The Complete Mitochondrial Genome of Two Tetrag- Natha Spiders (Araneae: Tetragnathidae): Severe Trun- Cation of Trnas and Novel

Total Page:16

File Type:pdf, Size:1020Kb

The Complete Mitochondrial Genome of Two Tetrag- Natha Spiders (Araneae: Tetragnathidae): Severe Trun- Cation of Trnas and Novel Int. J. Biol. Sci. 2016, Vol. 12 109 Ivyspring International Publisher International Journal of Biological Sciences 2016; 12(1): 109-119. doi: 10.7150/ijbs.12358 Research Paper The Complete Mitochondrial Genome of two Tetrag- natha Spiders (Araneae: Tetragnathidae): Severe Trun- cation of tRNAs and Novel Gene Rearrangements in Araneae Zheng-Liang Wang #, Chao Li #, Wen-Yuan Fang and Xiao-Ping Yu Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, People’s Republic of China # These authors contributed equally to this paper. Corresponding author: X.-P. Yu, Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, People’s Republic of China. Phone and fax: 86-571-86836006. E-mail: [email protected]. © Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions. Received: 2015.04.09; Accepted: 2015.10.26; Published: 2016.01.01 Abstract Mitogenomes can provide information for phylogenetic analysis and evolutionary biology. The Araneae is one of the largest orders of Arachnida with great economic importance. In order to develop mitogenome data for this significant group, we determined the complete mitogenomes of two long jawed spiders Tetragnatha maxillosa and T. nitens and performed the comparative analysis with previously published spider mitogenomes. The circular mitogenomes are 14578 bp long with A+T content of 74.5% in T. maxillosa and 14639 bp long with A+T content of 74.3% in T. nitens, respectively. Both the mitogenomes contain a standard set of 37 genes and an A+T-rich region with the same gene orientation as the other spider mitogenomes, with the exception of the dif- ferent gene order by the rearrangement of two tRNAs (trnW and trnG). Most of the tRNAs lose TΨC arm stems and have unpaired amino acid acceptor arms. As interesting features, both trnSAGN and trnSUCN lack the dihydrouracil (DHU) arm and long tandem repeat units are presented in the A+T-rich region of both the spider mitogenomes. The phylogenetic relationships of 23 spider mitogenomes based on the concatenated nucleotides sequences of 13 protein-coding genes in- dicated that the mitogenome sequences could be useful in resolving higher-level relationship of Araneae. The molecular information acquired from the results of this study should be very useful for future researches on mitogenomic evolution and genetic diversities in spiders. Key words: Mitogenome; Araneae; Tetragnatha maxillosa; Tetragnatha nitens; Phylogeny Introduction Generally, the arthropod mitogenome is a circu- nome size, maternal inheritance, high rate of evolu- lar, double-stranded molecule, ranging in size from 14 tion and low level of intermolecular genetic recom- kb to 20 kb, usually containing a standard set of 13 bination, the mitogenome has been widely regarded protein-coding genes (PCGs), two ribosomal RNA as an effective molecular marker for molecular evolu- genes (the large and small ribosomal subunits, tion, phylogenetic studies, population genetics and rRNAs), 22 transfer RNA genes (tRNAs) and an phylogeography [2]. Moreover, the information of A+T-rich region in a highly variable length with es- gene rearrangement, tRNA secondary structure, ge- sential regulatory elements for replication and tran- netic code alteration and models of control of replica- scription [1]. Due to the characteristics of small ge- tion and transcription in the complete mitogenome http://www.ijbs.com Int. J. Biol. Sci. 2016, Vol. 12 110 data are also extensively exploited for deep-level Materials and methods phylogenetic inference at various taxonomic levels in the past decade [3,4]. Sample collection and DNA extraction Spiders (Araneae) are among the largest animal Specimens of spiders, T. maxillosa and T. nitens groups in the world due to their broad diversity, were collected from the paddy fields in Yuyao world-wide distribution and conspicuous synapo- (E121°09′, N30°03′), Zhejiang Province, China. The morphies [5]. Approximately 45,000 described species field collections did not involve endangered or pro- in 114 families make Araneae the seventh-largest or- tected species and no specific permits were required der next to the five largest insect orders (Coleoptera, for our collecting. All collections were preserved in Hymenoptera, Lepidoptera, Diptera and Hemiptera) 95% ethanol and stored in the temperature cabinet at and Acari among the Arachnida [6]. Due to such high 4°C. Total genomic DNA was extracted from leg tis- species diversity, there are many taxonomic problems sue of each spider individual of the two Tetragnatha about the order Araneae which remain to be unsolved species using the DNeasy Tissue Kit (Qiagen, Hilden, [7,8]. Because of homoplasies or reduction of ana- Germany) according to the manufactures protocol. tomical characters in morphological and ethological data [5], it would be desirable to examine an inde- PCR amplification, cloning and sequencing pendent set of molecular data. Partial mitochondrial Primer sequences of long PCR amplification gene sequences of cytochrome oxidase subunit 1 were designed based on the conserved sequences (COI), rRNAs (16S and 12S) and tRNAs, and nuclear which were obtained by aligning the complete mito- genes of rDNA (18S and 28S) and histone (H3) from genome sequences of four spider species that were spiders have been documented and extensively used downloaded from GenBank: Habronattus oregonnesis for phylogenetic analysis [9,10]. However, these short (NC_005942), Heptathela hangzhouensis (NC_005924), mitochondrial or nuclear genes usually lack the phy- Nephila clavata (NC_008063) and Telamonia vlijmi logenetic information in resolving phylogenetic rela- (NC_024287). The six primer sets that were used to tionships among families or subfamilies within one amplify overlapping fragments of the complete mi- order and sometimes resulted in controversial signal togenome of T. maxillosa and T. nitens are shown in [8,11]. Hence, additional reliable data sets for phylo- Table S1. genetic reconstructions, such as the complete mito- All PCRs were performed using TaKaRa LA PCR genome sequences, are required. Amplification Kit Version 2.1 (Takara Co., Dalian, To date, more than 130 complete mitogenomes China) with the following amplification condition: an from species of arachnids have been determined, but initial denaturation for 5 min at 95°C, followed by 40 only 21 species in 14 families from Araneae were cycles of denaturation for 10s at 92°C, annealing for publicly available in GenBank. These 21 mitogenomes 30s at 50°C, elongation for 4 min at 68°C in the initial share a similar molecular size, ranging from 13,874 bp 20 cycles and then increase by 20s per cycle in the final in Ornithoctonus huwena [12] to 14,741 bp in Wadicosa 20 cycles and a final extension step for 10 min at 72°C. fidelis [13], but have variations in mitogenomic char- All PCR products were resolved by electrophoresis in acteristics, such as gene content and gene arrange- 1.0% agarose gel, purified with DNA Gel Purification ment. Arachnid mitogenomes, in particular spider Kit (TianGen, China), ligated to the pGEM-T-Easy mitogenomes, possess compact mitogenomes and vector (Promega,USA) and sequenced using DNA their tRNAs usually lack the sequence for the T-arm Sequencer (ABI377) at Sangon Inc (Shanghai, China). and a paired aminoacyl stem of the cloverleaf struc- ture. Such atypical tRNAs might be modified by Sequencing assembling and annotation post-transcriptional editing to be functional [14]. The complete mitogenome sequences were as- In the present study, we sequenced and anno- sembled using the Staden package 1.7.0 [15]. PCGs tated the complete mitogenome sequences of two long and rRNAs were initially identified via the MITOS jawed spiders Tetragnatha maxillosa and T. nitens web server [16] and subsequently refined by hand (Araneae: Tetragnathidae), which are the dominant annotation method following the procedures pro- arthropod predators in the agroecological system. 21 posed by Cameron [17]. Gene boundaries were de- spider mitogenomes that are available in GenBank termined by comparing with gene regions from pre- were used in the comparative analysis to reveal the viously characterized spider mitogenomes: W. fidelis gene rearrangements in two Tetragnatha species. Ad- [13], O. huwena and H. hangzhouensis [12]. tRNAs were ditionally, phylogenetic study was also performed to identified by tRNAscan-SE 1.2.1 [18] and ARWEN assess the utility of mitogenome data to understand 1.2.3.c [19]. The putative tRNAs which were not found higher phylogeny of Araneae. by the two software tools were identified based on sequence similarity to tRNAs of the other previously http://www.ijbs.com Int. J. Biol. Sci. 2016, Vol. 12 111 published spider mitogenomes. Nucleotide composi- other spider mitogenomes available from GenBank tion and codon usage were calculated in MEGA 4.0 [13]. Both mitogenomes share the same 37 typical [20]. Potential inverted repeats or palindromes in the metazoan gene set (13 PCGs, 22 tRNAs and two A+T-rich region were determined using Tandem Re- rRNAs) and an A+T-rich region [1]. Among these 37 peats Finder (http://tandem.bu.edu/trf/trf.html) genes, twenty-three are coded on the major strand with the default parameters [21]. (J-strand) while the rest are coded on the minor strand AT-skew=(A–T)/(A+T) and GC-skew=(G–C)/(G+C) (N-strand). Gene orientation of T. maxillosa and T. were used to measure the nucleotide compositional nitens mitogenomes is identical to that of all previ- difference between genes [22]. ously determined araneoid mitogenomes [27,28]. The complete mitogenome sequences of T. max- With the exception of eight translocated tRNAs, mi- illosa and T. nitens have been deposited in the Gen- togenome gene order of the two species are similar to Bank database under accession number KP306789 and that of L.
Recommended publications
  • TFG Lucas Fernandez Miriam.Pdf
    UNIVERSIDAD DE JAÉN Facultad de Ciencias Experimentales Trabajo Fin de Grado Revisión bibliográfica de los Licósidos (Araneidae, Lycosidae) presentes en el sureste de la península ibérica Ciencias Experimentales Alumno: Miriam Lucas Fernández Facultad de Julio, 2020 UNIVERSIDAD DE JAÉN FACULTAD DE CIENCIAS EXPERIMENTALES GRADO EN BIOLOGÍA Trabajo Fin de Grado Revisión bibliográfica de los Licósidos (Araneidae, Lycosidae) presentes en el sureste de la península ibérica Miriam Lucas Fernández Julio, 2020 1 RESUMEN ………………………………………………………………………………3 2 INTRODUCCIÓN ................................................................................................ 4 2.1 Distribución y diversidad de las arañas ......................................................... 4 2.2 Morfología biológica ...................................................................................... 5 2.3 Biología reproductiva del orden Araneae ...................................................... 7 3 OBJETIVOS ........................................................................................................ 8 4 MATERIALES Y MÉTODOS ............................................................................... 9 5 FAMILIA LYCOSIDAE: Perspectiva mundial e ibérica ....................................... 9 5.1 Taxonomía .................................................................................................. 10 5.2 Identificación ............................................................................................... 12 5.3 Hábitat ........................................................................................................
    [Show full text]
  • Arachnida, Solifugae) with Special Focus on Functional Analyses and Phylogenetic Interpretations
    HISTOLOGY AND ULTRASTRUCTURE OF SOLIFUGES Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations HISTOLOGIE UND ULTRASTRUKTUR DER SOLIFUGEN Vergleichende Studien an Organsystemen der Solifugen (Arachnida, Solifugae) mit Schwerpunkt auf funktionellen Analysen und phylogenetischen Interpretationen I N A U G U R A L D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Anja Elisabeth Klann geboren am 28.November 1976 in Bremen Greifswald, den 04.06.2009 Dekan ........................................................................................................Prof. Dr. Klaus Fesser Prof. Dr. Dr. h.c. Gerd Alberti Erster Gutachter .......................................................................................... Zweiter Gutachter ........................................................................................Prof. Dr. Romano Dallai Tag der Promotion ........................................................................................15.09.2009 Content Summary ..........................................................................................1 Zusammenfassung ..........................................................................5 Acknowledgments ..........................................................................9 1. Introduction ............................................................................
    [Show full text]
  • JFSH TESIS.Pdf
    Desarrollo y utilización de herramientas bioinformáticas en el estudio de datos de secuenciación masiva: Análisis genómicos en arácnidos José Francisco Sánchez Herrero Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial 4.0. Spain License. Universitat de Barcelona Facultat de Biologia Departamento de Genética, Microbiología y Estadística Desarrollo y utilización de herramientas bioinformáticas en el estudio de datos de secuenciación masiva: Análisis genómicos en arácnidos. José Francisco Sánchez Herrero Barcelona, Septiembre 2019 Desarrollo y utilización de herramientas bioinformáticas en el estudio de datos de secuenciación masiva: Análisis genómicos en arácnidos. Memoria presentada por José Francisco Sánchez Herrero para optar al Grado de Doctor en Genética (HDK0S) por la Universidad de Barcelona Departamento de Genética, Microbiología y Estadística El autor de la tesis José Francisco Sánchez Herrero Tutor y codirector Codirector Dr. Julio Rozas Liras Dr. Alejandro Sánchez-Gracia Barcelona, Septiembre 2019 “George emprendió solemnemente la tarea de educarme. Desde mi punto de vista, lo más importante era que dedicábamos parte de nuestro tiempo a la historia natural, y George me enseñaba con cuidado y minuciosidad cómo había que observar y tomar nota de lo observado en un diario. Mi entusiasta pero desordenado interés por la naturaleza se centró, pues descubrí que anotando las cosas se aprendía y se recordaba mucho mejor. Las únicas mañanas en que llegaba puntualmente a mi lección eran las dedicadas a historia natural.” – Gerald Durrell, Mi familia y otros animales (1956).
    [Show full text]
  • Tarantulas and Social Spiders
    Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences.
    [Show full text]
  • Salticidae (Arachnida: Araneae) of New Guinea
    BOLL.ACC. GIOENIA SCI. NAT. Salticidae(Arachnida: Araneae) of New Guinea - a zoogeographicaccount ZABKA M. Z akl ad Z oolo gii WSR- P, 08- 1 I 0 Siedlc e, P olattd RIASSUNTO Malgrado la loro conune storia geologica,le connessioniterritoriali del pasmto,I'azione antropica e la vicinanzageografica, I'Australia e la NuovaGuinea hannouna fauna di Salticidimolto differente. Il numerodi generipresenti in Nuova Guinea d circa ugualea quello noto per I'Australia(50 e 58 rispettivamente), malgradola diversasupeficie delle due regioni.Per la Nuova Guineasono stati finora descrittiquindici generiendemici. Almeno sei generisono immigratidalle regioni tropicalidel VecchioMondo, alcuni altri sono ad ampia distribuzioneo cosmopoliti;cid sembrail risultatodella dispersione espansiva post-Miocenica. Parolechiave: Salticidae, Nuova Guinea, Generi endemici, Zoogeografia. SUMMARY Despitecommon geologicalhistory, past land bridges,human agencyand today's geographicalcloseness, New Guinea and Australia have surprisingly different salticid faunas. In spite of much smaller area the number of recorded generain New Guineais almostas largeas in Australia(50 and 58 respectively). The endemicsare representedby fifteen describedgenera. At least6 generaare Old World tropicalimmigrants, some others have wide or cosmopolitandistribution - both seemthe result of thepost-Miocene expansion or dispersion. Key words:Salticidae, New Guinea,Endemic genera, Zoogeography. General background New Guinea is one of most attractive model areas for lhe zoo- geographic research. The island is the second largest one in the world. It forms a link in a chain of archipelagoes stretching from Malayan Peninsula to the middle Pacific. As a part of the Australian tectonic plate New Guinea was separated from the Gondwanan supercontinent (at that stagebeing representedby the Antarctic plate only) some45-50 million years ago.
    [Show full text]
  • Caracterização Proteometabolômica Dos Componentes Da Teia Da Aranha Nephila Clavipes Utilizados Na Estratégia De Captura De Presas
    UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS – RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS BIOLOGIA CELULAR E MOLECULAR Caracterização proteometabolômica dos componentes da teia da aranha Nephila clavipes utilizados na estratégia de captura de presas Franciele Grego Esteves Dissertação apresentada ao Instituto de Biociências do Câmpus de Rio . Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Mestre em Biologia Celular e Molecular. Rio Claro São Paulo - Brasil Março/2017 FRANCIELE GREGO ESTEVES CARACTERIZAÇÃO PROTEOMETABOLÔMICA DOS COMPONENTES DA TEIA DA ARANHA Nephila clavipes UTILIZADOS NA ESTRATÉGIA DE CAPTURA DE PRESA Orientador: Prof. Dr. Mario Sergio Palma Co-Orientador: Dr. José Roberto Aparecido dos Santos-Pinto Dissertação apresentada ao Instituto de Biociências da Universidade Estadual Paulista “Júlio de Mesquita Filho” - Campus de Rio Claro-SP, como parte dos requisitos para obtenção do título de Mestre em Biologia Celular e Molecular. Rio Claro 2017 595.44 Esteves, Franciele Grego E79c Caracterização proteometabolômica dos componentes da teia da aranha Nephila clavipes utilizados na estratégia de captura de presas / Franciele Grego Esteves. - Rio Claro, 2017 221 f. : il., figs., gráfs., tabs., fots. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências de Rio Claro Orientador: Mario Sergio Palma Coorientador: José Roberto Aparecido dos Santos-Pinto 1. Aracnídeo. 2. Seda de aranha. 3. Glândulas de seda. 4. Toxinas. 5. Abordagem proteômica shotgun. 6. Abordagem metabolômica. I. Título. Ficha Catalográfica elaborada pela STATI - Biblioteca da UNESP Campus de Rio Claro/SP Dedico esse trabalho à minha família e aos meus amigos. Agradecimentos AGRADECIMENTOS Agradeço a Deus primeiramente por me fortalecer no dia a dia, por me capacitar a enfrentar os obstáculos e momentos difíceis da vida.
    [Show full text]
  • Spiders on Rapa Nui
    G C A T T A C G G C A T genes Article Ancient DNA Resolves the History of Tetragnatha (Araneae, Tetragnathidae) Spiders on Rapa Nui Darko D. Cotoras 1,2,3,* ID , Gemma G. R. Murray 1, Joshua Kapp 1, Rosemary G. Gillespie 4, Charles Griswold 2, W. Brian Simison 3, Richard E. Green 5 and Beth Shapiro 1 ID 1 Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA; [email protected] (G.G.R.M.); [email protected] (J.K.); [email protected] (B.S.) 2 Entomology Department, California Academy of Sciences, 55 Music Concourse Dr., Golden Gate Park, San Francisco, CA 94118, USA; [email protected] 3 Center for Comparative Genomics, California Academy of Sciences, 55 Music Concourse Dr., Golden Gate Park, San Francisco, CA 94118, USA; [email protected] 4 Department of Environmental Science, University of California, 137 Mulford Hall, Berkeley, CA 94720-3114, USA; [email protected] 5 Department of Biomolecular Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA; [email protected] * Correspondence: [email protected]; Tel.: + 1-831-459-3009 Received: 11 October 2017; Accepted: 13 December 2017; Published: 21 December 2017 Abstract: Rapa Nui is one of the most remote islands in the world. As a young island, its biota is a consequence of both natural dispersals over the last ~1 million years and recent human introductions. It therefore provides an opportunity to study a unique community assemblage. Here, we extract DNA from museum-preserved and newly field-collected spiders from the genus Tetragnatha to explore their history on Rapa Nui.
    [Show full text]
  • Salticidae (Arachnida, Araneae) of Thailand: New Species and Records of Epeus Peckham & Peckham, 1886 and Ptocasius Simon, 1
    Salticidae (Arachnida, Araneae) of Thailand: new species and records of Epeus Peckham & Peckham, 1886 and Ptocasius Simon, 1885 Barbara Maria Patoleta1, Joanna Gardzińska2 and Marek Żabka1 1 Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland 2 Warsaw College of Engineering and Health, Warsaw, Poland ABSTRACT The study is based on new material from the collections of the Naturalis Biodiversity Centre in Leiden (RNHM) and the Hungarian Natural History Museum (HNHM) and addresses issues in two genera: Epeus Peckham & Peckham, 1886 and Ptocasius Simon, 1885 from Thailand. Both genera are of Asian/Indomalayan origin, the latter with a diversity hotspot in the subtropical valleys of the Himalayas. Based on morphological data, we propose three new species of Epeus (Epeus daiqini sp. nov. (♂♀), Epeus pallidus sp. nov. (♀), Epeus szirakii sp. nov. (♀)) and two new species of Ptacasius (Ptocasius metzneri sp. nov. (♂♀) and Ptocasius sakaerat sp. nov. (♀)). Additionally, we redescribed E. tener (Simon, 1877) and added photographs of morphological characters. The genus Ptocasius is redefined due to the inclusion of 37 species, previously included in Yaginumaella Prószyński, 1979. Relationships and distribution of both genera are discussed in reference to molecular, morphological and distributional data, published by other authors in recent years. Subjects Biodiversity, Biogeography, Entomology, Taxonomy, Zoology Keywords Salticidae, Jumping spiders, Oriental region, Taxonomy, Distribution, Thailand, Epeus, Submitted 28 January 2020 Ptocasius Accepted 23 May 2020 Published 22 June 2020 INTRODUCTION Corresponding author Barbara Maria Patoleta, The list of jumping spiders from Thailand comprises 29 genera and 46 species (WSC, [email protected] 2020), seven genera and 13 species being poorly documented and in need of verification Academic editor (Żabka & Gardzińska, 2017).
    [Show full text]
  • Hemolymph and Hemocytes of Tarantula Spiders: Physiological Roles and Potential As Sources of Bioactive Molecules
    In: Advances in Animal Science and Zoology. Volume 8 ISBN: 978-1-63483-552-7 Editor: Owen P. Jenkins © 2015 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 8 HEMOLYMPH AND HEMOCYTES OF TARANTULA SPIDERS: PHYSIOLOGICAL ROLES AND POTENTIAL AS SOURCES OF BIOACTIVE MOLECULES Tatiana Soares, Thiago H. Napoleão, Felipe R. B. Ferreira and Patrícia M. G. Paiva∗ Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil ABSTRACT Arachnids compose the most important and numerous group of chelicerates and include spiders, scorpions, mites and ticks. Some arachnids have a worldwide distribution and can live for more than two decades. This is in part due to their efficient defense system, with an innate immunity that acts as a first line of protection against bacterial, fungal and viral pathogens. The adaptive success of the spiders stimulates the study of their defense mechanisms at cellular and molecular levels with both biological and biotechnological purposes. The hemocytes (plasmatocytes, cyanocytes, granulocytes, prohemocytes, and leberidocytes) of spiders are responsible for phagocytosis, nodulation, and encapsulation of pathogens as well as produce substances that mediate humoral mechanisms such as antimicrobial peptides and factors involved in the coagulation of hemolymph and melanization of microorganisms.
    [Show full text]
  • The Complete Mitochondrial Genome Sequence of the Spider Habronattus Oregonensis Reveals 2 Rearranged and Extremely Truncated Trnas 3 4 5 Susan E
    1 The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals 2 rearranged and extremely truncated tRNAs 3 4 5 Susan E. Masta 6 Jeffrey L. Boore 7 8 9 10 11 DOE Joint Genome Institute 12 Department of Evolutionary Genomics 13 2800 Mitchell Drive 14 Walnut Creek, CA 94598 15 16 Corresponding author: 17 Susan E. Masta 18 Department of Biology 19 P.O. Box 751 20 Portland State University 21 Portland, Oregon 97207 22 email: [email protected] 23 telephone: (503) 725-8505 24 fax: (503) 725-3888 25 26 27 Key words: mitochondrial genome, truncated tRNAs, aminoacyl acceptor stem, gene 28 rearrangement, genome size, Habronattus oregonensis 29 30 31 Running head: mitochondrial genome of a spider 32 33 1 34 We sequenced the entire mitochondrial genome of the jumping spider Habronattus oregonensis 35 of the arachnid order Araneae (Arthropoda: Chelicerata). A number of unusual features 36 distinguish this genome from other chelicerate and arthropod mitochondrial genomes. Most of 37 the transfer RNA gene sequences are greatly reduced in size and cannot be folded into typical 38 cloverleaf-shaped secondary structures. At least nine of the tRNA sequences lack the potential to 39 form TYC arm stem pairings, and instead are inferred to have TV-replacement loops. 40 Furthermore, sequences that could encode the 3' aminoacyl acceptor stems in at least 10 tRNAs 41 appear to be lacking, because fully paired acceptor stems are not possible and because the 42 downstream sequences instead encode adjacent genes. Hence, these appear to be among the 43 smallest known tRNA genes.
    [Show full text]
  • Ibairwcanjauseum PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK 24, N.Y
    AoxfitatesibAirwcanJAuseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2203 DECEMBER I5, I964 A Review of the Genus Hypochilus and a Description of a New Species from Colorado (Araneae, Hypochilidae) BY W. J. GERTSCH' The key position ofthe primitive spiders ofthe family Hypochilidae was noted by me in a revisional study ofthe world fauna (Gertsch, 1958). The hypochilids still retain features shared during Carboniferous times with primitive forebears and that are now found in no other true spiders. The disjunct distributions of the four known recent genera (with centers in North America, China, Tasmania, and southern Chile) reflect the early wide range and present near extinction ofthese relict types. The North American genus Hypochilus is reappraised and enlarged to four species in the present paper. In 1958 this genus was known from two principal areas: the southern Appalachian Mountains, with the species thorelli, and the central Sierra Nevada Mountains of California, with the species petrunkevitchi. The evident need for more adequate collections and fuller distributional information has prompted much recent interest in the group. The surprising discovery of a third species, named gertschi by Hoffman (1963), from Virginia and West Virginia was a reward ofvigi- lant collecting in the eastern mountains. Many new collections have been made during recent years in California, and these indicate a much broader range for the far western species than was anticipated. Finally, 'Curator, Department of Entomology, the American Museum of Natural History. 2 AMERICAN MUSEUM NOVITATES NO. 2203 an exciting event has been the discovery of a distinctive new species, bon- neti, in the deep canyons of southern Colorado.
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]