Human Cultural Practices Illuminate the Blood Meal Sources of Cave Dwelling Chagas Vectors (Triatoma Dimidiata)In Guatemala and Belize

Total Page:16

File Type:pdf, Size:1020Kb

Human Cultural Practices Illuminate the Blood Meal Sources of Cave Dwelling Chagas Vectors (Triatoma Dimidiata)In Guatemala and Belize Hunting, Swimming, and Worshiping: Human Cultural Practices Illuminate the Blood Meal Sources of Cave Dwelling Chagas Vectors (Triatoma dimidiata)in Guatemala and Belize Lori Stevens1*, M. Carlota Monroy2, Antonieta Guadalupe Rodas2, Patricia L. Dorn3 1 Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, Vermont, United States of America, 2 Escuela de Biologia, Universidad de San Carlos de Guatemala, Ciudad de Guatemala, Guatemala, 3 Department of Biological Sciences, Loyola University New Orleans, New Orleans, Louisiana, United States of America Abstract Background: Triatoma dimidiata, currently the major Central American vector of Trypanosoma cruzi, the parasite that causes Chagas disease, inhabits caves throughout the region. This research investigates the possibility that cave dwelling T. dimidiata might transmit the parasite to humans and links the blood meal sources of cave vectors to cultural practices that differ among locations. Methodology/Principal Findings: We determined the blood meal sources of twenty-four T. dimidiata collected from two locations in Guatemala and one in Belize where human interactions with the caves differ. Blood meal sources were determined by cloning and sequencing PCR products amplified from DNA extracted from the vector abdomen using primers specific for the vertebrate 12S mitochondrial gene. The blood meal sources were inferred by $99% identity with published sequences. We found 70% of cave-collected T. dimidiata positive for human DNA. The vectors had fed on 10 additional vertebrates with a variety of relationships to humans, including companion animal (dog), food animals (pig, sheep/goat), wild animals (duck, two bat, two opossum species) and commensal animals (mouse, rat). Vectors from all locations fed on humans and commensal animals. The blood meal sources differ among locations, as well as the likelihood of feeding on dog and food animals. Vectors from one location were tested for T. cruzi infection, and 30% (3/10) tested positive, including two positive for human blood meals. Conclusions/Significance: Cave dwelling Chagas disease vectors feed on humans and commensal animals as well as dog, food animals and wild animals. Blood meal sources were related to human uses of the caves. We caution that just as T. dimidiata in caves may pose an epidemiological risk, there may be other situations where risk is thought to be minimal, but is not. Citation: Stevens L, Monroy MC, Rodas AG, Dorn PL (2014) Hunting, Swimming, and Worshiping: Human Cultural Practices Illuminate the Blood Meal Sources of Cave Dwelling Chagas Vectors (Triatoma dimidiata) in Guatemala and Belize. PLoS Negl Trop Dis 8(9): e3047. doi:10.1371/journal.pntd.0003047 Editor: Eric Dumonteil, Universidad Auto´noma de Yucata´n, Mexico Received October 2, 2013; Accepted June 16, 2014; Published September 11, 2014 Copyright: ß 2014 Stevens et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This study received financial support from NeTropica (www.netropica.org), National Institutes of Health (USA) Grant 1R15 A1079672-01A (http://www. nih.gov), and NSF grant BCS-1216193 as part of the joint NSF-NIH-USDA Ecology and Evolution of Infectious Diseases program (http://www.nsf.gov). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * Email: [email protected] Introduction popular tourist attraction and workers are known to sleep in the caves to guard against vandalism. Although bat guano is harvested Humans have been attracted to caves for much of our history in many Latin American countries and the United States, our for purposes as varied as religious ceremonies to simply shelter. In study did not include locations where this occurs. Guatemala people use caves for several cultural practices including The parasite that causes Chagas disease, Trypanosoma cruzi,is religious ceremonies, tourism, and shelter [1]. In the department transmitted by blood feeding triatomine insects [2]. These vectors of Pete´n in northern Guatemala, caves are often used by hunters are generally wide-ranging feeders and what they feed on is an for sleeping and shelter from rain, especially in the rainy season. important aspect of epidemiological risk; for example, human Also in northern Guatemala, caves in the department of Alta blood meals may mean increased risk of transmission to humans Verapaz are sacred places and sometimes the site of Mayan [3]. religious ceremonies; tourists also visit some caves. The religious The species Triatoma dimidiata is currently the major vector of ceremonies occur seasonally and are associated with periodic Chagas disease in Central America [4]. Some vector populations pilgrimages. In Belize, the Rio Frio caves in the Cayo District are a are found entirely in sylvan ecotopes, including caves; whereas PLOS Neglected Tropical Diseases | www.plosntds.org 1 September 2014 | Volume 8 | Issue 9 | e3047 Blood Meal Sources of Cave Triatoma dimidiata Author Summary important because it takes vectors some time to emerge from hiding spots, presumably attracted by CO exhaled by the Caves have enduring appeal to humans, and their lure in searchers. Triatomine nymphs in these caves are pale colored Central America includes tourism, religious ceremonies compared to nearby non-cave vectors, and have been observed to and shelter. The major Chagas disease vector in this emerge from hiding in cracks and crevices of the cave walls and region, Triatoma dimidiata, inhabits caves throughout its ceiling within a half hour following humans entering the cave. range. We challenge the assumption that cave-dwelling Adults are darker in color and easy to see in the caves because of vectors are not important for human transmission by the contrast with the limestone walls. Vectors were identified as T. determining blood meal sources of vectors collected in dimidiata sensu lato based on published taxonomic keys [11]. caves from three locations that differ in the activities of The human cultural practices in the caves differ among humans at the caves, and link the results to cultural practices that differ among locations. Seventy percent of locations. Near the municipality of San Luis, Pete´n, insect vectors cave-collected vectors were positive for human DNA, and were collected from a small cave located on a privately owned fed on 10 additional vertebrates with relationships to cattle farm. This particular cave was selected because the owner of humans varying from companion animal (dog), food the farm requested a survey to find the origin of vectors found in animals (pig, sheep/goat), wild animals (duck, bat, opos- their home. Access to the cave is restricted and only local hunters sum) to commensal animals (mouse, rat). Feeding sources and farm workers know of the cave; however, feral dogs from the relate to human activities that vary among locations, for nearby village may enter the cave in the rainy season. In Pete´n, example, human and food animals were the main sources hunting is a traditional weekend entertainment and caves are in Cahabo´n caves, located within deforested areas that are frequently used as overnight shelters. In this region, caves are not now agricultural fields and houses. We tested vectors from used for religious purposes and although hunters and their dogs one location for infection with the Chagas disease parasite may sleep and seek shelter in the caves, domesticated animals and found 30% (3 of 10) infected, including two of the other than dogs are not brought to caves. There are no houses three vectors from this location that had evidence of near the cave, it is surrounded by pasture areas for cattle. human blood. Humans should be aware of potential In Alta Verapaz, caves near Lanquı´n and Cahabo´n were consequences of visiting and sleeping in caves. examined. Grutas de Lanquı´n, a complex of caves known to be infested with T. dimidiata [12] was chosen because the main cave others are nearly entirely domesticated and some move between is a tourist attraction and is used for Mayan religious ceremonies. ecotopes [5–9]. It is generally thought that sylvan vectors are not The Lanquı´n River runs through the center of the cave. important for human transmission; however, few data are Thousands of bats inhabiting the cave provide a popular daily available to support this assumption. It is important to know if tourist attraction as they leave en masse at twilight. Ceremonial they are feeding on humans to help prevent transmission and to stone altars within the cave are still used by local residents for target control. Mayan religious ceremonies that are performed at night. Candles Because Chagas disease is the most economically important and offerings to the gods are found inside the cave. There are parasitic disease in Latin America with 8–10 million persons several cave entrances but municipality guards control access. infected [10], we decided to investigate the potential role of cave Human houses are located nearby. dwelling T. dimidiata in transmission of T. cruzi to humans. To Santa Maria cave, in the municipality of Cahabo´n, maintains investigate the possibility that cave-dwelling, sylvatic, T. dimidiata the tradition of seasonal pilgrimages organized by descendants of contribute to the human transmission cycle, we determined the the Maya. Travelers leave offerings to the gods in the cave, blood meal sources of T. dimidiata collected from caves in three including sacrificial animals, pottery, candles, liquor, plant resins, regions of Central America where T. dimidiata is the main vector. and tamales. There are houses near the one main entrance to the We tested the hypothesis that T.
Recommended publications
  • When Hiking Through Latin America, Be Alert to Chagas' Disease
    When Hiking Through Latin America, Be Alert to Chagas’ Disease Geographical distribution of main vectors, including risk areas in the southern United States of America INTERNATIONAL ASSOCIATION 2012 EDITION FOR MEDICAL ASSISTANCE For updates go to www.iamat.org TO TRAVELLERS IAMAT [email protected] www.iamat.org @IAMAT_Travel IAMATHealth When Hiking Through Latin America, Be Alert To Chagas’ Disease COURTESY ENDS IN DEATH segment upwards, releases a stylet with fine teeth from the proboscis and Valle de los Naranjos, Venezuela. It is late afternoon, the sun is sinking perforates the skin. A second stylet, smooth and hollow, taps a blood behind the mountains, bringing the first shadows of evening. Down in the vessel. This feeding process lasts at least twenty minutes during which the valley a campesino is still tilling the soil, and the stillness of the vinchuca ingests many times its own weight in blood. approaching night is broken only by a light plane, a crop duster, which During the feeding, defecation occurs contaminating the bite wound periodically flies overhead and disappears further down the valley. with feces which contain parasites that the vinchuca ingested during a Bertoldo, the pilot, is on his final dusting run of the day when suddenly previous bite on an infected human or animal. The irritation of the bite the engine dies. The world flashes before his eyes as he fights to clear the causes the sleeping victim to rub the site with his or her fingers, thus last row of palms. The old duster rears up, just clipping the last trees as it facilitating the introduction of the organisms into the bloodstream.
    [Show full text]
  • Description of Triatoma Huehuetenanguensis Sp. N., a Potential Chagas Disease Vector (Hemiptera, Reduviidae, Triatominae)
    A peer-reviewed open-access journal ZooKeys 820:Description 51–70 (2019) of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector 51 doi: 10.3897/zookeys.820.27258 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae) Raquel Asunción Lima-Cordón1, María Carlota Monroy2, Lori Stevens1, Antonieta Rodas2, Gabriela Anaité Rodas2, Patricia L. Dorn3, Silvia A. Justi1,4,5 1 Department of Biology, University of Vermont, Burlington, Vermont, USA 2 The Applied Entomology and Parasitology Laboratory at Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala 3 Department of Biological Sciences, Loyola University New Orleans, New Orleans, Louisiana, USA 4 Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Maryland, USA 5 Walter Reed Army Institute of Research, Silver Spring, MD, USA Corresponding author: Raquel Asunción Lima-Cordón ([email protected]) Academic editor: G. Zhang | Received 6 June 2018 | Accepted 4 November 2018 | Published 28 January 2019 http://zoobank.org/14B0ECA0-1261-409D-B0AA-3009682C4471 Citation: Lima-Cordón RA, Monroy MC, Stevens L, Rodas A, Rodas GA, Dorn PL, Justi SA (2019) Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae). ZooKeys 820: 51–70. https://doi.org/10.3897/zookeys.820.27258 Abstract A new species of the genus Triatoma Laporte, 1832 (Hemiptera, Reduviidae) is described based on speci- mens collected in the department of Huehuetenango, Guatemala. Triatoma huehuetenanguensis sp. n. is closely related to T. dimidiata (Latreille, 1811), with the following main morphological differences: lighter color; smaller overall size, including head length; and width and length of the pronotum.
    [Show full text]
  • Spatial Diversification of Panstrongylus Geniculatus (Reduviidae
    Spatial diversification of Panstrongylus geniculatus (Reduviidae: Triatominae) in Colombia Investigadora principal Valentina Caicedo Garzón Investigadores asociados Juan David Ramírez González Camilo Salazar Clavijo Fabian Camilo Salgado Roa Melissa Sánchez Herrera Carolina Hernández Castro Luisa María Arias Giraldo Lineth García Gustavo Vallejo Omar Cantillo Catalina Tovar Joao Aristeu da Rosa Hernán Carrasco Spatial diversification of Panstrongylus geniculatus (Reduviidae: Triatominae) in Colombia Estudiante: Valentina Caicedo Garzón Directores de tesis: Juan David Ramírez González Camilo Salazar Clavijo Asesores análisis de datos: Fabian Camilo Salgado Roa Melissa Sánchez Herrera Asesor metodológico: Carolina Hernández Castro Luisa María Arias Giraldo Proveedores muestras: Lineth García Gustavo Vallejo Omar Cantillo Catalina Tovar Joao Aristeu da Rosa Hernán Carrasco Facultad de Ciencias Naturales y Matemáticas Universidad del Rosario Bogotá D.C., 2019 Keywords – Panstrongylus geniculatus, dispersal, genetic diversification, Triatominae, Chagas Disease Abstract Background Triatomines are responsible for the most common mode of transmission of Trypanosoma cruzi, the etiologic agent of Chagas disease. Although, Triatoma and Rhodnius are the vector genera most studied, other triatomines such as Panstrongylus can also contribute to T. cruzi transmission creating new epidemiological scenarios that involve domiciliation. Panstrongylus has at least twelve reported species but there is limited information about their intraspecific diversity and patterns of diversification. Here, we began to fill this gap, studying intraspecific variation in Colombian populations of P. geniculatus. Methodology/Principal finding We examined the pattern of diversification as well as the genetic diversity of P. geniculatus in Colombia using mitochondrial and ribosomal data. We calculated genetic summary statistics within and among P. geniculatus populations. We also estimated genetic divergence of this species from other species in the genus (P.
    [Show full text]
  • Vectors of Chagas Disease, and Implications for Human Health1
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2006 Band/Volume: 0019 Autor(en)/Author(s): Jurberg Jose, Galvao Cleber Artikel/Article: Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health 1095-1116 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health1 J. JURBERG & C. GALVÃO Abstract: The members of the subfamily Triatominae (Heteroptera, Reduviidae) are vectors of Try- panosoma cruzi (CHAGAS 1909), the causative agent of Chagas disease or American trypanosomiasis. As important vectors, triatomine bugs have attracted ongoing attention, and, thus, various aspects of their systematics, biology, ecology, biogeography, and evolution have been studied for decades. In the present paper the authors summarize the current knowledge on the biology, ecology, and systematics of these vectors and discuss the implications for human health. Key words: Chagas disease, Hemiptera, Triatominae, Trypanosoma cruzi, vectors. Historical background (DARWIN 1871; LENT & WYGODZINSKY 1979). The first triatomine bug species was de- scribed scientifically by Carl DE GEER American trypanosomiasis or Chagas (1773), (Fig. 1), but according to LENT & disease was discovered in 1909 under curi- WYGODZINSKY (1979), the first report on as- ous circumstances. In 1907, the Brazilian pects and habits dated back to 1590, by physician Carlos Ribeiro Justiniano das Reginaldo de Lizárraga. While travelling to Chagas (1879-1934) was sent by Oswaldo inspect convents in Peru and Chile, this Cruz to Lassance, a small village in the state priest noticed the presence of large of Minas Gerais, Brazil, to conduct an anti- hematophagous insects that attacked at malaria campaign in the region where a rail- night.
    [Show full text]
  • Ecology and Control of Triatomine (Hemiptera:Reduviidae) Vectors of Chagas Disease in Guatemala, Central America
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 895 Ecology and Control of Triatomine (Hemiptera:Reduviidae) Vectors of Chagas Disease in Guatemala, Central America BY MARIA CARLOTA MONROY ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2003 Dissertation presented at Uppsala University to be publicly examined in Ekman salen, Evolutionary Biology Centre Norbyvägen 14, Uppsala, Tuesday, November 25, 2003 at 13:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. ABSTRACT Monroy, M. C. 2003. Ecology and Control of Triatomine (Hemiptera: Reduviidae) Vectors of Chagas Disease in Guatemala, Central America. Acta Universitatis Upsaliensis. Comprehensive summaries of Uppsala Dissertations from the Faculty of Science and Technology 895. 22 pp. Uppsala. ISBN 91-554-5756-8 This thesis analyses several ecological factors affecting the control of triatomines in Guatemala. There are three synanthropic triatomines in Guatemala, i. e., Rhodnius prolixus, Triatoma dimidiata and T. nitida. Their distribution is mainly at an altitude between 800 and 1500 m. a. s. l. R. prolixus and T. nitida have localized but scattered distributions while T. dimidiata is present in 21 of the 22 departments in the country. Several investigations have shown that R. prolixus could be relatively easily eradicated while T. dimidiata may be more difficult to control, since it is present in domestic, peridomestic and sylvatic environments showing high diversity and a variety of epidemiological characteristics. Based on the incidence of Trypanosoma cruzi infection in humans in the distributional areas of the triatomines, R. prolixus appears to be a more competent vector than T. dimidiata. This is despite the fact that these vectors have similar infection rates.
    [Show full text]
  • Triatomines (Hemiptera, Reduviidae) Prevalent in the Northwest of Peru: Species with Epidemiological Vectorial Capacity
    Parasitol Latinoam 62: 154 - 164, 2007 FLAP ARTÍCULO DE ACTUALIZACIÓN Triatomines (Hemiptera, Reduviidae) prevalent in the northwest of Peru: species with epidemiological vectorial capacity CÉSAR AUGUSTO CUBA CUBA*, GUSTAVO ADOLFO VALLEJO** and RODRIGO GURGEL-GONÇALVES*;*** ABSTRACT The development of strategies for the adequate control of the vector transmission of Chagas disease depends on the availability of updated data on the triatomine species present in each region, their geographical distribution, natural infections by Trypanosoma cruzi and/or T. rangeli, eco- biological characteristics and synanthropic behavioral tendencies. This paper summarizes and updates current information, available in previously published reports and obtained by the authors our own field and laboratory studies, mainly in northwest of Peru. Three triatomine species exhibit a strong synanthropic behavior and vector capacity, being present in domestic and peridomestic environments, sometimes showing high infestation rates: Rhodnius ecuadoriensis, Panstrongylus herreri and Triatoma carrioni The three species should be given continuous attention by Peruvian public health authorities. P. chinai and P. rufotuberculatus are bugs with increasing potential in their role as vectors according to their demonstrated synanthropic tendency, wide distribution and trophic eclecticism. Thus far we do not have a scientific explanation for the apparent absence of T. dimidiata from previously reported geographic distributions in Peru. It is recommended, in the Peruvian northeastern
    [Show full text]
  • Descentralización Y Gestión Del Control De Las Enfermedades Transmisibles En América Latina
    DESCENTRALIZACIÓN Y GESTIÓN DEL CONTROL DE LAS ENFERMEDADES TRANSMISIBLES EN AMÉRICA LATINA DESCENTRALIZAÇÃO E GESTÃO DO CONTROLE DAS ENFERMIDADES TRANSMISSÍVEIS NA AMÉRICA LATINA DECENTRALIZATION AND MANAGEMENT OF COMMUNICABLE DISEASES CONTROL IN LATIN AMERICA Editado por: Zaida E. Yadón • Ricardo E. Gürtler • Federico Tobar • André C. Medici AD DE BUEN SID OS ER A IV FACULTAD IR E N DE S U CIENCIAS EXACTAS Y NATURALES S A LU O T R E P O P A P H S O N I O D V N I M U Banco Interamericano de Desarrollo Biblioteca Sede OPS - Catalogación en la fuente Yadón, Zaida - ed Descentralización y gestión del control de las enfermedades transmisibles en América Latina. Buenos Aires, Argentina: OPS, © 2006. 320p. ISBN 92 75 07397 X I. Título II. Gürtler, Ricardo - ed III. Tobar, Federico - ed IV. Medici, André - ed 1. CONTROL DE ENFERMEDADES TRANSMISIBLES 2. DESCENTRALIZACIÓN 3. SISTEMAS DE SALUD 4. ENFERMEDAD DE CHAGAS - prevención & control 5. TUBERCULOSIS 6. MALARIA 7. LEPRA 8. AMÉRICA LATINA NLM WA 110 La Organización Panamericana de la Salud dará consideración muy favorable a las solicitudes de autorización para reproducir o traducir, íntegramente o en parte, alguna de sus publicaciones. Las solicitudes y las peticiones de información deberán dirigirse al Área de Publicaciones, Organización Panamericana de la Salud, Washington, D.C., Estados Unidos de América, que tendrá sumo gusto en proporcionar la información más reciente sobre cambios introducidos en la obra, planes de reedición, y reimpresiones y traducciones ya disponibles. © Organización Panamericana de la Salud, 2006 Las publicaciones de la Organización Panamericana de la Salud están acogidas a la protección prevista por las disposiciones sobre reproducción de originales del Protocolo 2 de la Convención Uni- versal sobre Derecho de Autor.
    [Show full text]
  • Bioenvironmental Correlates of Chagas´ Disease- S.I Curto
    MEDICAL SCIENCES - Vol.I - Bioenvironmental Correlates of Chagas´ Disease- S.I Curto BIOENVIRONMENTAL CORRELATES OF CHAGAS´ DISEASE S.I Curto National Council for Scientific and Technological Research, Institute of Epidemiological Research, National Academy of Medicine – Buenos Aires. Argentina. Keywords: Chagas´ Disease, disease environmental factors, ecology of disease, American Trypanosomiasis. Contents 1. Introduction 2. Biological members and transmission dynamics of disease 3. Interconnection of wild, peridomestic and domestic cycles 4. Dynamics of domiciliation of the vectors: origin and diffusion of the disease 5. The rural housing as environmental problem 6. Bioclimatic factors of Triatominae species 7. Description of disease 8. Rates of human infection 9. Conclusions Summary Chagas´ disease is intimately related to sub development conditions of vast zones of Latin America. For that reason we must approach this problem through a transdisciplinary and totalized perspective. In that way we analyze the dynamics of different transmission cycles: wild, yard, domiciled, rural and also urban. The passage from a cycle to another constitutes a domiciliation dynamics even present that takes from hundred to thousands of years and that even continues in the measure that man destroys the natural ecosystems and eliminates the wild habitats where the parasite, the vectors and the guests take refuge. Also are analyzed the main physical factors that influence the persistence of the illness and their vectors as well as the peculiarities of the rural house of Latin America that facilitate the coexistence in time and man's space, the parasites and the vectors . Current Chagas’UNESCO disease transmission is –relate EOLSSd to human behavior, traditional, cultural and social conditions SAMPLE CHAPTERS 1.
    [Show full text]
  • Disentangling Trypanosoma Cruzi Transmission Cycle Dynamics
    Moo‑Millan et al. Parasites Vectors (2019) 12:572 https://doi.org/10.1186/s13071‑019‑3819‑7 Parasites & Vectors RESEARCH Open Access Disentangling Trypanosoma cruzi transmission cycle dynamics through the identifcation of blood meal sources of natural populations of Triatoma dimidiata in Yucatán, Mexico Joel Israel Moo‑Millan1, Audrey Arnal1,2, Silvia Pérez‑Carrillo1, Anette Hernandez‑Andrade1, María‑Jesús Ramírez‑Sierra1, Miguel Rosado‑Vallado1, Eric Dumonteil3 and Etienne Waleckx1,4* Abstract Background: In the Yucatán Peninsula, Mexico, Triatoma dimidiata is the main vector of Trypanosoma cruzi, the causative agent of Chagas disease. Little efort has been made to identify blood meal sources of T. dimidiata in natural conditions in this region, although this provides key information to disentangle T. cruzi transmission cycles and dynamics and guide the development of more efective control strategies. We identifed the blood meals of a large sample of T. dimidiata bugs collected in diferent ecotopes simultaneously with the assessment of bug infection with T. cruzi, to disentangle the dynamics of T. cruzi transmission in the region. Methods: A sample of 248 T. dimidiata bugs collected in three rural villages and in the sylvatic habitat surrounding these villages was used. DNA from each bug midgut was extracted and bug infection with T. cruzi was assessed by PCR. For blood meal identifcation, we used a molecular assay based on cloning and sequencing following PCR ampli‑ fcation with vertebrate universal primers, and allowing the detection of multiple blood meals in a single bug. Results: Overall, 28.7% of the bugs were infected with T. cruzi, with no statistical diference between bugs from the villages or from sylvatic ecotopes.
    [Show full text]
  • Trypanosoma Cruzi
    ÉCOLE NATIONALE VÉTÉRINAIRE D’ALFORT Année 2008 Épidémiologie d’une zoonose, la trypanosomose américaine, et étude d’un moyen de lutte écologique THÈSE Pour le DOCTORAT VÉTÉRINAIRE Présentée et soutenue publiquement devant LA FACULTÉ DE MÉDECINE DE CRÉTEIL Le par M. Raymond George Whitham Né le 27 juillet 1950 à Plainfield, New Jersey, États-Unis JURY Président : Professeur à la Faculté de Médecine de Créteil Membres Directeur : M. Jean-Jacques Bénet Professeur à l’École Nationale Vétérinaire d’Alfort Assesseur : M. Jacques Guillot Professeur à l’École Nationale Vétérinaire d’Alfort LISTE DES MEMBRES DU CORPS ENSEIGNANT Directeur : M. le Professeur MIALOT Jean-Paul Directeurs honoraires : MM. les Professeurs MORAILLON Robert, PARODI André-Laurent, PILET Charles, TOMA Bernard Professeurs honoraires: MM. BUSSIERAS Jean, CERF Olivier, LE BARS Henri, MILHAUD Guy, ROZIER Jacques, CLERC Bernard DEPARTEMENT DES SCIENCES BIOLOGIQUES ET PHARMACEUTIQUES (DSBP) Chef du département : Mme COMBRISSON Hélène, Profess eur - Adjoint : Mme LE PODER Sophie, Maître de conférences - UNITE D’ANATOMIE DES ANIMAUX DOMESTIQUES - UNI TE D’HISTOLOGIE , ANATOMIE PATHOLOGIQUE Mme CREVIER-DENOIX Nathalie, Professeur M. C RESP EAU F rançois , Profess eur M. DEGUEURCE Christophe, Professeur* M. F ONTAINE Jean-Jacques , Profess eur * Mme R OBERT Céline, M aît re de conférences Mme BERNEX Florence, Maître de conférences M. CHATEAU Henry, Maître de conférences Mme CORDONNIER-LEFORT Nathalie, Maître de conférences - UNITE DE PATHOLOGIE GENERALE , MICROBIOLOGIE, - UNI TE DE VI RO LOGI E IMMUNOLOG IE M. ELOIT Marc, Professeur * Mme QUINTIN-COLONNA Françoise, Professeur* Mme LE PODER Sophie, Maître de conférences M. BOULOUIS Henri-Jean, Professeur M. FREYBURGER Ludovic, Maître de conférences - DISCIPLINE : PHYSIQUE ET CHIMIE BIOLOGIQUES ET MEDICALES - UNITE DE PHYSIOLOGIE ET THERAPEUTIQUE M.
    [Show full text]
  • Difusion De La Enfermedad De Chagas En America Del Sur
    [Escriba aquí] DIFUSION DE LA ENFERMEDAD DE CHAGAS EN AMERICA DEL SUR CURTO, Susana Isabel 1; LING, Claudia Marcela 2; CHUIT Roberto 2 1 CONICET. Instituto de Investigaciones Epidemiológicas (IIE) de la Academia Nacional de Medicina-Buenos Aires. 2 Instituto de Investigaciones Epidemiológicas (IIE) de la Academia Nacional de Medicina-Buenos Aires [email protected] Resumen Se analizan los siguientes ítems: a) Origen y evolución de los parásitos, sus vectores y hospederos, ciclos de transmisión y formas de transmisión posibles en diferentes épocas, b) procesos de domiciliación de los triatominos y animales que pudieron formar parte del ciclo de T. cruzi en la antigüedad, c) Referencias sobre los insectos vectores y la enfermedad en los relatos de exploradores y viajeros de las etapas coloniales y modernas y d) posibles rutas de difusión de especies domiciliadas. Se usó una extensa bibliografía proveniente de la antropología, la biología, la entomología y la geografía. Se concluye que la relación entre el tripanosoma y el hombre tiene larga data. Muestras de tejido 9000 años de antigüedad sugieren que el ciclo selvático de la enfermedad (infectados por animales) se habría establecido probablemente con los primeros miembros de la cultura Chinchorro que poblaron un área de la costa peruana y que las rutas de difusión siguieron diferentes direcciones asociadas a la coevolución de parásitos y hospederos. También fueron reconocidos como una plaga domestica desde el s. XVI por los misioneros y viajeros quienes denuncian su presencia en todo el continente. Palabras clave: Paleoepidemiología - Paleoparasitología – enfermedades prehistóricas – Geografia de las enfermedades – enfermedad milenaria CHAGAS´ DISEASE DIFFUSION IN AMERICA DEL SUR Abstract The following items are discussed: a) origin and evolution of parasites, their vectors and hosts, transmission cycles and possible forms of transmission at different times, b) process of domiciliation of the triatomines and animals that could be part of the cycle of T.
    [Show full text]
  • Bacterial Microbiome in Chagas Disease Vectors
    Domako 1 Bacterial microbiome in Chagas disease vectors Presence of Bacterial Microbiome and Incidence of Infection in Chagas Disease Vectors Triatoma dimidiata Amber Domako Department of Integrative Biology University of California, Berkeley EAP Tropical Biology and Conservation Program, Fall 2016 16 December 2016 ABSTRACT Chagas disease is a condition caused by the parasite Trypanosoma cruzi. In Costa Rica, it is spread by one species of kissing bug, Triatoma dimidiata. Recent studies have concluded that the microbiomes of insect disease vectors play a role in the insects’ transmission of diseases. My study examines the relationship between the number of individual bacteria morphospecies found in the microbiome of each T. dimidiata and whether that insect was a Chagas disease carrier. With this data, I analyzed the correlation between the presence of the trypanosome, or not, and the microbiome of the insect. I collected Chagas bugs from various locations across the San Luis Valley and the Monteverde area of Costa Rica and took fecal samples from the live insects. Through microscopic examination, I determined whether the T. dimidiata carried the parasite T. cruzi. Subsequently, I surveyed the number of bacteria in the microbiome of each Chagas bug using oil immersion. There was a significant relationship between the number of bacteria and the presence or absence of the parasite T. cruzi. T. dimidiata individuals carrying T. cruzi had a greater number of total bacteria than individuals who did not have the infection. In both types of bacteria studied, cocci and bacilli, the presence of the parasite was related to a higher number of individual bacteria in each Chagas bug.
    [Show full text]