The Carnegie-Irvine Galaxy Survey. VIII. Demographics of Bulges Along the Hubble Sequence

Total Page:16

File Type:pdf, Size:1020Kb

The Carnegie-Irvine Galaxy Survey. VIII. Demographics of Bulges Along the Hubble Sequence Draft version October 8, 2019 Typeset using LATEX twocolumn style in AASTeX62 The Carnegie-Irvine Galaxy Survey. VIII. Demographics of Bulges along the Hubble Sequence Hua Gao (高f),1, 2 Luis C. Ho,2, 1 Aaron J. Barth,3 and Zhao-Yu Li4 1Department of Astronomy, School of Physics, Peking University, Beijing 100871, China 2Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China 3Department of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575, USA 4Department of Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China ABSTRACT We present multi-component decomposition of high-quality R-band images of 320 disk galaxies from the Carnegie-Irvine Galaxy Survey. In addition to bulges and disks, we successfully model nuclei, bars, disk breaks, nuclear/inner lenses, and inner rings. Our modeling strategy treats nuclear rings and nuclear bars as part of the bulge component, while other features such as spiral arms, outer lenses, and outer rings are omitted from the fits because they are not crucial for accurate bulge measurements. The error budget of bulge parameters includes the uncertainties from sky level measurements and model assumptions. Comparison with multi-component decomposition from the Spitzer Survey of Stellar Structure in Galaxies reveals broad agreement for the majority of the overlapping galaxies, but for a considerable fraction of galaxies there are significant differences in bulge parameters caused by different strategies in model construction. We confirm that on average bulge prominence decreases from early to late-type disk galaxies, although the large scatter of bulge-to-total ratios in each morphological bin limits the application of Hubble type as an accurate predictor of bulge-to-total ratio. In contrast with previous studies claiming that barred galaxies host weaker bulges, we find that barred and unbarred spiral galaxies have similar bulge prominence. Keywords: galaxies: bulges | galaxies: elliptical and lenticular, cD | galaxies: photometry | galax- ies: spiral | galaxies: structure 1. INTRODUCTION and mergers (Toomre 1977; Bournaud 2016). However, Motivated by the wealth of information stored in the in recent decades, there has been increasing appreci- morphological structures of galaxies, Ho et al.(2011) ation that bulges actually constitute a heterogeneous initiated the Carnegie-Irvine Galaxy Survey (CGS) to population. Bulges in late-type spirals show a younger investigate the optical photometric properties of 605 stellar population, more flattened stellar light distri- bright galaxies in the southern hemisphere. Detailed bution, and more rotation-dominated kinematics com- analysis of the high-quality CGS images has yielded sig- pared with bulges in early-type disks (e.g., Wyse et al. nificant insights into many aspects of the Hubble se- 1997; Kormendy & Kennicutt 2004; Fisher & Drory quence of galaxies, including the nature of disk breaks 2008; Fisher et al. 2009; Laurikainen et al. 2016). These (Li et al. 2011), the formation history of ellipticals dichotomies in bulge properties suggest distinct forma- (Huang et al. 2013a,b, 2016), the bar buckling phe- tion physics. In addition to violent processes, secular arXiv:1901.03195v2 [astro-ph.GA] 5 Oct 2019 nomenon (Li et al. 2017), the nature of S0s (Gao et al. evolution, facilitated by nonaxisymmetries in the galaxy 2018), and the origin of spiral arms (Yu & Ho 2018a,b). potential, is able to transport gas with low angular mo- Galaxy bulges are, of course, one of the fundamen- mentum to galaxy centers to build up bulges that re- tal, defining characteristics of the Hubble sequence, and sembles disks rather than merger-built ellipticals (e.g., hence constitute a central theme of this long-term pro- Kormendy & Kennicutt 2004; Athanassoula 2005; Sell- gram. wood 2014; Tonini et al. 2016). The disky bulges formed As ellipticals and bulges bear resemblance in many as- in this manner are commonly referred to in the litera- pects of their observational properties (e.g., Faber 1977; ture as pseudobulges, to distinguish them from classical Gott 1977; Renzini 1999), they were once thought to bulges. have similar origin: both form out of rapid, violent pro- Despite the importance of bulges in defining the Hub- cesses, such as gravitational collapse (Eggen et al. 1962) ble sequence and their rich formation physics, robust 2 quantitative measurements of their structural parame- Section4. In Section5, we study how B=T is distributed ters are yet to be achieved for large, well-defined sam- along the Hubble Sequence. Section6 summarizes the ples. One-dimensional (1D) fitting of galaxy surface paper. brightness profiles (e.g., Kormendy 1977a,b; Burstein 1979) and two-dimensional (2D) fitting of galaxy im- 2. SAMPLE AND DATA ages (e.g., Shaw & Gilmore 1989; Byun & Freeman 1995; The CGS sample is defined by BT ≤ 12:9 mag and de Jong 1996a) are the two widely employed paramet- δ < 0◦, without any reference to morphology, size, or ric techniques. Non-parametric techniques are less of- environment. Details of the observations and data re- ten used because of the difficulty of applying them to duction are given in Ho et al.(2011) and Li et al.(2011), nearly face-on cases (e.g., Kent 1986; Capaccioli et al. and will not be repeated here. We focus on the images 1987; Scorza & Bender 1990; Simien & Michard 1990). taken in the R band because this filter is less sensitive In terms of parametric fitting, 2D methods are superior to dust extinction and young stars; we avoid the I band because they preserve the maximum amount of spatial because its point-spread function (PSF) suffers from the information on morpholically distinct components and \red halo" effect (see Appendix A of Huang et al. 2013a). because they conserve flux during the convolution pro- The majority of the R-band images are of high quality: cess (Byun & Freeman 1995; de Jong 1996a; see Sec- the median seeing is 100: 01, the median surface bright- tion 1 of Gao & Ho 2017 for a review of the methods). ness depth is 26.4 mag arcsec−2, and the field-of-view of Nevertheless, both 1D and 2D methods suffer from the 8:09 × 8:09 is large enough to ensure robust sky determi- uncertainties introduced by the non-uniqueness of input nation for most of the galaxies. surface brightness models. The sample analyzed in this paper is an extension to In order to clarify which morphological features are the sample of S0s presented in Gao et al.(2018). We most essential in 2D model construction when the pri- add 304 non-edge-on spirals selected with morphologi- mary intent is to obtain robust bulge parameters, Gao cal type index 0 < T ≤ 9:5 and inclination angle i ≤ 70◦. & Ho(2017) selected a representative sample from CGS During the course of performing the decomposition, we that covers a sufficiently wide range of morphological ended up removing 46 galaxies for a variety of reasons: features (bars, lenses, rings, and spiral arms) and ex- two galaxies do not have R-band images; one galaxy is plored the impact of modeling the secondary morpho- edge-on with a razor-thin disk; two galaxies do not have logical features. They showed that modeling nuclear photometric calibration; two galaxies are highly dust- and inner lenses/rings and disk breaks has considerable attenuated and are located in fields extremely crowded impact on bulge parameters, whereas outer lenses/rings with stars; ten galaxies are highly irregular; three galax- and spiral arms have a negligible effect. For example, ies do not yield reasonable fits; and 26 galaxies are bul- failure to model disk breaks or lenses introduces errors geless. This leaves 258 spirals with measurable bulges, that can be as large as ∼ 50% in bulge-to-total ratio which, when combined with the 62 S0s, results in a final (B=T ) for barred galaxies (see also Kim et al. 2014). sample of 320 disk galaxies. The bulgeless galaxies are This important effect is generally ignored in many de- of particular interest (e.g., Kormendy et al. 2010; Fisher composition studies (e.g., Simard et al. 2011; Meert et al. & Drory 2011), but they are beyond the scope of this 2015; Salo et al. 2015; but see Laurikainen et al. 2005; paper. We list them in AppendixA for future consid- Kim et al. 2016; M´endez-Abreuet al. 2017). These eration. A brief description of the main morphological alarming uncertainties compel us to measure a new set of features of each successfully decomposed galaxy is given bulge parameters for nearby galaxies, derived in a con- in AppendixB. sistent manner following the optimal strategy defined in Figure1 summarizes the basic parameters of the suc- Gao & Ho(2017). cessfully decomposed sample of 320 galaxies. The stellar Toward this end, Gao et al.(2018) successfully de- masses (M?) for 313 galaxies were derived from the total composed 62 CGS S0 galaxies. This paper extends our Ks magnitudes compiled in Ho et al.(2011) and mass- previous work and presents a comprehensive catalog of to-light ratios following Equation (9) in Kormendy & bulge parameters for 320 non-edge-on disk galaxies in Ho(2013): CGS. Definition of the sample and description of the data are given in Section2. We closely follow and ex- log (M=L)Ks = 1:055(B − V ) − 0:9402; (1) pand the strategy in Gao & Ho(2017) to decompose the using (B − V ) colors from CGS (Li et al. 2011). The galaxies, as detailed in Section3. We compare the CGS galaxies in the sample are nearby (median D = bulge parameters with those from the Spitzer Survey of L 26:1 Mpc) and massive [median log (M =M ) = 10:57]. Stellar Structure in Galaxies (S4G; Sheth et al. 2010) in ? Note that some of the S0s have morphological type 3 indices T < −3 due to the inclusion of misclassified models are significant, especially for CGS galaxies that ellipticals (Gao et al.
Recommended publications
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • The NICMOS Snapshot Survey of Nearby Galaxies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server The NICMOS snapshot survey of nearby galaxies T. B¨oker1, D. Calzetti, W. Sparks, D. Axon1, L. E. Bergeron, H. Bushouse, L. Colina1, D. Daou, D. Gilmore, S. Holfeltz, J. MacKenty, L. Mazzuca, B. Monroe, J. Najita, K. Noll, A. Nota1,C. Ritchie, A. Schultz, M. Sosey, A. Storrs, A. Suchkov (the STScI NICMOS group) Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, U.S.A. ABSTRACT We present “snapshot” observations with the NearInfrared Camera and MultiObject Spectrometer (NICMOS) on board the Hubble Space Telescope (HST) of 94 nearby galaxies from the Revised Shapley Ames Catalog. Images with 0.200 resolution were obtained in two filters, a broad-band continuum filter (F160W, roughly equivalent to the H-band) and a narrow band filter centered on the Pa α line (F187N or F190N, depending on the galaxy redshift) with the 5100 5100 field of view of the NICMOS camera 3. A first- order continuum subtraction is performed,× and the resulting line maps and integrated Pa α line fluxes are presented. A statistical analysis indicates that the average Pa α surface brightness in the central regions is highest in early-type (Sa-Sb) spirals. Subject headings: infrared:galaxies—infrared:ISM:lines and bands—galaxies:nuclei— galaxies:starburst—galaxies:statistics 1Affiliated with the Astrophysics Division, Space Science Department, European Space Agency 1 1. Introduction with the NIC3 F190N filter. The velocity range was chosen such that the Pa α line falls well inside the NICMOS is a second generation HST instrument, high transmission region of the respective filter, with installed during the HST servicing mission in Febru- only minor corrections ( 5%) needed to account for ary 1997.
    [Show full text]
  • The Radio Properties of a Complete Sample of Bright Galaxies
    Aust. J. Phys., 1982,35,321-50 The Radio Properties of a Complete Sample of Bright Galaxies J. I. Harnett School of Physics, University of Sydney, Sydney, N.S.W. 2006. Abstract Results are given for the radio continuum properties of an optically complete sample of 294 bright galaxies, 147 of which have been detected. Data were obtained with the 408 MHz Molonglo Radio Telescope. The radio luminosity functions for all galaxies and for spiral galaxies alone are derived and the radio emission for different galaxy types is investigated. Spectral indices of 73 galaxies which had been detected at other frequencies were derived; the mean index of a reliable subsample is <ex) = -0,71. 1. Introduction There have been many extensive surveys of continuum radio emission from bright galaxies. The earliest comprehensive survey of high sensitivity was that of Cameron (1971a, 1971b) using the Molonglo Cross Radio Telescope at 408 MHz. Cameron observed two optically complete samples south of b = + 18° and defined the radio luminosity function with reasonable statistics at radio powers of ~ 1022 W HZ-I. In the past decade the optical properties of galaxies have been revised so that the selection of an optically complete sample is more reliable. In addition, between 1970 and 1978 the sensitivity of the 408 MHz Molonglo Cross was improved by more than a magnitude, permitting more detections and more accurate measurements of weak' radio emission. Before observations at 408 MHz with the Molonglo Cross ceased in 1978, a new survey was made to improve Cameron's results and provide the best possible data base for subsequent investigations at different frequencies.
    [Show full text]
  • Structure and Star Formation in Disk Galaxies I. Sample Selection And
    Mon. Not. R. Astron. Soc. 000, 1–9 (2003) Printed 31 October 2018 (MN LATEX style file v1.4) Structure and star formation in disk galaxies I. Sample selection and near infrared imaging J. H. Knapen1,2, R. S. de Jong3, S. Stedman1 and D. M. Bramich4 1University of Hertfordshire, Department of Physical Sciences, Hatfield, Herts AL10 9AB 2Isaac Newton Group of Telescopes, Apartado 321, E-38700 Santa Cruz de La Palma, Spain 3Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 4School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS Accepted March 2003. Received ; in original form ABSTRACT We present near-infrared imaging of a sample of 57 relatively large, Northern spiral galaxies with low inclination. After describing the selection criteria and some of the basic properties of the sample, we give a detailed description of the data collection and reduction procedures. The Ks λ =2.2µm images cover most of the disk for all galaxies, with a field of view of at least 4.2 arcmin. The spatial resolution is better than an arcsec for most images. We fit bulge and exponential disk components to radial profiles of the light distribution. We then derive the basic parameters of these components, as well as the bulge/disk ratio, and explore correlations of these parameters with several galaxy parameters. Key words: galaxies: spiral – galaxies: structure – infrared: galaxies 1 INTRODUCTION only now starting to be published (e.g., 2MASS: Skrutskie et al. 1997, Jarrett et al. 2003; Seigar & James 1998a, 1998b; Near-infrared (NIR) imaging of galaxies is a better tracer Moriondo et al.
    [Show full text]
  • Radio Astronom1y G
    £t,: ,/ NATIONAL RADIO ASTRONOMY OBSERVATORY QUARTERLY REPORT October 1 - December 31, 1989 RADIO ASTRONOM1Y G.. '8 tO- C~oe'' n,'evI! I E. Vi. t-Li 1 2 1990 TABLE OF CONTENTS A. TELESCOPE USAGE ... .... ...... ............ 1 B. 140-FOOT OBSERVING PROGRAMS . .... .......... ... 1 C. 12-METER TELESCOPE ....... ..... ., .... ........ 5 D. VERY LARGE ARRAY ....... 1...................8 E. SCIENTIFIC HIGHLIGHTS .... ........ 19 F. PUBLICATIONS ............. G. CENTRAL DEVELOPMENT LABORATORY ........ 20 H. GREEN BANK ELECTRONICS . .. .a.. ...... 21 I. 12-METER ELECTRONICS ...... .. 0. I. 22 J. VLA ELECTRONICS ...... 0..... ..... .... a. 24 K. AIPS .... .............. ...... ............. 26 L. VLA COMPUTER ............. .. .0. .0. ... 27 M. VERY LONG BASELINE ARRAY . .. .0 .0 .0 .0 .0 . .0 .. 27 N. PERSONNEL .. ...... .... .0.0 . .0. .0. .. e. 30 APPENDIX A: List of NRAO Preprints A. TELESCOPE USAGE The NRAO telescopes have been scheduled for research and maintenance in the following manner during the fourth quarter of 1989. 140-ft 12-m VLA Scheduled observing (hrs) 1901.75 1583.50 1565.2 Scheduled maintenance and equipment changes 132.00 107.75 259.8 Scheduled tests and calibrations 20.75 425.75 327.1 Time lost 139.25 208.25 107.0 Actual observing 1762.50 1375.25 1458.2 B. 140-FOOT OBSERVING PROGRAMS The following line programs were conducted during this quarter. No. Observer(s) Program A-95 Avery, L (Herzberg) Observations at 18.2, 18.6, and Bell, M. (Herzberg) 23.7 GHz of cyanopolyynes in carbon Feldman, P. (Herzberg) stars part II. MacLeod, J. (Herzberg) Matthews, H. (Herzberg) B-493 Bania, T. (Boston) Measurements at 8.666 GHz of 3He + Rood, R. (Virginia) emission in HII regions and planetary Wilson, T.
    [Show full text]
  • The Applicability of Far-Infrared Fine-Structure Lines As Star Formation
    A&A 568, A62 (2014) Astronomy DOI: 10.1051/0004-6361/201322489 & c ESO 2014 Astrophysics The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types? Ilse De Looze1, Diane Cormier2, Vianney Lebouteiller3, Suzanne Madden3, Maarten Baes1, George J. Bendo4, Médéric Boquien5, Alessandro Boselli6, David L. Clements7, Luca Cortese8;9, Asantha Cooray10;11, Maud Galametz8, Frédéric Galliano3, Javier Graciá-Carpio12, Kate Isaak13, Oskar Ł. Karczewski14, Tara J. Parkin15, Eric W. Pellegrini16, Aurélie Rémy-Ruyer3, Luigi Spinoglio17, Matthew W. L. Smith18, and Eckhard Sturm12 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium e-mail: [email protected] 2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany 3 Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d0Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Laboratoire d0Astrophysique de Marseille − LAM, Université Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille CEDEX 13, France 7 Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 8 European Southern Observatory, Karl
    [Show full text]
  • WALLABY Pre-Pilot Survey: Two Dark Clouds in the Vicinity of NGC 1395
    University of Texas Rio Grande Valley ScholarWorks @ UTRGV Physics and Astronomy Faculty Publications and Presentations College of Sciences 2021 WALLABY pre-pilot survey: Two dark clouds in the vicinity of NGC 1395 O. I. Wong University of Western Australia A. R. H. Stevens B. Q. For University of Western Australia Tobias Westmeier M. Dixon See next page for additional authors Follow this and additional works at: https://scholarworks.utrgv.edu/pa_fac Part of the Astrophysics and Astronomy Commons, and the Physics Commons Recommended Citation O I Wong, A R H Stevens, B-Q For, T Westmeier, M Dixon, S-H Oh, G I G Józsa, T N Reynolds, K Lee-Waddell, J Román, L Verdes-Montenegro, H M Courtois, D Pomarède, C Murugeshan, M T Whiting, K Bekki, F Bigiel, A Bosma, B Catinella, H Dénes, A Elagali, B W Holwerda, P Kamphuis, V A Kilborn, D Kleiner, B S Koribalski, F Lelli, J P Madrid, K B W McQuinn, A Popping, J Rhee, S Roychowdhury, T C Scott, C Sengupta, K Spekkens, L Staveley-Smith, B P Wakker, WALLABY pre-pilot survey: Two dark clouds in the vicinity of NGC 1395, Monthly Notices of the Royal Astronomical Society, 2021;, stab2262, https://doi.org/10.1093/ mnras/stab2262 This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Physics and Astronomy Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact [email protected], [email protected].
    [Show full text]
  • 194 9 Ce Le B Rating 65 Ye Ars O F Br Inging As Tr on Omy T O No Rth Te X As 2
    1949 Celebrating 65 Years of Bringing Astronomy to North Texas 2014 Contact information: Inside this issue: Info Officer (General Info) – [email protected] Website Administrator – [email protected] Page Postal Address: November Club Calendar 3 Fort Worth Astronomical Society Celestial Events 4 c/o Matt McCullar 5801 Trail Lake Drive Sky Chart 5 Fort Worth, TX 76133 Moon Phase Calendar 6 Web Site: http://www.fortworthastro.org Facebook: http://tinyurl.com/3eutb22 Lunar Occultations/Conjs 7 Twitter: http://twitter.com/ftwastro Yahoo! eGroup (members only): http://tinyurl.com/7qu5vkn Mercury/Venus Chart 8 Officers (2014-2015): Mars/Minor Planets Charts 9 President – Bruce Cowles, [email protected] Jupiter Charts 10 Vice President – Russ Boatwright, [email protected] Sec/Tres – Michelle Theisen, [email protected] Planet Vis & ISS Passes 11 Board Members: CSAC Event Update 12 2014-2016 Mike Langohr Young Astronomer News 12 Tree Oppermann ‘66 Leonids Remembered 13 2013-2015 Bill Nichols Cloudy Night Library 15 Jim Craft Cover Photo: Monthly AL Observing Club 17 Composite image taken by FWAS mem- bers: Left to right, from top to bottom— Constellation of the Month 18 Laura Cowles, Mike Ahner, Brian Wortham, Constellation Mythology 19 Shawn Kirchdorfer, Mark Wainright, Phil Stage, Patrick McMahon, Dennis Webb, Ben Prior Club Meeting Minutes 20 Hudgens, Shawn Kirchdorfer, John McCrea, and Chris Mlodnicki General Club Information 21 That’s A Fact 21 Observing Site Reminders: Be careful with fire, mind all local burn bans! Full Moon Name 21 Dark Site Usage Requirements (ALL MEMBERS): FWAS Foto Files 22 Maintain Dark-Sky Etiquette (http://tinyurl.com/75hjajy) Turn out your headlights at the gate! Sign the logbook (in camo-painted storage shed.
    [Show full text]
  • ¼¼Çwªâðw¦¹Á¼ºëw£Àêëw ˆ†ˆ€ «ÆÊ¿Àäàww«¸ÂÀ ‰‡‡Œ†ˆ‰†‰Œ
    ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec. P.A. w R.A. Size Size Chart N a he ss d l Object Type Con. Mag. Class t NGC Description l AS o o sc e s r ( h m ) max min No. C a ( ' ) ( ) sc R AAS e r e M C T e B H H NGC 7192 GALXY IND 22 06.8 -64 19 11.2 1.9 m 1.8 m Elliptical pB,S,R,pmbM 134 NGC 7219 GALXY TUC 22 13.1 -64 51 12.5 1.7 m 1 m 27 SBa pB,S,R,2st nr 134 NGC 7329 GALXY TUC 22 40.4 -66 29 11.3 3.7 m 2.7 m 107 SBbc Ring pB,pS,mE90 134 NGC 7417 GALXY TUC 22 57.8 -65 02 12.3 1.9 m 1.3 m 2 SBab Ring pB,cS,R,gpmbM 134 NGC 7637 GALXY OCT 23 26.5 -81 55 12.5 2.1 m 1.9 m Sc vF,pL,R,vlbM,* nr 134 «ÆÊ¿ÀÄÀww«¸ÂÀ ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec. P.A. w R.A. Size Size Chart N a he ss d l Object Type Con. Mag. Class t NGC Description l AS o o sc e s r ( h m ) max min No. C a ( ' ) ( ) sc R AAS e r e M C T e B H H Mel 227 OPNCL OCT 20 12.1 -79 19 5.3 50.0 m II 2 p 135 NGC 6872 GALXY PAV 20 17.0 -70 46 11.8 6.3 m 2.2 m 66 SBb/P F,pS,lE,glbM,1st of 4 135 NGC 6876 GALXY PAV 20 18.3 -70 52 11.1 3 m 2.6 m 80 E3 pB,S,R,eS* sf,2nd of 4 135 NGC 6877 GALXY PAV 20 18.6 -70 51 12.2 2 m 1 m 169 E6 vF,vS,R,3rd of 4 135 NGC 6880 GALXY PAV 20 19.5 -70 52 12.2 2.1 m 1.3 m 35 SBO-a F,S,R,r,vS* att,4 of 4 135 NGC 6920 GALXY OCT 20 44.0 -80 00 12.5 1.8 m 1.5 m SO pB,cS,R,psmbM 135 NGC 6943 GALXY PAV 20 44.6 -68 45 11.4 4 m 2.2 m 130 SBc pF,L,mE,vglbM vS* 135 IC 5052 GALXY PAV 20 52.1 -69 12 11.2 5.9 m 0.9 m 143 SBcd F,L,eE 140 deg 135 NGC 7020 GALXY PAV 21 11.3 -64 02 11.8 3.5 m 1.6 m 165 SBO-a Ring pB,cS,lE,pgbM 135 NGC 7083 GALXY IND 21 35.7 -63 54 11.2 3.6 m 2.1 m 5 Sbc pF,cL,vlE,vgpmbM,r 135 NGC 7096 GALXY IND 21 41.3 -63 55 11.9 1.8 m 1.6 m 130 Sa vF,S,R,vS** nf 135 NGC 7098 GALXY OCT 21 44.3 -75 07 11.3 4 m 2.6 m 74 SB Ring pF,R,g,psmbM,am st 135 NGC 7095 GALXY OCT 21 52.4 -81 32 11.5 4 m 3.3 m Sc F,pL,R,vglbM,*13 inv 135 «ÆÊ¿ÀÄÀww«¸ÂÀ ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec.
    [Show full text]
  • Overview on Spectral Line Source Finding and Visualisation
    CSIRO PUBLISHING Publications of the Astronomical Society of Australia, 2012, 29, 359–370 http://dx.doi.org/10.1071/AS12030 Overview on Spectral Line Source Finding and Visualisation B. S. Koribalski CSIRO Astronomy & Space Science, Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia Email: [email protected] Abstract: Here I will outline successes and challenges for finding spectral line sources in large data cubes that are dominated by noise. This is a 3D challenge as the sources we wish to catalog are spread over several spatial pixels and spectral channels. While 2D searches can be applied, e.g. channel by channel, optimal searches take into account the 3-dimensional nature of the sources. In this overview I will focus on HI 21-cm spectral line source detection in extragalactic surveys, in particular HIPASS, the HI Parkes All-Sky Survey and WALLABY, the ASKAP HI All-Sky Survey. I use the original HIPASS data to highlight the diversity of spectral signatures of galaxies and gaseous clouds, both in emission and absorption. Among others, I report the À1 discovery of a 680 km s wide HI absorption trough in the megamaser galaxy NGC 5793. Issues such as source confusion and baseline ripples, typically encountered in single-dish HI surveys, are much reduced in interferometric HI surveys. Several large HI emission and absorption surveys are planned for the Australian Square Kilometre Array Pathfinder (ASKAP): here we focus on WALLABY, the 21-cm survey of the sky (d , þ308; z , 0.26) which will take about one year of observing time with ASKAP.
    [Show full text]
  • An Atlas of Calcium Triplet Spectra of Active Galaxies 3
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 1 December 2018 (MN LATEX style file v2.2) An atlas of Calcium triplet spectra of active galaxies A. Garcia-Rissmann1⋆, L. R. Vega1,2†, N. V. Asari1‡, R. Cid Fernandes1§, H. Schmitt3,4¶, R. M. Gonz´alez Delgado5k, T. Storchi-Bergmann6⋆⋆ 1 Depto. de F´ısica - CFM - Universidade Federal de Santa Catarina, C.P. 476, 88040-900, Florian´opolis, SC, Brazil 2 Observatorio Astron´omico de C´ordoba, Laprida 854, 5000, C´ordoba, Argentina 3 Remote Sensing Division, Code 7210, Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375 4 Interferometric Inc., 14120 Parke Long Court, 103, Chantilly, VA20151 5 Instituto de Astrof´ısica de Andaluc´ıa (CSIC), P.O. Box 3004, 18080 Granada, Spain 6 Instituto de F´ısica, Universidade Federal do Rio Grande do Sul, C.P. 15001, 91501-970, Porto Alegre, RS, Brazil 1 December 2018 ABSTRACT We present a spectroscopic atlas of active galactic nuclei covering the region around the λλ8498, 8542, 8662 Calcium triplet (CaT). The sample comprises 78 ob- jects, divided into 43 Seyfert 2s, 26 Seyfert 1s, 3 Starburst and 6 normal galaxies. The spectra pertain to the inner ∼ 300 pc in radius, and thus sample the central kine- matics and stellar populations of active galaxies. The data are used to measure stellar velocity dispersions (σ⋆) both with cross-correlation and direct fitting methods. These measurements are found to be in good agreement with each-other and with those in previous studies for objects in common. The CaT equivalent width is also measured.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]