<<

Snow and Albedo as Essential Climate Variables

Jason E. Box Geological Survey of Denmark and Copenhagen, Denmark

current (alphabetical) national collaboration 1.Liège, Belgium 2.Copenhagen, Denmark 3.Grenoble, France 4., 5.Zurich, Switzerland 6.Aberystwyth, Wales

2015 09 29 - 10 01 - ESRIN Italy ESA Colocation ECV CCI NASA MODIS NASA MODIS bare snow snow ice line

land

sea

NASA MODIS Sea ice, ponds, leads

Tschudi, M. ablation leads to 1.8x to 3.6x increased absorbed sunlight

60-86% 30-50%

Snow 14-40% Bare Ice 50-70% ablation leads to 2.1x to 4.3x increased absorbed sunlight

60-86% 15-40%

Snow 14-40% Land 60-85% ablation leads to 1.4x to 4.6x increased absorbed sunlight

35-80% 8-15%

snow on sea 20-65% Sea 85-92% ice, ponding 75% increase in solar heating of 1979-2005

Perovich et al. 2007, Increasing solar heating of the Arctic Ocean and adjacent seas, 1979– 2005: Attribution and role in the ice-albedo feedback, Geophys. Res. Lett., 34, L19505, doi: 10.1029/2007GL031480. Tschudi, J. M. J. Maslanik D. Perovich, Recent Arctic Summer Sea Recent Arctic Summer Sea Ice Albedo Trends and their Ice Albedo Trends and their Relationship to Sea Ice Relationship to Sea Ice Conditions Arctic Amplification of Warming

2000-2013 zonal average anomalies

MODIS on Terra MODIS on Terra MODIS on Terra no data, yet

polarportal .dk

outreach

NASA Greenland Climate Network 1995-present

Petermann Humboldt Tunu-N

GITS

NASA-E NGRIP

NASA-U Summit

CP1&2 Swiss Camp KAR JAR1,2,3

DYE-2 NASA-SE

Saddle

South Dome PROMICE 2007-present

Petermann Humboldt Tunu-N

GITS

NASA-E NGRIP

NASA-U Summit

CP1&2 Swiss Camp KAR JAR1,2,3

DYE-2 NASA-SE

Saddle

South Dome Albedo Validation

MODIS MOD10A1 Albedo

GC-Net MODIS Greenland snow albedo validation studies 1.Stroeve, Box, et. al. 2001 RSE 2.Stroeve, Box, et. al. 2006 RSE 3.Liang, Stroeve, Box, et.al. 2005 Box, J. E., X. Fettweis, J.C. Stroeve, M. Tedesco, D.K. Hall, and K. Steffen. 4.Box, et. al. 2012 TC 2012. Greenland ice sheet albedo feedback: thermodynamics and atmospheric 5.Stroeve, Box, et. al. 2013 RSE drivers, The Cryosphere, 6, 821-839. doi:10.5194/tc-6-821-2012 14 years of ground and MODIS MOD10 albedo MOD10 Albedo Validation using PROMICE

vs

PROMICE MODIS MCD43 Albedo Validation using PROMICE

vs

PROMICE MODIS August 2015 survey of Greenland ice

1700 m Dash6 Twin Otter (POF) elevation • 2015 repeat of 2007 and 2011 surveys contour • 2015 without ice sounding radar • profiles of ~20 major glaciers in addition to ~1700 m elevation contour • 2015 with spectral imager and laser ranger • Height above surface 305 m (1,000 ft) nominal ground speed 69 m/s (135 knots, 250 km/hr) profiles of 20 major glaciers

ice thickness POF belly port, photographed from below

laser scanner

7.8 x 11 cm

available space OCI

6 cm diameter optical sensors (scaled to actual size) OLCI - MODIS overlap OLCI (nm) MODIS (nm) OLCI low high overlap overlap low high tetracam chan center, limit, limit, width, with mean with MODIS limit, limit, width, filter name nel nm nm nm nm MODIS overlap OLCI channel center, nm nm nm nm 1 400 392.5 407.5 15 2 412.5 407.5 417.5 10 100% 83% 67% 8 412.5 405 420 15 3 442.5 437.5 447.5 10 95% 95% 95% 9 443 438 448 10 3 469 459 479 20 490FS10-25 4 490 485 495 10 80% 80% 80% 10 488 483 493 10 5 510 505 515 10 11 531 526 536 10 6 560 555 565 10 10% 10% 10% 12 551 546 556 10 560FS10-25 6 560 555 565 10 100% 75% 50% 4 555 545 565 20 7 620 615 625 10 50% 30% 10% 1 645 620 670 50 680FS10-25 8 665 660 670 10 80% 80% 80% 13 667 662 672 10 9 673.75 670 677.5 7.5 10 681.25 677.5 685 7.5 73% 64% 55% 14 678 673 683 10 11 708.75 703.75 713.75 10 12 753.75 750 757.5 7.5 40% 35% 30% 15 748 743 753 10 13 761.25 760 762.5 2.5 14 764.375 762.5 766.25 3.75 15 767.5 766.25 768.75 2.5 2 858.5 841 876 35 16 778.75 771.25 786.25 15 17 865 855 875 20 65% 76% 87% 16 869.5 862 877 15 18 885 880 890 10 19 900 895 905 10 100% 67% 33% 17 905 890 920 30 20 940 930 950 20 50% 75% 100% 18 936 931 941 10 20 940 930 950 20 100% 70% 40% 19 940 915 965 50 1000FS20-25 21 1020 1000 1040 40

2014 20 successful 32 km missions. 0 airframe losses.

2015 40 successful 140 km missions. 2 airframe losses.

Aberystwyth University Johnny Ryan and the ‘albedo drone’ August, 2014.

UAV bottom tail

nose

Sony NEX5n camera

Apogee Intruments SP-110 pyranometers

UAV top 34

ESA snow/ice ECVs: haves & have nots

Maturity area (SE), 1km, GlobSnow ESA DUE* mass (SWE), 25 km, GlobSnow ESA DUE albedo (land, sea ice, land ice) high snowline (→ bare ice area) surface temperature (IST) H2020 EUSTACE snow mass on land ice snow mass on land in mountainous regions snow mass on sea ice, lake ice melt rate (a.k.a. ablation, melt intensity) exploiting ERB, albedo, cloud CCI products, low CMUG * Data User Element Snowline

land ice ECV

MODIS-based snowline retrieval end of melt season 2013 after Box, in prep. Snow/Ice Albedo Applications

• CDRs • change indication • transient climate model evaluation • data assimilation into melt models • DMI HIRHAM5

* Data User Element surface melting dominates Greenland ice cumulative total mass anomaly

anomaly vs 2003-2009 photo J Box melt energy

Clear Cloudy

2% 6% 3%2% 26% 34%

71% 54%

absorbed sunlight, S↓(1-α) L↓ Condensation Turbulent Sensible Flux Rain Flanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi (2011), Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008, Nat. Geosci., 4, 151–155, doi:10.1038/ngeo1062. GlobSnow

• European Space Agency (ESA) Data User Element (DUE) • snow extent (SE) • ~1km, 17+ years; 1995 - 2012, i.e. the sensor record spanning Envisat AATSR and ERS-2, ATSR-2 • semi-empirical SCAmod-algorithm (Metsämäki et al. 2012) • snow water equivalent (SWE) • 25 km, non-mountainous regions of N Hem., excluding glaciers and Greenland • Pulliainen 2006, Takala et al. 2011 • pMW radiometers (SMMR, SSM/I and SSMIS) and ground-based weather station data, spanning years 1979 to 2013. Albedo

land ice ECV

MODIS-based snowline retrieval end of melt season 2013 after Box, in prep. US Bureau of Land Management

Eicken, H., T. C. Grenfell, D. K. Perovich, J. A. Richter-Menge, and K. Frey (2004), Hydraulic controls of summer Arctic pack ice albedo, J. Geophys. Res., 109, C08007, doi:10.1029/2003JC001989. Riihelä, A., T. Manninen, and V. Laine, (2013) Observed changes in the albedo of the Arctic sea-ice zone for the period 1982 to 2009. Nature Climate Change, doi:10.1038/NCLIMATE1963 Eicken, H., T. C. Grenfell, D. K. Perovich, J. A. Richter-Menge, and K. Frey (2004), Hydraulic controls of summer Arctic pack ice albedo, J. Geophys. Res., 109, C08007, doi:10.1029/2003JC001989. Hudson, S. R. (2011), Estimating the global radiative impact of the sea ice–albedo feedback in the Arctic, J. Geophys. Res., 116, D16102, doi:10.1029/2011JD015804. Perovich, D. K., B. Light, H. Eicken, K. F. Jones, K. Runciman, and S. V. Nghiem (2007), Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback, Geophys. Res. Lett., 34, L19505, doi:10.1029/2007GL031480. http://www.sciencedirect.com/science/article/pii/S030324341500135X Hudson, S. R. (2011), Estimating the global radiative impact of the sea ice–albedo feedback in the Arctic, J. Geophys. Res., 116, D16102, doi: 10.1029/2011JD015804. Climate Application

Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Kärnä, J.-P., Koskinen, J. and Bojkov, B. (2011): Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sensing of Environment, Vol. 115 no. 12, December 2011, pp. 3517-3529, doi: 10.1016/j.rse.2011.08.014. Climate Application

• Metsämäki, S., Mattila, O.-P., Pulliainen, J., Niemi, K., Luojus, K., Böttcher, K., "An optical reflectance model-based method for fractional snow cover mapping applicable to continental scale" Remote Sensing of Environment, Vol. 123, August 2012, Pages 508-521, 10.1016/j.rse.2012.04.010.