Biology and Control of Russian Thistle (Salsola Tragus L.) in Bighorn

Total Page:16

File Type:pdf, Size:1020Kb

Biology and Control of Russian Thistle (Salsola Tragus L.) in Bighorn University of Alberta Biology and Control of Russian Thistle (Salsola tragus L.) in Bighorn Sheep (Ovis canadensis Shaw) Winter Ranges in Montane Grasslands of Jasper National Park, Alberta, Canada by Timothy Michael Antill A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Land Reclamation and Remediation Department of Renewable Resources ©Timothy Michael Antill PREVIEWSpring 2010 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-56628-2 Our file Notre référence ISBN: 978-0-494-56628-2 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author’s permission. PREVIEW In compliance with the Canadian Conformément à la loi canadienne sur la Privacy Act some supporting forms protection de la vie privée, quelques may have been removed from this formulaires secondaires ont été enlevés de thesis. cette thèse. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n’y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. Examining Committee Dr. M. Anne Naeth, Department of Renewable Resources Dr. Edward W. Bork, Department of Agricultural, Food and Nutritional Science Dr. Robert J. Hudson, Department of Renewable Resources Dr. A. Lee Foote, Department of Renewable Resources PREVIEW ABSTRACT Russian thistle (Salsola tragus L.) invaded areas of native montane grassland important to winter survival of bighorn sheep (Ovis canadensis Shaw) were studied in Jasper National Park, Alberta, Canada. The biology of Russian thistle and its control in the Park were studied in the field and greenhouse. Russian thistle in grasslands were 9.1 cm tall with 37.5 seeds per plant, whereas larger plants in naturally disturbed habitats were 29.8 cm tall with 1562.4 seeds per plant. Plants travelled up to 4,180 m during dispersal. With soil seed contact, litter depth did not inhibit performance or survivability; without soil contact, thick litter reduced germination and plant performance. Russian thistle responded positively to increased greenhouse temperature and drier conditions. Seven control treatments involving herbicide, seeding mixes, hand pulling, and grazing exclusion were assessed. Grazing exclusion was the best field management option, increasing litter and biomass, while reducing Russian thistle density and biomass. PREVIEW ACKNOWLEDGEMENTS I sincerely thank my supervisor, Dr. Anne Naeth, for her guidance, insight and support throughout my MSc experience. I thank my committee members, Dr. Bork for his technical advice and input, and Dr. Robert Hudson and Dr. Lee Foote for their comments and willingness to partake in the review process. Financial support from the Alberta Conservation Association, Canadian Wildlife Federation, Parks Canada, and TD Friends of the Environment is gratefully acknowledged. Thank you to Golder Associates Ltd. in partnership with the Natural Sciences and Engineering Research Council of Canada for an NSERC Industrial Grant. I also thank the staff and Department of Renewable Resources. I am very grateful for the assistance of numerous people during this project. Alan Westhaver, of Parks Canada, deserves special thanks for originally proposing this project, and for providing his support and knowledge. Additional assistance from Parks staff was provided by Jennifer McPhee, Naomi Harder, and Greg Slatter. Field assistance was provided by Darin Sherritt, Ingrid Hallin, Katryna Forsch, Mallory Jackson, Sarah Cartier, Robin Lagroix-McLean, Steven Murchison, and Steve Rome. Terry Dodge, Bruce Alexander, and Gema Armstrong helped in scouring the Athabasca Valley in search of wayward tagged thistles. Technical advice and guidance was greatly appreciated from Dr. Andreas Hamann, Dr. Ellen MacDonald, Dr. David Chanasyk, Dr. Barry Irving, Bruce Alexander, Jared Leboldus, and Rick Pelletier. I am thankful for the support and friendshipPREVIEW of those in my graduate lab. I thank Marilyn and Terry Antill for instilling in me a passion for the natural world, and teaching me that learning is a life long pursuit. Finally, I acknowledge the love and assistance of Holley Yorston. Over the past two years she has had to endure cold rainy days in the field searching for Russian thistle, reading aloud of papers and books on invasive species during road trips to and from Jasper, countless hours of discussion on the finer points of Russian thistle ecology, and numerous sunshine filled weekends lost to work on the thesis. For her endless support and enthusiasm, I thank her. See them tumbling down, Pledging their love to the ground Lonely but free I’ll be found Drifting along with the tumbling tumbleweeds. Cares of the past are behind Nowhere to go but I’ll find Just where the trail will wind Drifting along with the tumbling tumbleweeds. I know when night has gone That a new world’s born at dawn. I’ll keep rolling along Deep in my heart is a song Here on the range I belong Drifting along with the tumbling tumbleweeds. “Tumbling Tumbleweeds” composed by Bob Nolan in 1932 and recorded by the Sons of the Pioneers. PREVIEW TABLE OF CONTENTS CHAPTER I. BACKGROUND ......................................................................... 1 1. INTRODUCTION .......................................................................................... 1 2. RUSSIAN THISTLE ...................................................................................... 3 2.1 Plant Origin and History ........................................................................ 3 2.1 Plant Characteristics ............................................................................. 5 2.2 Management and Control ...................................................................... 8 3. STUDY AREA ............................................................................................... 9 3.1 Location ................................................................................................ 9 3.2 Climate ............................................................................................... 10 3.3 Landscape, Topography and Soils ...................................................... 11 3.4 Vegetation .......................................................................................... 12 3.5 Wildlife ................................................................................................ 13 4. GENERAL RESEARCH OBJECTIVES ....................................................... 14 5. REFERENCES CITED................................................................................ 16 CHAPTER II. RUSSIAN THISTLE (SALSOLA TRAGUS L.) POPULATION BIOLOGY IN THE LOWER ATHABASCA VALLEY OF JASPER NATIONAL PARK, ALBERTA, CANADA ................. 22 1. INTRODUCTIONPREVIEW ........................................................................................ 22 2 RESEARCH OBJECTIVES AND HYPOTHESES ........................................ 24 3. MATERIALS AND METHODS .................................................................... 25 3.1 Extent of Infestation ............................................................................ 25 3.2 Russian Thistle Movement and Seed Germination After Winter .......... 26 3.3 Russian Thistle Seed Production ........................................................ 27 3.4 Russian Thistle Seed Viability and Germination .................................. 28 3.5 Russian Thistle Response to Greenhouse Litter Depth ....................... 29 3.6 Russian Thistle
Recommended publications
  • Biological Control
    Salsola tragus Biological Control: Hasan et al . (2001) report that, "The rust fungus Uromyces salsolae Reichardt (Isolate MW338; IMI No. 372660) was found on S. tragus in western Turkey. The attacked plants were covered with a powdery brown mass of unicellular, globular to oval-shaped urediniospores produced in round to elongated sori on the leaves and stems, and showed much reduced growth. Later in the season, the plants produced unicellular, thick-walled, dark teliospores borne in round to elongated telia. Similarly, the S. tragus plants from the USA, when inoculated in the greenhouse with a water suspension of the urediniospores of U. salsolae , developed brown uredinia and then telia as the disease advanced. The rust has been reported on several species of Salsola in the former-USSR, Israel, Iran, Romania, Australia, France, Pakistan, and Portugal (CAB International Report, unpublished). IMI records also show that the rust has been recorded on other genera of Chenopodiaceae from former USSR, Cyprus, and Romania. During our host specicity studies, the strain of U. salsolae collected by S. Hasan in Turkey was restricted to S. tragus and did not infect any of the other 16 plant species or varieties belonging to six different families that were tested. The fungus severely infected S. tragus plants not only from the USA but also those from Montpellier (France) and Turkey, showing that the rust may not be restricted only to certain biotypes of the weed. The rust fungus, which is highly damaging and effective in killing or severely reducing the growth of the weed under greenhouse conditions, has recently been imported into the USA for further host specificity testing under quarantine conditions.
    [Show full text]
  • Introductions for Biological Control in Hawaii: 1979 and 1980
    Vol. 24, No. 1, September 15, 1982 109 Introductions for Biological Control in Hawaii: 1979 and 1980 PY. LAI, G.Y. FUNASAKI, S Y. HIGA1 The Plant Pest Control Branch (formerly Entomology Branch) of the Hawaii Department of Agriculture has maintained a beneficial organism introduction program for many years. This paper provides notes on the status of some pests and their purposely introduced natural enemies and a list of insects introduced and released for biological control during 1979 and 1980 (Table 1). All benefi cial introductions are thoroughly screened and studied in a quarantine facility and must go through a clearance process prior to being released. WEED PEST CONTROL Ageratina riparia (Regel) K. & R. (Hamakua pamakani) Three organisms contributing to the control of Hamakua pamakani are the stem galling tephritid, Procecidochares alani Steyskal, the leaf defoliating ptero- phorid, Oidaematophorus sp., and the leaf spotting fungus, Cercosporella sp. (introduced by Dr. E.E. Trujillo, Univeristy of Hawaii Plant Pathologist). P. alani was initially released on Hawaii Island in 1974, Oidaematophorus sp. in 1973 andC. sp.in 1975. The combined activities of these purposely introduced beneficial organisms have contributed by severely reducing thickets of Hamakua pamakani on the island of Hawaii. Desirable forage grasses have replaced pamakani in 16,000 to 20,000 ha of pasture lands. Many of these previously heavily infested lands have been restored to productive use. Salsola pestifer A. Nelson (Russian thistle) Through the cooperation of the USDA Biological Control of Weeds Labora tory, Albany, California, two beneficial coleophorids, Coleophora parthenica Meyrick and C. klimeschiella Toll, were introduced to aid in the control of Rus sian thistle, a noxious weed that infests about 320 ha of rangelands on Hawaii.
    [Show full text]
  • The Taxonomy of the Side Species Group of Spilochalcis (Hymenoptera: Chalcididae) in America North of Mexico with Biological Notes on a Representative Species
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1984 The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species. Gary James Couch University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Couch, Gary James, "The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species." (1984). Masters Theses 1911 - February 2014. 3045. Retrieved from https://scholarworks.umass.edu/theses/3045 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1984 Department of Entomology THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Approved as to style and content by: Dr. T/M. Peter's, Chairperson of Committee CJZl- Dr. C-M. Yin, Membe D#. J.S. El kin ton, Member ii Dedication To: My mother who taught me that dreams are only worth the time and effort you devote to attaining them and my father for the values to base them on.
    [Show full text]
  • Weed Biocontrol: Extended Abstracts from the 1997 Interagency Noxious-Weed Symposium
    Weed Biocontrol: Extended Abstracts from the 1997 Interagency Noxious-Weed Symposium Dennis Isaacson Martha H. Brookes Technical Coordinators U.S. Department of Agriculture Forest Service Forest Health Technology Enterprise Team Morgantown, WV and Oregon Department of Agriculture Salem, OR June 1999 ACKNOWLEDGMENTS Many of the tasks of organizing a symposium such as this — and there are many — are not obvious, and, if they are handled well, the effort that goes into them can easily be overlooked. Sherry Kudna of the Oregon Department of Agriculture Weed Control staff managed most of the arrangements and took care of many, many details, which helped the symposium run smoothly. We truly appreciate her many contributions. We also acknowledge the contributions of the presenters. They not only organized their own presentations and manuscripts, but also assisted with reviewing drafts of each other’s papers in the proceedings. Several of the presenters also covered their own expenses. Such dedication speaks well of their commitment to improving the practice of weed biocontrol. Both the Oregon State Office of the Bureau of Land Management and the USDA Forest Service made major contributions to supporting the symposium. Although several individuals from both organizations provided assistance, we especially note the encouragement and advice of Bob Bolton, Oregon Bureau of Land Management Weed Control Coordinator, and the willingness to help and financial support for publishing this document from Richard C. Reardon, Biocontrol/Biopesticides Program Manager, USDA Forest Service's Forest Health Technology Enterprise Team, Morgantown, WV. We thank Tinathan Coger for layout and design and Patricia Dougherty for printing advice and coordination of the manuscript We also thank Barbra Mullin, Montana State Department of Agriculture, who delivered the keynote address; Tami Lowry, Pacific Northwest Research Station, Corvallis, who helped format the document; and Eric Coombs, who provided the photographs of weeds and agents that convey the concepts of weed biocontrol.
    [Show full text]
  • Differential Susceptibility of Russian Thistle Accessions to Colletotrichum Gloeosporioides
    Differential susceptibility of Russian thistle accessions to Colletotrichum gloeosporioides William Bruckart , , a, Craig Cavina, Laszlo Vajnab, Ildiko Schwarczingerb and Frederick J. Ryanc a USDA-ARS-FDWSRU, 1301 Ditto Ave., Ft. Detrick, MD 21702, USA b Plant Protection Institute, Hungarian Academy of Sciences, P.O. Box 102, Budapest 1525, Hungary c USDA-ARS-EIDP, 9611 South Riverbend Ave., Parlier, CA 93648, USA Received 16 May 2003; accepted 1 December 2003. Available online 30 December 2003. Abstract Molecular information suggests that Russian thistle (Salsola tragus L.) in the US may consist of more than one genetic entity. This genetic variation needs to be taken into account when developing agents for biological control of this important weed. Preliminary evidence suggests that there are differences in susceptibility of Salsola sp. to infection by fungal pathogens. In the present study, an isolate of Colletotrichum gloeosporioides, a pathogen of Russian thistle collected in Hungary was tested for its ability to infect and damage California accessions of S. tragus (referred to as Type A) and the related S. tragus, Type B. The minimum dew period and temperature required for infection of S. tragus with C. gloeosporioides was determined to be 12–16 h and 25 °C. Both Type A and Type B were susceptible, but C. gloeosporioides caused greater damage and reductions in biomass of Type A than of Type B. Fresh weights of Type A and Type B were reduced from controls by 60 and 9%, respectively, after inoculations with C. gloeosporioides. Results from this study illustrate the importance of understanding target plant taxonomy in biological control evaluations.
    [Show full text]
  • Fording River Operations: the Swift Project Description
    Fording River Operations: The Swift Project Description Submitted to: BC Environmental Assessment Office 1st Floor 836 Yates Street PO Box 9426 Stn Prov Govt Victoria, BC, V8W 9V1 Pursuant to: British Columbia Environmental Assessment Act Submitted by: Teck Coal Limited – Fording River Operations April 2011 Teck Coal Limited – Fording River Operations: The Swift Project TABLE OF CONTENTS 1 PROPONENT INFORMATION ...................................................................... 1 1.1 Key Proponent Contacts .................................................................................................. 1 2 PROJECT INFORMATION ............................................................................ 2 2.1 Location ........................................................................................................................... 2 2.2 Project History and Overview .......................................................................................... 2 2.3 Deposit Geology and Resource Characterization ........................................................... 6 2.3.1 Stratigraphy ......................................................................................................... 6 2.3.2 Structure .............................................................................................................. 8 2.4 Components and Infrastructure ..................................................................................... 10 2.4.1 Conceptual Mine Plan and Schedule ...............................................................
    [Show full text]
  • Castle Project Initial Project Description in Accordance with Schedule 1 of the Impact Assessment Act Information and Management of Time Limits Regulations
    Castle Project Initial Project Description in accordance with Schedule 1 of the Impact Assessment Act Information and Management of Time Limits Regulations October 2020 Teck Coal Limited Fording River Operations P.O. Box 100 +1 250 865 2271 Tel Elkford, B.C. Canada V0B 1H0 www.teck.com October 9, 2020 Fraser Ross Project Manager Impact Assessment Agency of Canada 210A - 757 West Hastings Street Vancouver, BC, V6C 3M2 Dear Mr. Ross Reference: Fording River Operations Castle Initial Project Description As requested by the Impact Assessment Agency of Canada (IAAC, the Agency), Teck Coal Limited is submitting the attached 2-part document to satisfy the federal requirements of an Initial Project Description (IPD) for the Fording River Operations Castle Project: 1. Provincial IPD published in April 2020 - The provincial IPD was previously submitted to the British Columbia (BC) Environmental Assessment Office in April 2020 and was prepared to satisfy information requirements under the BC Environmental Assessment Act. 1. IPD Addendum – the IPD Addendum focuses on providing supplemental information required by the Agency to satisfy the requirements of an IPD in accordance with Schedule 1 of the Information and Management of Time Limits Regulations under the Impact Assessment Act of Canada. Summaries of the IPD documents noted above, in English and in French, are provided under separate cover. Please contact the undersigned if you have any questions or comments on the enclosed material. Sincerely, David Baines Senior Lead Regulatory Approvals Teck Coal Limited Initial Project Description: Castle Project Teck Coal Limited Fording River Operations April 2020 Initial Project Description: Castle Project Executive Summary Introduction This document is an Initial Project Description (IPD) for the Teck Coal Limited (Teck) Fording River Operations Castle Project (the Castle Project or the Project) under the British Columbia (BC) Environmental Assessment Act (BC EAA) (SBC 2018, c 51).
    [Show full text]
  • Antill Tim Spring 2010
    University of Alberta Biology and Control of Russian Thistle ( Salsola tragus L.) in Bighorn Sheep ( Ovis canadensis Shaw) Winter Ranges in Montane Grasslands of Jasper National Park, Alberta, Canada by Timothy Michael Antill A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Land Reclamation and Remediation Department of Renewable Resources ©Timothy Michael Antill Spring 2010 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Examining Committee Dr. M. Anne Naeth, Department of Renewable Resources Dr. Edward W. Bork, Department of Agricultural, Food and Nutritional Science Dr. Robert J. Hudson, Department of Renewable Resources Dr. A. Lee Foote, Department of Renewable Resources ABSTRACT Russian thistle (Salsola tragus L.) invaded areas of native montane grassland important to winter survival of bighorn sheep ( Ovis canadensis Shaw) were studied in Jasper National Park, Alberta, Canada. The biology of Russian thistle and its control in the Park were studied in the field and greenhouse.
    [Show full text]
  • The Pinnacle Club Journal 1950 '—
    THE © PinnaclePINNACLE Club and Author All Rights Reserved CLUB JOURNAL I95O Edited by HELEN BRYAN CONTENTS Page Foreword E. Wells .. 7 Eighteen Days in the Western Himalayas.. Gladys Jean Low (Mrs. Ptame/t) 9 Alpine Meet, 1949 E. Worsley Leech 21 Reminiscences of the Canadian Rockies .. M.I.Jeffrey .. 26 Bosigran Nea Morin 33 Munro-ing A. Hirst Laliderer Spitze, Nordkanta E. Longstaff Two Visits to Arran E. Wells .. 51 Impressions of the French Alps Given Moffat Three Days in Buttermerc C. L. Corbett Return to the Alps Freda Rylatt 70 Snowdonia My Measuring Stick E. Worsley Leech 74 Alpine Scotland E. M. Gregory 78 Autumn Days in Derbyshire Nancy Carpenter 82 Idle Thoughts of an Idle Climber Phy His Raven 86 Excursion into Ethnology H. C. Bryan 91 Club Notes A. Wilson 94 Obituary ; Reviews ; Editor's Note 95 to 102 Copies may be obtained from : Hon. Editor: Mrs. H. C BRYAN, Rosebank, Blakemere, Hereford. Hon. Secretary: Miss M. WOOD, i Grove Avenue, Frizinghall, Bradford. PUBLISHED BY THE PINNACLE CLUB © Pinnacle Club and Author All Rights Reserved THE PINNACLE CLUB JOURNAL 1950 © Pinnacle Club and Author All Rights Reserved ' —. r: H a © Pinnacle Club and Author All Rights Reserved The Pinnacle Club Journal 1950 EDITED BY HELEN BRYAN STOCKPORT THE CLOISTER PRESS LIMITED © Pinnacle Club and Author All Rights Reserved r.vn.vx LOWF. (\[RS. WORSI.FY LEFCH) PRESIDENT 1946-^9 © Pinnacle Club and Author All Rights Reserved THE PINNACLE CLUB 1950 OFFICERS AND COMMITTEE : President : Miss E. WELLS Westmead, Moorland View, Ben Rhydding, Yorks. Vice-President: Mrs. E.
    [Show full text]
  • Its Role in the Selection of Weed Biological Control Agents
    Avoiding and exploiting trophic cascading: its role in the selection of weed biological control agents Lincoln Smith1 Summary Ecologists have long argued that the “world is green” because natural enemies, rather than host plants, limit the size of herbivore populations. Theoretically, in the absence of these higher trophic natural enemies, herbivore populations would increase until they overexploit their host plants, causing the populations to crash. Such drastic reductions of target weed populations are exactly what biological control practitioners are trying to accomplish. Historically, the pre-release evaluation of candidate biological control agents has focused primarily on finding agents that are host-specific, and secondarily on those that impact the target plant. Nevertheless, regardless of how much “impact” an individual natural enemy has on the target plant, successful classical biological control also depends on the production of large numbers of natural enemies. A biological control agent is likely to fail if its reproduction and survival are limited by factors such as incompatible climate, poor host- plant suitability, or attack by higher trophic natural enemies. The first two factors are usually consid- ered in biological control projects, but the last is often overlooked. As a consequence, for example, two species of coleophorid moths introduced to control Salsola tragus (Russian thistle) in the western United States, became widely established, but they are heavily attacked by predators and parasitoids and have not reduced the weed population. A tetranychid mite introduced to control Ulex europaeus (gorse) in the north-western United States began heavily damaging the weed until preda- tors responded and reduced the mite populations.
    [Show full text]
  • PUBLICATIONS (Heinz Müller-Schärer, May 2020)
    PUBLICATIONS (Heinz Müller-Schärer, May 2020) By May 2020, Heinz Müller-Schärer authored or co-authored >200 publications in internationally refereed journals with 7563 citations, h-index = 48 (29 since 2015) i10-index 116 (google scholar). Bouchemousse S, FalQuet L., Müller-Schärer H. 2020. Genome assembly of the ragweed leaf beetle: a step forward to better predict rapid evolution of a weed biocontrol agent to environmental novelties. Genome Biology and Evolution, https://doi.org/10.1093/gbe/evaa102. Müller-Schärer H, Schaffner U. 2020. Biological control of plant invaders: a continued stimulus and yet untapped potential to link and advance applied and basic research. Curr. Opin. Insect Sci., 38:v-viii; https://doi.org/10.1016/j.cois.2020.03.002 Sun Y, Bossdorf O, Diaz Grados R, Liao ZY, Müller-Schärer H. 2020. High standing genetic variation in an invasive plant allows immediate evolutionary response to climate warming. bioRxiv https://doi.org/10.1101/2020.02.20.957209doi: Augustinus BA, Lommen STE, Fogliatto S, Vidotto F, Smith T, Horvath D, Bonini M, Gentili RF, Citterio S, Müller-Schärer H, Schaffner U. 2020. In-season leaf damage by a biocontrol agent explains reproductive output of an invasive plant species. Neobiota 55, 117-146. Schaffner U, Steinbach, Sun Y, Skjøth C, de Weger LA, Lommen ST, Augustinus BA, Bonini M, Karrer G, Šikoparija B 8, Thibaudon M and Müller-Schärer H. 2020. Biological control to relieve millions from Ambrosia allergies in Europe. Nature Comms 11, 1745. Novoa A, Richardson DM, Pysek P, Meyerson LA, Bacher S, Canavan S, Catford JA, Cuda J, Essl F, Foxcroft LC, Genovesi P, Hirsch H, Hui C, Jackson MC, Kueffer C, Le Roux JJ, Measey J, Mohanty NP, Moodley D, Müller-Schäer H, Packer JG, Pergl J, Robinson TB, Saul W-C, Shackleton RT, Visser V, Weyl OLF, Yannelli FA, Wilson JRU.
    [Show full text]
  • Environmentally Significant Areas Inventory of The
    Environmentally Significant Areas Inventory of the Rocky Mountain Natural Region of Alberta Final Report by Kevin Timoney Treeline Ecological Research 21551 Twp. Rd. 520 Sherwood Park, AB T8E 1E3 email: [email protected] for Corporate Management Service Alberta Environmental Protection 12th Floor, Oxbridge Place 9820 - 106 St. Edmonton, AB T5K 2J6 17 January 1998 Contents ___________________________________________________________________ Abstract........................................................................................................................................ 1 Acknowledgements................................................................................................................... 2 Color Plates................................................................................................................................. 3 1. Purpose of the study ........................................................................................................... 6 1.1 Definition of AESA@................................................................................................... 6 1.2 Study Rationale ............................................................................................................ 6 2. Background on the Rocky Mountain Natural Region ............................................ 7 2.1 Geology ......................................................................................................................... 7 2.2 Weather and Climate...................................................................................................
    [Show full text]