High-Linearity CMOS RF Front-End Circuits Yongwang Ding Ramesh Harjani

Total Page:16

File Type:pdf, Size:1020Kb

High-Linearity CMOS RF Front-End Circuits Yongwang Ding Ramesh Harjani High-Linearity CMOS RF Front-End Circuits Yongwang Ding Ramesh Harjani iigh-Linearity CMOS tF Front-End Circuits - Springer Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 0-387-23801-8 e-ISBN 0-387-23802-6 Printed on acid-free paper. O 2005 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. SPIN 11345145 To my parents Contents Dedication List of Figures List of Tables 1. INTRODUCTION 1 Development of radio frequency ICs 2 Challenges of modem RF IC design in CMOS 2.1 Noise 2.2 Linearity 3 Contributions of this work 2. RF DEVICES IN CMOS PROCESS 1 Introduction 2 MOSFET 2.1 Transconductance 2.2 Small-signal model 2.3 Linearity 2.4 Noise 3 Inductor 3.1 Layout 3.2 Simulation 3.3 Modeling 4 Capacitor 4.1 Metal capacitor 4.2 Polysilicon capacitor 4.3 Varactor 5 Resistor ... Vlll HIGH-LINEARITY CMOS RF FRONT-END CIRCUITS 6 Summary 3. LINEAR TRANSCONDUCTORS IN CMOS Differential pair Bias offset cross-coupled differential pair Source degenerated transconductor 3.1 Linear resistor degeneration 3.2 Triode-mode transistor degeneration 3.3 Degeneration with constant V,, Differential pair with a constant sum of V,, 4.1 Source grounded pair 4.2 Differential pair with floating voltage source 4.3 Differential pair with mobility compensation Cross-coupled differential pairs with harmonic cancellation Summary 4. LINEARIZATION WITH HARMONIC CANCELLATION Linearization in zero-memory weakly nonlinear systems 1.1 3rd order harmonic cancellation 1.2 Higher order harmonic cancellation Linearization in weakly nonlinear systems with memory Linearity and power consumption Trade off between gain, power consumption and noise 4.1 Impact on power consumption 4.2 Impact on gain 4.3 Impact on noise Harmonic cancellation with imperfections 5.1 Harmonic cancellation with input mismatch 5.2 Harmonic cancellation with circuit mismatch Summary 5. LNA DESIGN IN CMOS 1 Common-gate low noise amplifier 1.1 Gain 1.2 Noise 1.3 Linearity 1.4 Common-gate LNA with harmonic cancellation 2 Common-source low noise amplifier 2.1 Gain Contents Noise Linearity Common-source LNA with harmonic cancellation An example of a common-source LNA 3 Summary 6. DOWN-CONVERSION MIXER DESIGN IN CMOS 1 Passive mixer 1.1 Conversion gain 1.2 Noise 1.3 Linearity Gilbert mixer 2.1 Conversion gain 2.2 Noise 2.3 Linearity Gilbert mixer with harmonic cancellation 3.1 Conversion gain 3.2 Improvement of dynamic range 3.3 An example of a receiver RF front-end with harmonic cancellation Summary 7. POWER AMPLIFIER DESIGN IN CMOS 1 Traditional CMOS linear power amplifiers 1.1 Class A amplifier 1.2 Class B amplifier 1.3 Class AB amplifier CMOS parallel class A&B amplifier 2.1 Improvement of linear range 2.2 Power efficiency improvement 2.3 An example of parallel class A&B power amplifier Summary 8. CONCLUSIONS References Index List of Figures Small-signal noise model of a MOSFET Definition of P 1dB Definition of IP3 Cross section of an NMOS I-V curve of a typical NMOS Small-signal model of a MOSFET in saturation RF small-signal model of a MOSFET Simple amplifier Simulated gain of the simple amplifier (Figure 2.5) Common-source grounded MOSFET pair IIV3 vs. drain current and cut-off frequency of a typical NMOS Flicker noise corner frequency Noise model of MOSFET Noise model of MOSFET at low frequencies Noise model of MOSFET at high frequencies Square spiral inductor Circular spiral inductor Octagonal spiral inductor Square spiral inductor with polysilicon patterned ground shield 5-element spiral inductor model 9-element spiral inductor model 11-element spiral inductor model Metal plate capacitor xii HIGH-LINEARITY CMOS RF FRONT-END CIRCUITS Metal sandwich capacitor Interdigitated metal capacitor Accumulation mode varactor Inversion mode varactor An NMOS differential pair Cross-coupled differential pair Source degenerated differential pair Source degenerated differential pair with two current sources Source degenerated differential pair of "super MOS' Differential pair degenerated by transistors in triode mode Source degenerated differential pair with constant 6, Transistor degenerated differential pair with constant Vg,in CMOS Source grounded differential pair Differential pair with floating voltage sources An example of differential pair with floating voltage sources Effective model of NMOS with mobility degradation Differential pair with mobility compensation Differential pair with harmonic cancellation Linearization of the system with rdpower order nonlinearity Linearization ofthe system with ydand sth power order nonlinearity A weakly nonlinear system expressed in the form of a Volterra series Block diagram of the linearization technique for 3d order harmonic cancellation IIP3 comparison of MOSFET with and without rdhar- monic cancellation Impact of input mismatch on intermodulation suppression Impact of circuit mismatch on intermodulation suppression Common-gate LNA Common-gate LNA with harmonic cancellation Simple common-source amplifier Inductive source-degenerated LNA Small-signal model of an inductive source-degenerated LNA Source-degenerated LNA with harmonic cancellation ... List of Figures Xlll Die photograph of a source-degenerated LNA with har- monic cancellation 69 Two tone test with and without 3rd harmonic cancellation 70 Comparison of the intermodulation signals for smaller inputs 70 Comparison of IIP3 with and without S~harmonic cancellation 7 1 Comparison of reported IIP3 vs. power consumption Diode mixer Double-balanced passive mixer Gilbert mixer Double-balanced Gilbert mixer Switching gain curve of a double-balanced Gilbert mixer Double-balanced Gilbert mixer with DC current stealing Double-balanced Gilbert mixer with harmonic cancellation LNA and Gilbert mixer LNA and Gilbert mixer with harmonic cancellation Complete schematic of LNA and Gilbert mixer with harmonic cancellation IIP3 curve of the traditional RJ? front-end IIP3 curve of the RF front-end with harmonic cancellation General CMOS power amplifier circuit Drain current and voltage of class A amplifier Impedance match by a quarter wave length transmission line Impedance match by LC network Single MOSFET amplifier with inductive reverse isolation Measured gain curves of a single MOSFET class A am- plifier and a cascode class A amplifier Drain current and voltage of class B amplifier Conceptual block diagram for the parallel class A&B amplifier 103 Transconductances for Class A, class B and parallel class A&B for different y,i,,s 105 Parallel class A&B amplifier transfer characteristics 105 Comparison of intermodulation products 106 Source follower 107 Comparison of PAE 108 Circuit schematic for the CMOS parallel class A&B amplifier 109 Die microphotograph of the CMOS parallel class A&B amplifier xiv HIGH-LINEARITY CMOS RF FRONT-END CIRCUITS 7.16 CMOS parallel class A&B amplifier measurement results 110 List of Tables 2.1 Coefficients of modified Wheerler's formula 5.1 Summary of measured results 6.1 Summary of simulation results 7.1 Comparison of measured results Chapter 1 INTRODUCTION This book focuses on high performance radio frequency integrated circuits (RF IC) design in CMOS. 1. Development of radio frequency ICs Wireless communications has been advancing rapidly in the past two decades. Many high performance systems have been developed, such as cellular systems (AMPS, GSM, TDMA, CDMA, W-CDMA, etc.), GPS system (global posi- tioning system) and WLAN (wireless local area network) systems. The rapid growth of VLSI technology in both digital circuits and analog circuits provides benefits for wireless communication systems. Twenty years ago not many peo- ple could imagine millions of transistors in a single chip or a complete radio for size of a penny. Now not only complete radios have been put in a single chip, but also more and more functions have been realized by a single chip and at a much lower price. A radio transmits and receives electro-magnetic signals through the air. The signals are usually transmitted on high frequency carriers. For example, a typ- ical voice signal requires only 30 Kilohertz bandwidth. When it is transmitted by a FM radio station, it is often carried by a frequency in the range of tens of megahertz to hundreds of megahertz. Usually a radio is categorized by its carrier frequency, such as 900 MHz radio or 5 GHz radio. In general, the higher the carrier frequency, the better the directivity, but the more difficult the radio design. There are many radio standards that are employed these days, such as 100 MHz FM radios, 1 GHz analog cell phone radios, 2 GHz digital cell phone radios, and 5 GHz radios in wireless LAN. In the past radios were built using discrete components: transistors, diodes, inductors, resistors, capacitors, etc. With the development of high speed VLSI process radios can now be made of individual chip sets and each individual HIGH-LINEARITY CMOS RF FRONT-END CIRCUITS chip is built as a stand-alone block with different functions. Many design techniques have also been developed for integrated circuits so that more and more individual blocks are integrated together and a single chip radio is finally becoming a reality.
Recommended publications
  • RF CMOS Power Amplifiers: Theory, Design and Implementation the KLUWER INTERNATIONAL SERIES in ENGINEERING and COMPUTER SCIENCE
    RF CMOS Power Amplifiers: Theory, Design and Implementation THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE ANALOG CIRCUITS AND SIGNAL PROCESSING Consulting Editor: Mohammed Ismail. Ohio State University Related Titles: POWER TRADE-OFFS AND LOW POWER IN ANALOG CMOS ICS M. Sanduleanu, van Tuijl ISBN: 0-7923-7643-9 RF CMOS POWER AMPLIFIERS: THEORY, DESIGN AND IMPLEMENTATION M.Hella, M.Ismail ISBN: 0-7923-7628-5 WIRELESS BUILDING BLOCKS J.Janssens, M. Steyaert ISBN: 0-7923-7637-4 CODING APPROACHES TO FAULT TOLERANCE IN COMBINATION AND DYNAMIC SYSTEMS C. Hadjicostis ISBN: 0-7923-7624-2 DATA CONVERTERS FOR WIRELESS STANDARDS C. Shi, M. Ismail ISBN: 0-7923-7623-4 STREAM PROCESSOR ARCHITECTURE S. Rixner ISBN: 0-7923-7545-9 LOGIC SYNTHESIS AND VERIFICATION S. Hassoun, T. Sasao ISBN: 0-7923-7606-4 VERILOG-2001-A GUIDE TO THE NEW FEATURES OF THE VERILOG HARDWARE DESCRIPTION LANGUAGE S. Sutherland ISBN: 0-7923-7568-8 IMAGE COMPRESSION FUNDAMENTALS, STANDARDS AND PRACTICE D. Taubman, M. Marcellin ISBN: 0-7923-7519-X ERROR CODING FOR ENGINEERS A.Houghton ISBN: 0-7923-7522-X MODELING AND SIMULATION ENVIRONMENT FOR SATELLITE AND TERRESTRIAL COMMUNICATION NETWORKS A.Ince ISBN: 0-7923-7547-5 MULT-FRAME MOTION-COMPENSATED PREDICTION FOR VIDEO TRANSMISSION T. Wiegand, B. Girod ISBN: 0-7923-7497- 5 SUPER - RESOLUTION IMAGING S. Chaudhuri ISBN: 0-7923-7471-1 AUTOMATIC CALIBRATION OF MODULATED FREQUENCY SYNTHESIZERS D. McMahill ISBN: 0-7923-7589-0 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN S. Huss ISBN: 0-7923-7598-X CONTINUOUS-TIME SIGMA-DELTA MODULATION FOR A/D CONVERSION IN RADIO RECEIVERS L.
    [Show full text]
  • Three-Dimensional Integrated Circuit Design: EDA, Design And
    Integrated Circuits and Systems Series Editor Anantha Chandrakasan, Massachusetts Institute of Technology Cambridge, Massachusetts For other titles published in this series, go to http://www.springer.com/series/7236 Yuan Xie · Jason Cong · Sachin Sapatnekar Editors Three-Dimensional Integrated Circuit Design EDA, Design and Microarchitectures 123 Editors Yuan Xie Jason Cong Department of Computer Science and Department of Computer Science Engineering University of California, Los Angeles Pennsylvania State University [email protected] [email protected] Sachin Sapatnekar Department of Electrical and Computer Engineering University of Minnesota [email protected] ISBN 978-1-4419-0783-7 e-ISBN 978-1-4419-0784-4 DOI 10.1007/978-1-4419-0784-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009939282 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword We live in a time of great change.
    [Show full text]
  • A Wide-Band RF Front-End with Linear Active Notch Filter for Mobile
    RMO2B-5 A Wide-Band RF Front-End with Linear Active Notch Filter for Mobile TV Applications Seung Hwan Jung, Kang Hyuk Lee, Young Jae Lee1, Hyun Kyu Yu1, Yun Seong Eo Radio Frequency Circuits and Systems Laboratory Kwangwoon University, Seoul Korea 1Electronics and Telecommunications Research Institute (ETRI), Daejeon Korea Abstract — This paper presents a wide-band RF front-end inductor has a poor linearity and cannot withstand the with linear active notch filter covering both T-DMB and strong GSM interferer even with the external GSM band DVB-H. A single to differential converter with the low amplitude/phase error and 6dB step RF VGA using the rejection SAW filter. To overcome these drawbacks, a capacitor are implemented. Also, highly linear and Q- newly proposed linear Q-enhanced active notch filter is enhanced tunable active inductor is proposed. The linear presented in this paper. In order to obtain a high linearity active notch filter rejects GSM band up to 23dB and achieves of the active inductor, the MGTR (Multiple Gated 20dB linearity improvement. The RF front-end is fabricated Transistor) topology is adopted to the gyrator’s trans- on 90nm CMOS technology and consumes 29.7mW. conductor cell and push-pull type negative resistor circuit is also used, which maintain the constant inductance and Index Terms — Wide-band LNA, Single to differential converter, High linear active inductor, Notch filter, CMOS. quality factor in spite of very strong GSM input interferer. I. INTRODUCTION II. THE PROPOSED ARCHITECTURE Nowadays, the mobile TV markets such as Terrestrial- Fig. 1 illustrates the proposed wide-band RF front-end Digital Multimedia Broadcasting (T-DMB) in Korea and with linear active notch filter.
    [Show full text]
  • Design of Reconfigurable Radio Front-Ends
    Design of Reconfigurable Radio Front-Ends Xiao Xiao Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2018-142 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-142.html December 1, 2018 Copyright © 2018, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Design of Reconfigurable Radio Front-Ends by Xiao Xiao A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Borivoje Nikolic, Chair Professor Ali Niknejad Professor Paul Wright Spring 2016 Design of Reconfigurable Radio Front-Ends Copyright 2016 by Xiao Xiao 1 Abstract Design of Reconfigurable Radio Front-Ends by Xiao Xiao Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University of California, Berkeley Professor Borivoje Nikolic, Chair Modern and future mobile devices must support increasingly more wireless standards and bands. Currently, multi-band coexistence is enabled by a network of discrete, off-chip com- ponents that are bulky, expensive, and narrowband. As transceivers are required to accom- modate an increasing number of wireless bands, the required number of discrete components increases accordingly, resulting in greater bill of materials (BoM) cost and front-end module (FEM) area.
    [Show full text]
  • MOSFET Modeling for RF IC Design Yuhua Cheng, Senior Member, IEEE, M
    1286 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 7, JULY 2005 MOSFET Modeling for RF IC Design Yuhua Cheng, Senior Member, IEEE, M. Jamal Deen, Fellow, IEEE, and Chih-Hung Chen, Member, IEEE Invited Paper Abstract—High-frequency (HF) modeling of MOSFETs for focus on the dc drain current, conductances, and intrinsic charge/ radio-frequency (RF) integrated circuit (IC) design is discussed. capacitance behavior up to the megahertz range.1 However, as Modeling of the intrinsic device and the extrinsic components is the operating frequency increases to the gigahertz range, the im- discussed by accounting for important physical effects at both dc and HF. The concepts of equivalent circuits representing both portance of the extrinsic components rivals that of the intrinsic intrinsic and extrinsic components in a MOSFET are analyzed to counterparts. Therefore, an RF model with the consideration obtain a physics-based RF model. The procedures of the HF model of the HF behavior of both intrinsic and extrinsic components parameter extraction are also developed. A subcircuit RF model in MOSFETs is extremely important to achieve accurate and based on the discussed approaches can be developed with good predicts results in the simulation of a designed circuit. model accuracy. Further, noise modeling is discussed by analyzing the theoretical and experimental results in HF noise modeling. Compared with the MOSFET modeling for digital and low- Analytical calculation of the noise sources has been discussed frequency analog applications, the HF modeling of MOSFETs is to understand the noise characteristics, including induced gate more challenging. All of the requirements for a MOSFET model noise.
    [Show full text]
  • Nanoelectronic Mixed-Signal System Design
    Nanoelectronic Mixed-Signal System Design Saraju P. Mohanty Saraju P. Mohanty University of North Texas, Denton. e-mail: [email protected] 1 Contents Nanoelectronic Mixed-Signal System Design ............................................... 1 Saraju P. Mohanty 1 Opportunities and Challenges of Nanoscale Technology and Systems ........................ 1 1 Introduction ..................................................................... 1 2 Mixed-Signal Circuits and Systems . .............................................. 3 2.1 Different Processors: Electrical to Mechanical ................................ 3 2.2 Analog Versus Digital Processors . .......................................... 4 2.3 Analog, Digital, Mixed-Signal Circuits and Systems . ........................ 4 2.4 Two Types of Mixed-Signal Systems . ..................................... 4 3 Nanoscale CMOS Circuit Technology . .............................................. 6 3.1 Developmental Trend . ................................................... 6 3.2 Nanoscale CMOS Alternative Device Options ................................ 6 3.3 Advantage and Disadvantages of Technology Scaling . ........................ 9 3.4 Challenges in Nanoscale Design . .......................................... 9 4 Power Consumption and Leakage Dissipation Issues in AMS-SoCs . ................... 10 4.1 Power Consumption in Various Components in AMS-SoCs . ................... 10 4.2 Power and Leakage Trend in Nanoscale Technology . ........................ 10 4.3 The Impact of Power Consumption
    [Show full text]
  • An Open Rf-Digital Interface for Software-Defined Radios
    .................................................................................................................................................................................................................. AN OPEN RF-DIGITAL INTERFACE FOR SOFTWARE-DEFINED RADIOS .................................................................................................................................................................................................................. THIS ARTICLE PRESENTS AN OPEN, COMPLETE RF-DIGITAL INTERFACE APPROPRIATE FOR SOFTWARE-DEFINED RADIOS (SDRS). THE INTERFACE INCLUDES DATA AND METADATA (CONTROL AND CONTEXT) PACKETS.THE CONTROL AND CONTEXT PACKETS DESCRIBE THE ENTIRE RF FRONT END.THE PROPOSED DESCRIPTION HAS A HIERARCHICAL STRUCTURE AND IS A HARDWARE ABSTRACTION.THE INTERFACE SUPPORTS ADVANCED ARCHITECTURES SUCH AS SDR CLOUDS.THE METADATA PACKETS CAN BE REPRESENTED USING FORMAL, COMPUTER-PROCESSABLE SEMANTICS. ......Wireless signals are centered at a RF front-end details certain RF. The signal-processing operations— As Figure 1 shows, the RF front end is not synchronization, modulation, and so on—are entirely analog; it consists of an analog front implemented on baseband signals centered at end and a digital front end (DFE).1 The DFE zero frequency. Therefore, receivers must does interpolation or decimation to increase or down-convert from RF to baseband. Trans- decrease the sampling frequency. Furthermore, mitters perform the opposite process of the down-conversion and up-conversion can up-conversion.
    [Show full text]
  • Gomactech-05 Program Committee
    GOMACTech-05 Government Microcircuit Applications and Critical Technology Conference FINAL PROGRAM "Intelligent Technologies" April 4 - 7, 2005 The Riviera Hotel Las Vegas, Nevada GOMACTech-05 ADVANCE PROGRAM CONTENTS • Welcome ............................................................................ 1 • Registration ........................................................................ 3 • Security Procedures........................................................... 3 • GOMACTech Tutorials ....................................................... 3 • Exhibition............................................................................ 5 • Wednesday Evening Social ............................................... 5 • Hotel Accommodations ...................................................... 6 • Conference Contact ........................................................... 6 • GOMACTech Paper Awards............................................... 6 • GOMACTech Awards & AGED Service Recognition.......... 7 • Rating Form Questionnaire ................................................ 7 • Speakers’ Prep Room ........................................................ 7 • CD-ROM Proceedings ....................................................... 7 • Information Message Center.............................................. 8 • Participating Government Organizations ........................... 8 • GOMAC Web Site .............................................................. 8 GOMAC Session Breakdown • Plenary Session ..............................................................
    [Show full text]
  • Multiband LNA Design and RF-Sampling Front-Ends for Flexible Wireless Receivers
    Linköping Studies in Science and Technology Dissertation No. 1036 Multiband LNA Design and RF-Sampling Front-Ends for Flexible Wireless Receivers Stefan Andersson Electronic Devices Department of Electrical Engineering Linköping University, SE-581 83 Linköping, Sweden Linköping 2006 ISBN 91-85523-22-4 ISSN 0345-7524 ii Multiband LNA Design and RF-Sampling Front-Ends for Flexible Wireless Receivers Stefan Andersson ISBN 91-85523-22-4 Copyright c Stefan Andersson, 2006 Linköping Studies in Science and Technology Dissertation No. 1036 ISSN 0345-7524 Electronic Devices Department of Electrical Engineering Linköping University SE-581 83 Linköping Sweden Author e-mail: [email protected] Cover Image Picture by the author illustrating an RF-sampling receiver on block level. The chip microphotograph represents a multiband direct RF-sampling receiver front-end for WLAN fabricated in 0.13 µm CMOS. Printed by LiU-Tryck, Linköping University Linköping, Sweden, 2006 I nådens år 2006! As my grandfather would have said. iii iv Abstract The wireless market is developing very fast today with a steadily increasing num- ber of users all around the world. An increasing number of users and the constant need for higher and higher data rates have led to an increasing number of emerging wireless communication standards. As a result there is a huge demand for flexible and low-cost radio architectures for portable applications. Moving towards multi- standard radio, a high level of integration becomes a necessity and can only be ac- complished by new improved radio architectures and full utilization of technology scaling. Modern nanometer CMOS technologies have the required performance for making high-performance RF circuits together with advanced digital signal processing.
    [Show full text]
  • Analysis and Design of an Rf Front End for a Radar Digital Receiver
    ANALYSIS AND DESIGN OF AN RF FRONT END FOR A RADAR DIGITAL RECEIVER A Thesis Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfillment Of the Requirements for the Degree Master of Science In Electrical Engineering By John O. Mortensen 2018 SIGNATURE PAGE THESIS: ANALYSIS AND DESIGN OF AN RF FRONT END FOR A RADAR DIGITAL RECEIVER AUTHOR: John O. Mortensen DATE SUBMITTED: Winter 2018 Electrical and Computer Engineering Department Dr. James Kang Thesis Committee Chair Electrical Engineering Dr. Thomas Ketseoglou Electrical Engineering Dr. Saloman Oldak Electrical Engineering ii ACKNOWLEDGEMENTS First, I’d like to thank my adviser Dr. James Kang for the patient help he has provided over the two years of my pursuit of my master’s degree. In addition I’d like to thank Dr. Ketseoglou and Dr. Oldak and the rest of the staff at Cal Poly for all of the great electronics courses I’ve taken both recently and back in the 1980s when I first received my BSEE. I’d should also thank MPT and its owner Dr. Rick Sturdivant for the help on this project and the funding available to complete this research and project. I’d also like to thank my wife Marie for putting up with me and the support she has given me over the years. iii ABSTRACT This paper focuses on the use of commercial off the shelf parts in the design of an X Band receiver used in radar. The need today for a low cost flexible approach is of the utmost importance due to the trend of having a transceiver module for each element of a phased array antenna.
    [Show full text]
  • RELIABILITY ENGINEERING in RF CMOS Guido T. Sasse
    RELIABILITY ENGINEERING IN RF CMOS Guido T. Sasse Samenstelling promotiecommissie: Voorzitter: prof.dr.ir. J. van Amerongen Universiteit Twente Secretaris: prof.dr.ir. J. van Amerongen Universiteit Twente Promotoren: prof.dr. J. Schmitz Universiteit Twente, NXP Semiconductors prof.dr.ir. F.G. Kuper Universiteit Twente Referenten: dr.ing. L.C.N. de Vreede Technische Universiteit Delft dr. P.J. van der Wel NXP Semiconductors Leden: prof.dr.ir. W. van Etten Universiteit Twente prof.dr. G. Groeseneken Katholieke Universiteit Leuven, IMEC prof.dr.ir. A.J. Mouthaan Universiteit Twente The work described in this thesis was supported by the Dutch Technology Founda- tion STW (Reliable RF, TCS.6015) and carried out in the Semiconductor Components Group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands. G.T. Sasse Reliability Engineering in RF CMOS Ph.D. thesis, University of Twente, The Netherlands ISBN: 978-90-365-2690-6 Cover design: J. Warnaar Printed by PrintPartners Ipskamp, Enschede c G.T. Sasse, Enschede, 2008 RELIABILITY ENGINEERING IN RF CMOS PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus, prof.dr. W.H.M. Zijm, volgens besluit van het College voor Promoties in het openbaar te verdedigen op 4 juli 2008 om 15.00 uur door Guido Theodor Sasse geboren op 29 september 1977 te Lochem Dit proefschrift is goedgekeurd door de promotoren: prof.dr. J. Schmitz prof.dr.ir. F.G. Kuper Contents 1 Introduction 1 1.1 RF CMOS . 1 1.2 Reliability engineering . 2 1.3 MOSFET degradation mechanisms . 4 1.3.1 Hot carrier degradation .
    [Show full text]
  • Programmable and Tunable Circuits for Flexible RF Front Ends
    Linköping Studies in Science and Technology Thesis No. 1379 Programmable and Tunable Circuits for Flexible RF Front Ends Naveed Ahsan LiU-TEK-LIC-2008:37 Department of Electrical Engineering Linköping University, SE-581 83 Linköping, Sweden Linköping 2008 ISBN 978-91-7393-815-0 ISSN 0280-7971 ii Abstract Most of today’s microwave circuits are designed for specific function and special need. There is a growing trend to have flexible and reconfigurable circuits. Circuits that can be digitally programmed to achieve various functions based on specific needs. Realization of high frequency circuit blocks that can be dynamically reconfigured to achieve the desired performance seems to be challenging. However, with recent advances in many areas of technology these demands can now be met. Two concepts have been investigated in this thesis. The initial part presents the feasibility of a flexible and programmable circuit (PROMFA) that can be utilized for multifunctional systems operating at microwave frequencies. Design details and PROMFA implementation is presented. This concept is based on an array of generic cells, which consists of a matrix of analog building blocks that can be dynamically reconfigured. Either each matrix element can be programmed independently or several elements can be programmed collectively to achieve a specific function. The PROMFA circuit can therefore realize more complex functions, such as filters or oscillators. Realization of a flexible RF circuit based on generic cells is a new concept. In order to validate the idea, a test chip has been fabricated in a 0.2µm GaAs process, ED02AH from OMMICTM. Simulated and measured results are presented along with some key applications like implementation of a widely tunable band pass filter and an active corporate feed network.
    [Show full text]