Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2015 Pregenomic and Genomic Effects of 24,25-Dihydroxyvitamin D3 Yang Zhang Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Dietetics and Clinical Nutrition Commons, Food Science Commons, and the Nutrition Commons Recommended Citation Zhang, Yang, "Pregenomic and Genomic Effects of 24,25-Dihydroxyvitamin D3" (2015). All Graduate Theses and Dissertations. 4551. https://digitalcommons.usu.edu/etd/4551 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact
[email protected]. PREGENOMIC AND GENOMIC EFFECTS OF 24,25-DIHYDROXYVITAMIN D3 by Yang Zhang A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Nutrition, Dietetics, and Food Sciences Approved: ____________________ ____________________ Dr. Korry Hintze Dr. Heidi Wengreen Major Professor Committee Member ____________________ ____________________ Dr. Marie Walsh Dr. Mark R. McLellan Committee Member Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2015 ii Copyright © Yang Zhang 2015 All Rights Reserved iii ABSTRACT Pregenomic and Genomic Effects of 24,25(OH)2D3 by Yang Zhang, Master of Science Utah State University, 2015 Major Professor: Dr. Korry Hintze Department: Nutrition, Dietetics, and Food Sciences Vitamin D is hydroxylated to form several active metabolites, of these, 1,25- dihydroxyvitamin D3 [1,25(OH)2D3] is the most studied stimulatory product. It is now accepted that 1,25(OH)2D3 mediates its rapid actions on the control of phosphate homeostasis through its membrane receptor 1,25D3-MARRS (membrane associated rapid response steroid binding) protein.