Omni Magazine (November 1979)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Great Mambo Chicken and the Transhuman Condition
Tf Freewheel simply a tour « // o é Z oon" ‘ , c AUS Figas - 3 8 tion = ~ Conds : 8O man | S. | —§R Transhu : QO the Great Mambo Chicken and the Transhuman Condition Science Slightly Over the Edge ED REGIS A VV Addison-Wesley Publishing Company, Inc. - Reading, Massachusetts Menlo Park, California New York Don Mills, Ontario Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo Madrid San Juan Paris Seoul Milan Mexico City Taipei Acknowledgmentof permissions granted to reprint previously published material appears on page 301. Manyofthe designations used by manufacturers andsellers to distinguish their products are claimed as trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark claim, the designations have been printed in initial capital letters (e.g., Silly Putty). .Library of Congress Cataloging-in-Publication Data Regis, Edward, 1944— Great mambo chicken and the transhuman condition : science slightly over the edge / Ed Regis. p- cm. Includes bibliographical references. ISBN 0-201-09258-1 ISBN 0-201-56751-2 (pbk.) 1. Science—Miscellanea. 2. Engineering—Miscellanea. 3. Forecasting—Miscellanea. I. Title. Q173.R44 1990 500—dc20 90-382 CIP Copyright © 1990 by Ed Regis All rights reserved. No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Text design by Joyce C. Weston Set in 11-point Galliard by DEKR Corporation, Woburn, MA - 12345678 9-MW-9594939291 Second printing, October 1990 First paperback printing, August 1991 For William Patrick Contents The Mania.. -
Space Weapons Earth Wars
CHILDREN AND FAMILIES The RAND Corporation is a nonprofit institution that EDUCATION AND THE ARTS helps improve policy and decisionmaking through ENERGY AND ENVIRONMENT research and analysis. HEALTH AND HEALTH CARE This electronic document was made available from INFRASTRUCTURE AND www.rand.org as a public service of the RAND TRANSPORTATION Corporation. INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY Skip all front matter: Jump to Page 16 POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY Support RAND Purchase this document TERRORISM AND HOMELAND SECURITY Browse Reports & Bookstore Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Project AIR FORCE View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. The monograph/report was a product of the RAND Corporation from 1993 to 2003. RAND monograph/reports presented major research findings that addressed the challenges facing the public and private sectors. They included executive summaries, technical documentation, and synthesis pieces. SpaceSpace WeaponsWeapons EarthEarth WarsWars Bob Preston | Dana J. Johnson | Sean J.A. Edwards Michael Miller | Calvin Shipbaugh Project AIR FORCE R Prepared for the United States Air Force Approved for public release; distribution unlimited The research reported here was sponsored by the United States Air Force under Contract F49642-01-C-0003. -
Atmosphere of Freedom: 70 Years at the NASA Ames Research Center
Atmosphere of Freedom: 70 Years at the NASA Ames Research Center 7 0 T H A N N I V E R S A R Y E D I T I O N G l e n n E . B u g o s National Aeronautics and Space Administration NASA History Office Washington, D.C. 2010 NASA SP-2010-4314 Table of Contents FOREWORD 1 PREFACE 3 A D M I N I S T R A T I V E H I S T O R Y DeFrance Aligns His Center with NASA 6 Harvey Allen as Director 13 Hans Mark 15 Clarence A. Syvertson 21 William F. Ballhaus, Jr. 24 Dale L. Compton 27 The Goldin Age 30 Moffett Field and Cultural Climate 33 Ken K. Munechika 37 Zero Base Review 41 Henry McDonald 44 G. Scott Hubbard 49 A Time of Transition 57 Simon “Pete” Worden 60 Once Again, Re-inventing NASA Ames 63 The Importance of Directors 71 S P A C E P R O J E C T S Spacecraft Program Management 76 Early Spaceflight Experiments 80 Pioneers 6 to 9 82 Magnetometers 85 Pioneers 10 and 11 86 Pioneer Venus 91 III Galileo Jupiter Probe 96 Lunar Prospector 98 Stardust 101 SOFIA 105 Kepler 110 LCROSS 117 Continuing Missions 121 E N G I N E E R I N G H U M A N S P A C E C R A F T “…returning him safely to earth” 125 Reentry Test Facilities 127 The Apollo Program 130 Space Shuttle Technology 135 Return To Flight 138 Nanotechology 141 Constellation 151 P L A N E T A R Y S C I E N C E S Impact Physics and Tektites 155 Planetary Atmospheres and Airborne Science 157 Infrared Astronomy 162 Exobiology and Astrochemistry 165 Theoretical Space Science 168 Search for Extraterrestrial Intelligence 171 Near-Earth Objects 173 NASA Astrobiology Institute 178 Lunar Science 183 S P A C E -
Biological Control
Salsola tragus Biological Control: Hasan et al . (2001) report that, "The rust fungus Uromyces salsolae Reichardt (Isolate MW338; IMI No. 372660) was found on S. tragus in western Turkey. The attacked plants were covered with a powdery brown mass of unicellular, globular to oval-shaped urediniospores produced in round to elongated sori on the leaves and stems, and showed much reduced growth. Later in the season, the plants produced unicellular, thick-walled, dark teliospores borne in round to elongated telia. Similarly, the S. tragus plants from the USA, when inoculated in the greenhouse with a water suspension of the urediniospores of U. salsolae , developed brown uredinia and then telia as the disease advanced. The rust has been reported on several species of Salsola in the former-USSR, Israel, Iran, Romania, Australia, France, Pakistan, and Portugal (CAB International Report, unpublished). IMI records also show that the rust has been recorded on other genera of Chenopodiaceae from former USSR, Cyprus, and Romania. During our host specicity studies, the strain of U. salsolae collected by S. Hasan in Turkey was restricted to S. tragus and did not infect any of the other 16 plant species or varieties belonging to six different families that were tested. The fungus severely infected S. tragus plants not only from the USA but also those from Montpellier (France) and Turkey, showing that the rust may not be restricted only to certain biotypes of the weed. The rust fungus, which is highly damaging and effective in killing or severely reducing the growth of the weed under greenhouse conditions, has recently been imported into the USA for further host specificity testing under quarantine conditions. -
Introductions for Biological Control in Hawaii: 1979 and 1980
Vol. 24, No. 1, September 15, 1982 109 Introductions for Biological Control in Hawaii: 1979 and 1980 PY. LAI, G.Y. FUNASAKI, S Y. HIGA1 The Plant Pest Control Branch (formerly Entomology Branch) of the Hawaii Department of Agriculture has maintained a beneficial organism introduction program for many years. This paper provides notes on the status of some pests and their purposely introduced natural enemies and a list of insects introduced and released for biological control during 1979 and 1980 (Table 1). All benefi cial introductions are thoroughly screened and studied in a quarantine facility and must go through a clearance process prior to being released. WEED PEST CONTROL Ageratina riparia (Regel) K. & R. (Hamakua pamakani) Three organisms contributing to the control of Hamakua pamakani are the stem galling tephritid, Procecidochares alani Steyskal, the leaf defoliating ptero- phorid, Oidaematophorus sp., and the leaf spotting fungus, Cercosporella sp. (introduced by Dr. E.E. Trujillo, Univeristy of Hawaii Plant Pathologist). P. alani was initially released on Hawaii Island in 1974, Oidaematophorus sp. in 1973 andC. sp.in 1975. The combined activities of these purposely introduced beneficial organisms have contributed by severely reducing thickets of Hamakua pamakani on the island of Hawaii. Desirable forage grasses have replaced pamakani in 16,000 to 20,000 ha of pasture lands. Many of these previously heavily infested lands have been restored to productive use. Salsola pestifer A. Nelson (Russian thistle) Through the cooperation of the USDA Biological Control of Weeds Labora tory, Albany, California, two beneficial coleophorids, Coleophora parthenica Meyrick and C. klimeschiella Toll, were introduced to aid in the control of Rus sian thistle, a noxious weed that infests about 320 ha of rangelands on Hawaii. -
The Taxonomy of the Side Species Group of Spilochalcis (Hymenoptera: Chalcididae) in America North of Mexico with Biological Notes on a Representative Species
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1984 The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species. Gary James Couch University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Couch, Gary James, "The taxonomy of the side species group of Spilochalcis (Hymenoptera: Chalcididae) in America north of Mexico with biological notes on a representative species." (1984). Masters Theses 1911 - February 2014. 3045. Retrieved from https://scholarworks.umass.edu/theses/3045 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1984 Department of Entomology THE TAXONOMY OF THE SIDE SPECIES GROUP OF SPILOCHALCIS (HYMENOPTERA:CHALCIDIDAE) IN AMERICA NORTH OF MEXICO WITH BIOLOGICAL NOTES ON A REPRESENTATIVE SPECIES. A Thesis Presented By GARY JAMES COUCH Approved as to style and content by: Dr. T/M. Peter's, Chairperson of Committee CJZl- Dr. C-M. Yin, Membe D#. J.S. El kin ton, Member ii Dedication To: My mother who taught me that dreams are only worth the time and effort you devote to attaining them and my father for the values to base them on. -
Weed Biocontrol: Extended Abstracts from the 1997 Interagency Noxious-Weed Symposium
Weed Biocontrol: Extended Abstracts from the 1997 Interagency Noxious-Weed Symposium Dennis Isaacson Martha H. Brookes Technical Coordinators U.S. Department of Agriculture Forest Service Forest Health Technology Enterprise Team Morgantown, WV and Oregon Department of Agriculture Salem, OR June 1999 ACKNOWLEDGMENTS Many of the tasks of organizing a symposium such as this — and there are many — are not obvious, and, if they are handled well, the effort that goes into them can easily be overlooked. Sherry Kudna of the Oregon Department of Agriculture Weed Control staff managed most of the arrangements and took care of many, many details, which helped the symposium run smoothly. We truly appreciate her many contributions. We also acknowledge the contributions of the presenters. They not only organized their own presentations and manuscripts, but also assisted with reviewing drafts of each other’s papers in the proceedings. Several of the presenters also covered their own expenses. Such dedication speaks well of their commitment to improving the practice of weed biocontrol. Both the Oregon State Office of the Bureau of Land Management and the USDA Forest Service made major contributions to supporting the symposium. Although several individuals from both organizations provided assistance, we especially note the encouragement and advice of Bob Bolton, Oregon Bureau of Land Management Weed Control Coordinator, and the willingness to help and financial support for publishing this document from Richard C. Reardon, Biocontrol/Biopesticides Program Manager, USDA Forest Service's Forest Health Technology Enterprise Team, Morgantown, WV. We thank Tinathan Coger for layout and design and Patricia Dougherty for printing advice and coordination of the manuscript We also thank Barbra Mullin, Montana State Department of Agriculture, who delivered the keynote address; Tami Lowry, Pacific Northwest Research Station, Corvallis, who helped format the document; and Eric Coombs, who provided the photographs of weeds and agents that convey the concepts of weed biocontrol. -
Project Vanguard and Ike's “Space for Peace”
NANZAN REVIEW OF AMERICAN STUDIES Volume 42 (2020): 23-42 Project Vanguard and Ike’s “Space for Peace” TABUCHI Yumi * Introduction On December 20, 2019, U.S. President Donald Trump founded the U.S. Space Force, the newest military branch since the creation of the U.S. Air Force in 1947. He was apparently responding to the rising threats from Russia and China, who are rumored to be developing their own space capabilities. Three decades after the error of Ronald Reagan’s Strategic Defense Initiative, Star Wars is now a distinct possibility. The formation of the Space Force symbolized a departure from a principle the United States had upheld for decades―that space should be free from all weapons and open to all nations. This principle, commonly called “space for peace,” now seems to be falling into oblivion.1 This article traces the origins of “space for peace” to Dwight D. Eisenhower’s presidency. In February 1955, the Technological Capabilities Panel (TCP) at the Science Advisory Committee (SAC) submitted a report, which proclaimed that “a satellite would constitute no active military offensive threat” and that “space, outside our atmosphere, is open to all [nations] (‘freedom of space’).”2 This * Doctoral candidate at Osaka School of International Public Policy, Osaka University [[email protected]]. I would like to express my gratitude to Associate Professor Kazushi Minami at Osaka University for always being a patient and supportive adviser, and the anonymous reviewers of the Nanzan Review of American Studies for their helpful comments. 1. “Space dominance” is now an important point of discussion regarding the Space Force. -
Differential Susceptibility of Russian Thistle Accessions to Colletotrichum Gloeosporioides
Differential susceptibility of Russian thistle accessions to Colletotrichum gloeosporioides William Bruckart , , a, Craig Cavina, Laszlo Vajnab, Ildiko Schwarczingerb and Frederick J. Ryanc a USDA-ARS-FDWSRU, 1301 Ditto Ave., Ft. Detrick, MD 21702, USA b Plant Protection Institute, Hungarian Academy of Sciences, P.O. Box 102, Budapest 1525, Hungary c USDA-ARS-EIDP, 9611 South Riverbend Ave., Parlier, CA 93648, USA Received 16 May 2003; accepted 1 December 2003. Available online 30 December 2003. Abstract Molecular information suggests that Russian thistle (Salsola tragus L.) in the US may consist of more than one genetic entity. This genetic variation needs to be taken into account when developing agents for biological control of this important weed. Preliminary evidence suggests that there are differences in susceptibility of Salsola sp. to infection by fungal pathogens. In the present study, an isolate of Colletotrichum gloeosporioides, a pathogen of Russian thistle collected in Hungary was tested for its ability to infect and damage California accessions of S. tragus (referred to as Type A) and the related S. tragus, Type B. The minimum dew period and temperature required for infection of S. tragus with C. gloeosporioides was determined to be 12–16 h and 25 °C. Both Type A and Type B were susceptible, but C. gloeosporioides caused greater damage and reductions in biomass of Type A than of Type B. Fresh weights of Type A and Type B were reduced from controls by 60 and 9%, respectively, after inoculations with C. gloeosporioides. Results from this study illustrate the importance of understanding target plant taxonomy in biological control evaluations. -
The World Space Observatory Ultraviolet (WSO-UV), As a Bridge to Future UV Astronomy
The World Space Observatory Ultraviolet (WSO-UV), as a bridge to future UV astronomy B. Shustov1 • A.I. G´omez de Castro 2 • M. Sachkov1 • J.C. Vallejo2 • P. Marcos-Arenal 2 • E. Kanev1 • I. Savanov1 • A. Shugarov1 • S. Sichevskii1 Abstract The ultraviolet (UV) astronomy is a very described in detail in previous publications, and this demanded branch of space astronomy. Many dozens of paper updates the main characteristics of its instru- short-term UV-experiments in space, as well as long- ments and the current state of the whole project. It term observatories, have brought a very important also addresses the major science topics that have been knowledge on the physics and chemistry of the Uni- included in the core program of the WSO-UV, making verse during the last decades. Unfortunately, no large this core program very relevant to the current state of UV-observatories are planned to be launched by most the UV-astronomy. Finally, we also present here the of space agencies in the coming 10 – 15 years. Con- ground segment architecture that will implement this versely, the large UVOIR observatories of the future program. will appear not earlier than in 2030s. This paper briefly describes the projects that have been proposed by var- Keywords space vehicles, space vehicles: instruments, ious groups. We conclude that the World Space Obser- instrumentation: spectrographs, ultraviolet: general, vatory – Ultraviolet (WSO-UV) will be the only 2-m ultraviolet: stars, ultraviolet: planetary systems, ul- class UV telescope with capabilities similar to those of traviolet: ISM, ultraviolet: galaxies the HST for the next decade. -
Acquisition Story 54 Introduction 2 Who We Were 4 194Os 8 195Os 12
table of contents Introduction 2 Who We Were 4 194Os 8 195Os 12 196Os 18 197Os 26 198Os 30 199Os 34 2OOOs 38 2O1Os 42 Historical Timeline 46 Acquisition Story 54 Who We Are Now 58 Where We Are Going 64 Vision For The Future 68 1 For nearly a century, innovation and reliability have been the hallmarks of two giant U.S. aerospace icons – Aerojet and Rocketdyne. The companies’ propulsion systems have helped to strengthen national defense, launch astronauts into space, and propel unmanned spacecraft to explore the universe. ➢ Aerojet’s diverse rocket propulsion systems have powered military vehicles for decades – from rocket-assisted takeoff for propeller airplanes during World War II – through today’s powerful intercontinental ballistic missiles (ICBMs). The systems helped land men on the moon, and maneuvered spacecraft beyond our solar system. ➢ For years, Rocketdyne engines have played a major role in national defense, beginning with powering the United States’ first ICBM to sending modern military communication satellites into orbit. Rocketdyne’s technology also helped launch manned moon missions, propelled space shuttles, and provided the main power system for the International Space Station (ISS). ➢ In 2013, these two rocket propulsion manufacturers became Aerojet Rocketydne, blending expertise and vision to increase efficiency, lower costs, and better compete in the market. Now, as an industry titan, Aerojet Rocketdyne’s talented, passionate employees collaborate to create even greater innovations that protect America and launch its celestial future. 2011 A Standard Missile-3 (SM-3) interceptor is being developed as part of the U.S. Missile Defense Agency’s sea-based Aegis Ballistic Missile Defense System. -
APL's Space Department After 40 Years: an Overview
THE SPACE DEPARTMENT AFTER 40 YEARS: AN OVERVIEW APL’s Space Department After 40 Years: An Overview Stamatios M. Krimigis The APL Space Department came into being in 1959 to implement the APL- invented global satellite navigation concept for the Navy. The Transit System compiled unparalleled availability and reliability records. Space engineering “firsts” spawned by Transit have constituted standard designs for spacecraft systems ever since. By the mid- 1960s, missions were designed to perform geodesy investigations for NASA and, later, astronomy and radiation experiments. In the 1970s, space science missions began to transform the Department from an engineering to a science-oriented organization. The program for ballistic missile defense in the mid-1980s became the principal focus of the Department’s work with overlapping engineering and applied science activity, and lasted through the early 1990s. After the Cold War, science missions in both planetary and Sun–Earth connections plus experiments on NASA spacecraft shifted the projects from some 70% DoD to about 70% NASA. The unique blend of world-class science and instrumentation combined with innovative engineering represents a powerful combination that augurs well for the future of the Space Department. (Keywords: History, Space Department, Space science, Space technology.) EARLY HISTORY The Space Department was officially established by Geiger-Mueller counters, with the objective of measur- memorandum on 24 December 1959 as the Space ing various spectral lines and the intensity of primary Development Division, approximately 3 months after cosmic radiation as it was attenuated through the the failed launch of Transit 1A on 17 September 1959.1 Earth’s atmosphere.2 Van Allen’s group also obtained a Dr.