. The RF front-end is fabricated Transistor) topology is adopted to the gyrator’s trans- on 90nm CMOS technology and consumes 29.7mW. conductor cell and push-pull type negative resistor circuit is also used, which maintain the constant inductance and Index Terms — Wide-band LNA, Single to differential converter, High linear active inductor, Notch filter, CMOS. quality factor in spite of very strong GSM input interferer. I. INTRODUCTION II. THE PROPOSED ARCHITECTURE Nowadays, the mobile TV markets such as Terrestrial- Fig. 1 illustrates the proposed wide-band RF front-end Digital Multimedia Broadcasting (T-DMB) in Korea and with linear active notch filter.
    [Show full text]
  • Design of Reconfigurable Radio Front-Ends
    Design of Reconfigurable Radio Front-Ends Xiao Xiao Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2018-142 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-142.html December 1, 2018 Copyright © 2018, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Design of Reconfigurable Radio Front-Ends by Xiao Xiao A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Borivoje Nikolic, Chair Professor Ali Niknejad Professor Paul Wright Spring 2016 Design of Reconfigurable Radio Front-Ends Copyright 2016 by Xiao Xiao 1 Abstract Design of Reconfigurable Radio Front-Ends by Xiao Xiao Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University of California, Berkeley Professor Borivoje Nikolic, Chair Modern and future mobile devices must support increasingly more wireless standards and bands. Currently, multi-band coexistence is enabled by a network of discrete, off-chip com- ponents that are bulky, expensive, and narrowband. As transceivers are required to accom- modate an increasing number of wireless bands, the required number of discrete components increases accordingly, resulting in greater bill of materials (BoM) cost and front-end module (FEM) area.
    [Show full text]
  • An Open Rf-Digital Interface for Software-Defined Radios
    .................................................................................................................................................................................................................. AN OPEN RF-DIGITAL INTERFACE FOR SOFTWARE-DEFINED RADIOS .................................................................................................................................................................................................................. THIS ARTICLE PRESENTS AN OPEN, COMPLETE RF-DIGITAL INTERFACE APPROPRIATE FOR SOFTWARE-DEFINED RADIOS (SDRS). THE INTERFACE INCLUDES DATA AND METADATA (CONTROL AND CONTEXT) PACKETS.THE CONTROL AND CONTEXT PACKETS DESCRIBE THE ENTIRE RF FRONT END.THE PROPOSED DESCRIPTION HAS A HIERARCHICAL STRUCTURE AND IS A HARDWARE ABSTRACTION.THE INTERFACE SUPPORTS ADVANCED ARCHITECTURES SUCH AS SDR CLOUDS.THE METADATA PACKETS CAN BE REPRESENTED USING FORMAL, COMPUTER-PROCESSABLE SEMANTICS. ......Wireless signals are centered at a RF front-end details certain RF. The signal-processing operations— As Figure 1 shows, the RF front end is not synchronization, modulation, and so on—are entirely analog; it consists of an analog front implemented on baseband signals centered at end and a digital front end (DFE).1 The DFE zero frequency. Therefore, receivers must does interpolation or decimation to increase or down-convert from RF to baseband. Trans- decrease the sampling frequency. Furthermore, mitters perform the opposite process of the down-conversion and up-conversion can up-conversion.
    [Show full text]
  • Multiband LNA Design and RF-Sampling Front-Ends for Flexible Wireless Receivers
    Linköping Studies in Science and Technology Dissertation No. 1036 Multiband LNA Design and RF-Sampling Front-Ends for Flexible Wireless Receivers Stefan Andersson Electronic Devices Department of Electrical Engineering Linköping University, SE-581 83 Linköping, Sweden Linköping 2006 ISBN 91-85523-22-4 ISSN 0345-7524 ii Multiband LNA Design and RF-Sampling Front-Ends for Flexible Wireless Receivers Stefan Andersson ISBN 91-85523-22-4 Copyright c Stefan Andersson, 2006 Linköping Studies in Science and Technology Dissertation No. 1036 ISSN 0345-7524 Electronic Devices Department of Electrical Engineering Linköping University SE-581 83 Linköping Sweden Author e-mail: [email protected] Cover Image Picture by the author illustrating an RF-sampling receiver on block level. The chip microphotograph represents a multiband direct RF-sampling receiver front-end for WLAN fabricated in 0.13 µm CMOS. Printed by LiU-Tryck, Linköping University Linköping, Sweden, 2006 I nådens år 2006! As my grandfather would have said. iii iv Abstract The wireless market is developing very fast today with a steadily increasing num- ber of users all around the world. An increasing number of users and the constant need for higher and higher data rates have led to an increasing number of emerging wireless communication standards. As a result there is a huge demand for flexible and low-cost radio architectures for portable applications. Moving towards multi- standard radio, a high level of integration becomes a necessity and can only be ac- complished by new improved radio architectures and full utilization of technology scaling. Modern nanometer CMOS technologies have the required performance for making high-performance RF circuits together with advanced digital signal processing.
    [Show full text]
  • Analysis and Design of an Rf Front End for a Radar Digital Receiver
    ANALYSIS AND DESIGN OF AN RF FRONT END FOR A RADAR DIGITAL RECEIVER A Thesis Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfillment Of the Requirements for the Degree Master of Science In Electrical Engineering By John O. Mortensen 2018 SIGNATURE PAGE THESIS: ANALYSIS AND DESIGN OF AN RF FRONT END FOR A RADAR DIGITAL RECEIVER AUTHOR: John O. Mortensen DATE SUBMITTED: Winter 2018 Electrical and Computer Engineering Department Dr. James Kang Thesis Committee Chair Electrical Engineering Dr. Thomas Ketseoglou Electrical Engineering Dr. Saloman Oldak Electrical Engineering ii ACKNOWLEDGEMENTS First, I’d like to thank my adviser Dr. James Kang for the patient help he has provided over the two years of my pursuit of my master’s degree. In addition I’d like to thank Dr. Ketseoglou and Dr. Oldak and the rest of the staff at Cal Poly for all of the great electronics courses I’ve taken both recently and back in the 1980s when I first received my BSEE. I’d should also thank MPT and its owner Dr. Rick Sturdivant for the help on this project and the funding available to complete this research and project. I’d also like to thank my wife Marie for putting up with me and the support she has given me over the years. iii ABSTRACT This paper focuses on the use of commercial off the shelf parts in the design of an X Band receiver used in radar. The need today for a low cost flexible approach is of the utmost importance due to the trend of having a transceiver module for each element of a phased array antenna.
    [Show full text]
  • Programmable and Tunable Circuits for Flexible RF Front Ends
    Linköping Studies in Science and Technology Thesis No. 1379 Programmable and Tunable Circuits for Flexible RF Front Ends Naveed Ahsan LiU-TEK-LIC-2008:37 Department of Electrical Engineering Linköping University, SE-581 83 Linköping, Sweden Linköping 2008 ISBN 978-91-7393-815-0 ISSN 0280-7971 ii Abstract Most of today’s microwave circuits are designed for specific function and special need. There is a growing trend to have flexible and reconfigurable circuits. Circuits that can be digitally programmed to achieve various functions based on specific needs. Realization of high frequency circuit blocks that can be dynamically reconfigured to achieve the desired performance seems to be challenging. However, with recent advances in many areas of technology these demands can now be met. Two concepts have been investigated in this thesis. The initial part presents the feasibility of a flexible and programmable circuit (PROMFA) that can be utilized for multifunctional systems operating at microwave frequencies. Design details and PROMFA implementation is presented. This concept is based on an array of generic cells, which consists of a matrix of analog building blocks that can be dynamically reconfigured. Either each matrix element can be programmed independently or several elements can be programmed collectively to achieve a specific function. The PROMFA circuit can therefore realize more complex functions, such as filters or oscillators. Realization of a flexible RF circuit based on generic cells is a new concept. In order to validate the idea, a test chip has been fabricated in a 0.2µm GaAs process, ED02AH from OMMICTM. Simulated and measured results are presented along with some key applications like implementation of a widely tunable band pass filter and an active corporate feed network.
    [Show full text]
  • A Dissertation Entitled Design of Microwave Front-End Narrowband
    A Dissertation entitled Design of Microwave Front-End Narrowband Filter and Limiter Components by Lee W. Cross Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering _________________________________________ Vijay Devabhaktuni, Ph.D., Committee Chair _________________________________________ Mansoor Alam, Ph.D., Committee Member _________________________________________ Mohammad Almalkawi, Ph.D., Committee Member _________________________________________ Matthew Franchetti, Ph.D., Committee Member _________________________________________ Daniel Georgiev, Ph.D., Committee Member _________________________________________ Telesphor Kamgaing, Ph.D., Committee Member _________________________________________ Roger King, Ph.D., Committee Member _________________________________________ Patricia Komuniecki, Ph.D., Dean College of Graduate Studies The University of Toledo May 2013 Copyright 2013, Lee Waid Cross This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Design of Microwave Front-End Narrowband Filter and Limiter Components by Lee W. Cross Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering The University of Toledo May 2013 This dissertation proposes three novel bandpass filter structures to protect systems exposed to damaging levels of electromagnetic (EM) radiation from intentional
    [Show full text]
  • Noise-Canceling and IP3 Improved CMOS RF Front-End for DRM/DAB/DVB-H Applications
    Vol. 31, No. 2 Journal of Semiconductors February 2010 Noise-canceling and IP3 improved CMOS RF front-end for DRM/DAB/DVB-H applications Wang Keping(王科平)1, Wang Zhigong(王志功)1; 2; , and Lei Xuemei(雷雪梅)1 (1 Institute of RF- & OE-ICs, Southeast University, Nanjing 210096, China) (2 Engineering Researching Center of RF-ICs & Systems of the Ministry of Education of China, Southeast University, Nanjing 210096, China) Abstract: A CMOS RF (radio frequency) front-end for digital radio broadcasting applications is presented that con- tains a wideband LNA, I/Q-mixers and VGAs, supporting other various wireless communication standards in the ultra- wide frequency band from 200 kHz to 2 GHz as well. Improvement of the NF (noise figure) and IP3 (third-order in- termodulation distortion) is attained without significant degradation of other performances like voltage gain and power consumption. The NF is minimized by noise-canceling technology, and the IP3 is improved by using differential mul- tiple gate transistors (DMGTR). The dB-in-linear VGA (variable gain amplifier) exploits a single PMOS to achieve exponential gain control. The circuit is fabricated in 0.18-m CMOS technology. The S11 of the RF front-end is lower than 11:4 dB over the whole band of 200 kHz–2 GHz. The variable gain range is 12–42 dB at 0.25 GHz and 4–36 dB at 2 GHz. The DSB NF at maximum gain is 3.1–6.1 dB. The IIP3 at middle gain is 4:7 to 0.2 dBm. It consumes a DC power of only 36 mW at 1.8 V supply.
    [Show full text]
  • SIGNAL SOLUTIONS Product Portfolio Signal Solutions Product Portfolio
    SIGNAL SOLUTIONS Product Portfolio Signal Solutions Product Portfolio 1 Milestone Center Court, Germantown, MD 20876 Phone: +1 301 948 7550 [email protected] LeonardoDRS.com/SignalSolutions Information in this product catalog is subject to change at any time. For most up-to-date information please contact your account representative or DRS Signal Solutions. Cleared for Public Release DRS Signal Solutions, Inc. under approval number 2179 dated March 04, 2020. Export of DRS SIGNAL SOLUTIONS, INC. products is subject to U.S. export controls. Licenses may be required. This material provides up-to-date general information on product performance and use. It is not contractual in nature, nor does it provide warranty of any kind. Information is subject to change at any time. Copyright © DRS SIGNAL SOLUTIONS, INC. 2020. All Rights Reserved. PN: 14106711-000 I Revision F I April 2020 COMPANY OVERVIEW COMPANY OVERVIEW PROTECTING OUR NATION AND ALLIES EXPERTS IN RF DESIGN CONTINUING TO UPHOLD THE WATKINS-JOHNSON COMPANY LEADING THE WAY IN SIGNALS INTELLIGENCE AND RF TECHNOLOGY. LEGACY OF RELIABILITY AND INNOVATION. Leonardo DRS is a leading supplier of LOW COST SOLUTIONS MODULAR APPROCHES-RAPID intelligence and commercial solutions that SIGNAL SOLUTIONS’ LEGACY Signal Solutions’ proprietary technology and TECHNOLOGY INSERTION protect our nation and allies. Our Signal product designs enable more channels to be As new signal threats are constantly emerging, Solutions products feature high-performance Communication Electronics, Inc. (CEI) densely packaged in smaller platforms allowing RF radios must be capable of handling today’s data recording collection systems and was founded by employees of Vitro low cost per channel solutions.
    [Show full text]
  • High-Linearity CMOS RF Front-End Circuits Yongwang Ding Ramesh Harjani
    High-Linearity CMOS RF Front-End Circuits Yongwang Ding Ramesh Harjani iigh-Linearity CMOS tF Front-End Circuits - Springer Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 0-387-23801-8 e-ISBN 0-387-23802-6 Printed on acid-free paper. O 2005 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. SPIN 11345145 To my parents Contents Dedication List of Figures List of Tables 1. INTRODUCTION 1 Development of radio frequency ICs 2 Challenges of modem RF IC design in CMOS 2.1 Noise 2.2 Linearity 3 Contributions of this work 2. RF DEVICES IN CMOS PROCESS 1 Introduction 2 MOSFET 2.1 Transconductance 2.2 Small-signal model 2.3 Linearity 2.4 Noise 3 Inductor 3.1 Layout 3.2 Simulation 3.3 Modeling 4 Capacitor 4.1 Metal capacitor 4.2 Polysilicon capacitor 4.3 Varactor 5 Resistor ..
    [Show full text]
  • RF Switch Design
    RF Switch Design Emily Wagner Petro Papi Colin Cunningham Major Qualifying Project submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the degree of Bachelor of Science Approved: ______________________________ Professor Reinhold Ludwig ______________________________ Professor John McNeill ______________________________ David Whitefield Table of Contents Table of Figures .......................................................................................................................... 2 Table of Tables ........................................................................................................................... 3 Acknowledgements ..................................................................................................................... 4 Abstract ...................................................................................................................................... 5 1 Introduction ........................................................................................................................ 6 1.1 RF Switch Purpose and Cellular Applications ................................................................. 6 1.2 Design Challenges in Mobile Systems ............................................................................ 8 1.2.1 FET Breakdown Restrictions ..................................................................................... 8 1.2.2 Time Limitation of Finite Element Analysis ...............................................................
    [Show full text]
  • Reconfigurable RF Front End Components for Multi-Radio Platform Applications
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2009 Reconfigurable RF Front End Components for Multi-Radio Platform Applications Chunna Zhang University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Electrical and Electronics Commons Recommended Citation Zhang, Chunna, "Reconfigurable RF Front End Components for Multi-Radio Platform Applications. " PhD diss., University of Tennessee, 2009. https://trace.tennessee.edu/utk_graddiss/88 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Chunna Zhang entitled "Reconfigurable RF Front End Components for Multi-Radio Platform Applications." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Electrical Engineering. Aly E. Fathy, Major Professor We have read this dissertation and recommend its acceptance: Benjamin J. Blalock, Marshall O. Pace, Thomas T. Meek Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Chunna Zhang entitled ―Reconfigurable RF Front End components for multi-radio platform applications.‖ I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Electrical Engineering.
    [Show full text]