Integrative Taxonomy Reveals the Chortís Block of Central America As an Underestimated Hotspot of Amphibian Diversity

Total Page:16

File Type:pdf, Size:1020Kb

Integrative Taxonomy Reveals the Chortís Block of Central America As an Underestimated Hotspot of Amphibian Diversity INTEGRATIVE TAXONOMY REVEALS THE CHORTÍS BLOCK OF CENTRAL AMERICA AS AN UNDERESTIMATED HOTSPOT OF AMPHIBIAN DIVERSITY By JOSIAH HAROLD TOWNSEND A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2011 1 © 2011 Josiah Harold Townsend 2 Para Ileana And in loving memory of my grandfather, Vernon Lynn Boyd 3 ACKNOWLEDGMENTS I want to begin by expressing my gratitude for the support shown by my advisory committee during the course of preparing this dissertation. My Chair, James Austin, supported me both academically and personally throughout this process; his leadership and steadfast support was instrumental in my success. I want to thank my committee members, Rob Fletcher, Mike Miyamoto, Rick Stepp, and Larry David Wilson, for their guidance, advice, and support through the process of researching and writing this dissertation. Writing a dissertation must be both a singularly selfish act and one that relies on the extended patience and support of loved ones, labmates, and colleagues. This certainly was the case for me. To the one person who is literally all three of those things, my wife Ileana Luque-Montes, I cannot adequately express the amazement with which I have watched you begin your own graduate studies over the past four months; maintaining a rigorous field schedule and supervising undergraduates, while I was of minimal help and fully focused on writing the following document. I simply would not have completed this without your remarkable dedication and support, and my gratitude will be best expressed by giving you the same degree of support as you pursue your own goals. I am blessed with the devoted support and seemingly endless patience and understanding of a wonderful and inspirational family, my parents Steve and Terri Boyd Townsend, my sister Katielynn, and my grandparents Vernon Lynn and Norma Jean Boyd and Willa Parker Townsend, who are largely responsible for any past and future successes I may have. In many ways, I am who I am today thanks to the mentorship of Larry David Wilson. As a mentor, colleague, and friend, Larry introduced me to Honduras in 1999 4 and guided my developing research interests there throughout my community college and undergraduate years, becoming my colleague and supporter as I progressed through my graduate studies. I owe no small debt of gratitude to my friends and colleagues in the Austin Lab, and, in particular, for actively assisting with my labwork and providing countless impromptu instructional sessions, I want to thank Jason Butler, John Hargrove, Nathan Johnson, Emily Saarinen, Matt Shirley, and Aria (Johnson) St. Louis. I also benefited from the dedicated work of a series of undergraduate researchers and volunteers: Teresa Burlingame, Dania Gutierrez, Jaclyn Irwin, Rachel Shapiro, Vicki Villanova, and Lauryn Walter. My work for the past six years has benefited greatly from the support of the Section of Protected Areas and Wildlife, Instituto Nacional de Conservación y Desarrollo Forestal, Áreas Protegidas y Vida Silvestre, and particularly Iris Acosta, Carla Cárcamo, Saíd Lainez O., Andrés Alegria, Ramón Alvarez L., Wilson Zúniga D., Sonia Martínez Moreno, and Wendy Aronne (Instituto Nacional de Conservación y Desarrollo Forestal, Áreas Protegidas y Vida Silvestre [ICF]). Fieldwork was carried out under a series of research permits issued by ICF, most recently Resolución DE-MP-086-2010 and Dictamen DVS-ICF-045-2010. In Honduras, my work would not have been possible without the hard work and support variously given by Ileana Luque-Montes (UNAH), Melissa Medina-Flores (UNAH, UNA), Luis A. Herrera (UNAH), Allan J. Fuentes and Eduardo J. Zavala (PROLANSATE), Alcalde Adolfo Pagoada-Saybe (Municipalidad de Arizona), Alcadesa Teresa Espinosa Aguilar (Municipalidad de Marale), Oliver Komar, Jose Mora, Jorge Iván Restrepo, and Fredy Membreño (Centro Zamorano de 5 Biodiversidad), Efrain Aguilar (San José de Texíguat), Alfonso Contreras (Mezapita), Alionso Portillo (Jilamito Nuevo), J. Dubón (La Liberación), Mario Orellana Leiva (El Playon), Leonel Erazo Chávez (El Cedral), Rafael Ulloa (Municipalidad de Gualaco), Eduardo Rico (ICF-Gualaco), Carlos Perdomo (Aldea Global), Paul House (UNAH, Herbario TEFH), Robert Dale (Los Naranjos), and Alicia Ward (Santa Bárbara). I would like to acknowledge the following people for their work in the field in support of this project: Carlos Andino, Ben K. Atkinson, James D. Austin, Christopher Begley, Mark Bonta, Jason M. Butler, Brian Campesano, César A. Cerrato, Gabriela Diaz, Anne Donnelly, Matthew Donnelly, Yensi Flores, Sergio C. Gonzalez, Levi Gray, Vladlen Henriquez, Luis A. Herrera, Paul House, Robert Hyman, Lorraine Ketzler, Ileana Luque, Christina Martin, David Medina, Melissa Medina-Flores, Mayron Mckewy-Mejía, Aaron Mendoza, Wendy Naira, Ciro Navarro, Lenin Obando, Sandy Pereira, Onán A. Reyes, John Slapcinsky, Mario Solís, Fito Steiner, Nathaniel Stewart, Alexander Stubbs, Katielynn Townsend, Steve Townsend, Scott L. Travers, Rony Valle, Hermes Vega, Alicia Ward, and Christopher Wolf. I am very grateful for the support of Amy Driscoll, Dan Mulcahy, Andrea Ormos, and the SI Barcoding Project (Smithsonian Institution Laboratory of Analytical Biology), and Roy McDiarmid (USNM) for supporting my ―Barcoding the Herpetofauna of Eastern Nuclear Central America‖ initiative. Deposition of voucher specimens and timely acquisition of catalog numbers was facilitated by: Jim McGuire, Ted Papenfuss, Sean Rovito, Carol Spencer, and David Wake (MVZ), Jose Rosado (MCZ), and Steve Gotte, Jeremy Jacobs, John Poindexter, and Robert Wilson (USNM). Jason Butler, Ileana 6 Luque, Javier Sunyer, and Scott Travers kindly contributed photographs for use in this dissertation. Various portions of this dissertation was funded by Critical Ecosystem Partnership Fund (CEPF), a Summer Research Grant from the Working Forests in the Tropics IGERT Program (National Science Foundation DGE–0221599) at the University of Florida, a grant to Kirsten E. Nicholson (Central Michigan University; National Science Foundation DEB-0949359), and the Explorer’s Club (via Robert Hyman; Flag #93). During my dissertation studies, I was supported by a 2007–09 NSF GK-12 Fellowship from the UF SPICE Program, and as much as any experience during my graduate education, my participation in this program was truly formative and help to shape the conceptual framework within which I propose to carry out research. I am especially grateful to Doug Levey and Suzan Smith, my partner-teacher Nate Stewart, and fellow fellows Jackson Frechette, Rachel Naumann, and Tom Tidyman, for helping to make SPICE a truly great experience. Following SPICE, my work with the UFTeach Program as an instructor for their core Research Methods class was key during the final two years of my dissertation, and I thank Alan Dorsey, Dimple Flesner, Griff Jones, Linda Jones, Katrina Short, Gloria Weber, and our RM students for making these last two spring semesters so enjoyable. Finally, I want to take this opportunity to dedicate my work in the past and future to the memory of three friends that I lost while completing this degree. I met Thad Owens as a student in my Herpetology class at UF and we quickly became friends, as he did with just about everyone who knew him. Thad was one of the most honest, unreserved, and enthusiastic people I will ever have the pleasure of knowing, and rarely a day 7 passes since he was lost in May 2009 that I do not think about him or find inspiration in his memory. Wade Wassenberg was a good friend since high school, and was one of the most loyal friends anyone could hope to have. After losing track of him for years, I learned that Wade had joined the US Army and served in the elite 1st Battalion of the 75th Ranger Regiment, surviving four tours of duty in Afghanistan and two more in Iraq from 2002 to 2008. After retiring to rejoin life with his beautiful young family, he was suddenly diagnosed with brain cancer and passed soon thereafter at the VA Hospital in Gainesville, walking distance from my office. I will always regret that while my friend suffered and passed literally minutes away from my home, I was unaware and in the field in Honduras. Finally, Don Mario Guiffaro of Olancho, Honduras, was an influential and remarkable man whose legendary life story included being a feared pistolero, a frontier gold miner, a jaguar hunter, and in his later years, and outstanding advocate and conservationist in the Patuca region. In 2007, Don Mario’s forceful opposition to illegal logging and drug trafficking in the Mosquitia was ultimately answered by violence, and he was gunned down in front of his son and friends. The memories of, and examples set, by these three friends, to each of whom I would not have hesitated to entrust with my life, and in some cases did just that, will always be my compass and my motivation as I continue through life’s journey. 8 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES .......................................................................................................... 14 LIST OF FIGURES ........................................................................................................ 15 ABSTRACT ................................................................................................................... 18 CHAPTER 1 INTRODUCTION
Recommended publications
  • CAT Vertebradosgt CDC CECON USAC 2019
    Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Aquiloeurycea Scandens (Walker, 1955). the Tamaulipan False Brook Salamander Is Endemic to Mexico
    Aquiloeurycea scandens (Walker, 1955). The Tamaulipan False Brook Salamander is endemic to Mexico. Originally described from caves in the Reserva de la Biósfera El Cielo in southwestern Tamaulipas, this species later was reported from a locality in San Luis Potosí (Johnson et al., 1978) and another in Coahuila (Lemos-Espinal and Smith, 2007). Frost (2015) noted, however, that specimens from areas remote from the type locality might be unnamed species. This individual was found in an ecotone of cloud forest and pine-oak forest near Ejido La Gloria, in the municipality of Gómez Farías. Wilson et al. (2013b) determined its EVS as 17, placing it in the middle portion of the high vulnerability category. Its conservation status has been assessed as Vulnerable by IUCN, and as a species of special protection by SEMARNAT. ' © Elí García-Padilla 42 www.mesoamericanherpetology.com www.eaglemountainpublishing.com The herpetofauna of Tamaulipas, Mexico: composition, distribution, and conservation status SERGIO A. TERÁN-JUÁREZ1, ELÍ GARCÍA-PADILLA2, VICENTE Mata-SILva3, JERRY D. JOHNSON3, AND LARRY DavID WILSON4 1División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Ciudad Victoria, Boulevard Emilio Portes Gil No. 1301 Pte. Apartado postal 175, 87010, Ciudad Victoria, Tamaulipas, Mexico. Email: [email protected] 2Oaxaca de Juárez, Oaxaca, Código Postal 68023, Mexico. E-mail: [email protected] 3Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas 79968-0500, United States. E-mails: [email protected] and [email protected] 4Centro Zamorano de Biodiversidad, Escuela Agrícola Panamericana Zamorano, Departamento de Francisco Morazán, Honduras. E-mail: [email protected] ABSTRACT: The herpetofauna of Tamaulipas, the northeasternmost state in Mexico, is comprised of 184 species, including 31 anurans, 13 salamanders, one crocodylian, 124 squamates, and 15 turtles.
    [Show full text]
  • Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
    Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes.
    [Show full text]
  • Nototriton Nelsoni Is a Moss Salamander Endemic to Cloud Forest in Refugio De Vida Silvestre Texíguat, Located in the Departments of Atlántida and Yoro, Honduras
    Nototriton nelsoni is a moss salamander endemic to cloud forest in Refugio de Vida Silvestre Texíguat, located in the departments of Atlántida and Yoro, Honduras. This cryptic species long was confused with N. barbouri, a morphologically similar species now considered endemic to the Sierra de Sulaco in the southern part of the department of Yoro. Like many of its congeners, N. nelsoni rarely is observed in the wild, and is known from just five specimens. Pictured here is the holotype of N. nelsoni, collected above La Liberación in Refugio de Vida Silvestre Texíguat at an elevation of 1,420 m. This salamander is one of many herpetofaunal species endemic to the Cordillera Nombre de Dios. ' © Josiah H. Townsend 909 www.mesoamericanherpetology.com www.eaglemountainpublishing.com Amphibians of the Cordillera Nombre de Dios, Honduras: COI barcoding suggests underestimated taxonomic richness in a threatened endemic fauna JOSIAH H. TOWNSEND1 AND LARRY DAVID WILSON2 1Department of Biology, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705–1081, United States. E-mail: [email protected] (Corresponding author) 2Centro Zamorano de Biodiversidad, Escuela Agrícola Panamericana Zamorano, Departamento de Francisco Morazán, Honduras; 16010 SW 207th Avenue, Miami, Florida 33187-1067, United States. E-mail: [email protected] ABSTRACT: The Cordillera Nombre de Dios is a chain of mountains along the northern coast of Honduras that harbors a high degree of herpetofaunal endemism. We present a preliminary barcode reference library of amphibians from the Cordillera Nombre de Dios, based on sampling at 10 sites from 2008 to 2013. We sequenced 187 samples of 21 nominal taxa for the barcoding locus cytochrome oxidase subunit I (COI), and recovered 28 well-differentiated clades.
    [Show full text]
  • Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
    Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF.
    [Show full text]
  • Multi-National Conservation of Alligator Lizards
    MULTI-NATIONAL CONSERVATION OF ALLIGATOR LIZARDS: APPLIED SOCIOECOLOGICAL LESSONS FROM A FLAGSHIP GROUP by ADAM G. CLAUSE (Under the Direction of John Maerz) ABSTRACT The Anthropocene is defined by unprecedented human influence on the biosphere. Integrative conservation recognizes this inextricable coupling of human and natural systems, and mobilizes multiple epistemologies to seek equitable, enduring solutions to complex socioecological issues. Although a central motivation of global conservation practice is to protect at-risk species, such organisms may be the subject of competing social perspectives that can impede robust interventions. Furthermore, imperiled species are often chronically understudied, which prevents the immediate application of data-driven quantitative modeling approaches in conservation decision making. Instead, real-world management goals are regularly prioritized on the basis of expert opinion. Here, I explore how an organismal natural history perspective, when grounded in a critique of established human judgements, can help resolve socioecological conflicts and contextualize perceived threats related to threatened species conservation and policy development. To achieve this, I leverage a multi-national system anchored by a diverse, enigmatic, and often endangered New World clade: alligator lizards. Using a threat analysis and status assessment, I show that one recent petition to list a California alligator lizard, Elgaria panamintina, under the US Endangered Species Act often contradicts the best available science.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • A New Subspecies of Anolis Porcatus (Sauna: Polychrotidae) from Western Cuba
    Rev. Biol. Trop., 44(3)/45(1): 295-299, 1996-1997 A new subspecies of Anolis porcatus (Sauna: Polychrotidae) from Western Cuba O. Pérez-Beato 6780 W 2nd Ct. Apt. 212, Hialeah, Florida 33012, U.S.A. (Rec. l-IX-1995. Rev. ll-IX-1995. Acep. 22-11-1996) Abstract: A new subspecies of Anolis porcatus Gray, is described fromwestem Cuba. The main characters differenti­ ating Anolis porcattis aracelyae are a Iight blúe tint dorsum and an elongated ear opening. The distribution of the new taxon may be explained on the basis of allopatry in the Guaniguanico mountain range. Key words: Anolis porcatus, Cuba, Polychrotidae , subspecies Since the original description of Anolis por­ examined 325 additional specimens from popu­ catus (Gray 1840), this species was twice con­ lations throughout Cuba; unfortunately, sorne sidered a subspecies of Anolis carolinensis of tbis have been lost. Duméril and Bibron (Barbour 1937, Oliver The presence of a peculiar phenotype with a 1948), although Gray's allocation generally has light blue color in adult males and with an prevailed. The most complete systematic treat­ elongated ear opening in both sexes became ment was by Ruibal and Williams (1961). They evident in samples from western Cuba. This described the variability observed among and variation in ear shape had been noted by Ruibal between populations of A. porcatus across and Williams (1961) for Pinar de Río popula­ Cuba and proposed not fewer than four tions. The distribution of this phenotype hypotheses to explain the possible existence of ineludes almost the entire province of Pinar del several species and subspecies.
    [Show full text]
  • Index Seminum 2015 List of Seeds for Exchange
    Index Seminum 2015 List of seeds for exchange Glasgow Botanic Gardens 730 Great Western Road Glasgow, G12 OUE Scotland, United Kingdom History of Glasgow Botanic Gardens The Botanic Gardens were founded on an 8-acre site at the West End of Sauchiehall Street at Sandyford in 1817. This was through the initiative of Thomas Hopkirk of Dalbeth who gave his own plant collection to form the nucleus of the new garden. It was run by the Royal Botanical Institution of Glasgow and an agreement was reached with Glasgow University to provide facilities for teaching, including supply of plants for botanical and medical classes. Professor William J. Hooker, Regius Professor of Botany at the University of Glasgow (1820-41), took an active part in the development of the Gardens, which became well known in botanical circles throughout the world. The early success led to expansion and the purchase of the present site, at Kelvinside, in 1842. At the time entry was mainly restricted to members of the Royal Botanical Institution and their friends although later the public were admitted on selected days for the princely sum of one penny. The Kibble Palace which houses the national tree fern collection was originally a private conservatory located at Coulport by Loch Long. It was moved to its present site in 1873 and originally used as a concert venue and meeting place, hosting speakers such as Prime Ministers Disraeli and Gladstone. Increasing financial difficulties led to the Gardens being taken over by the then Glasgow Corporation in 1891 on condition they continued as a Botanic Garden and maintained links with the University.
    [Show full text]
  • Cfreptiles & Amphibians
    HTTPS://JOURNALS.KU.EDU/REPTILESANDAMPHIBIANSTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSREPTILES • VOL15, & N AMPHIBIANSO 4 • DEC 2008 •189 28(1):44–46 • APR 2021 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS CubanFEATURE ARTICLES Green Anoles (Anolis porcatus): . Chasing Bullsnakes (Pituophis catenifer sayi) in Wisconsin: CommunalOn the Road to Understanding the Ecology Nestingand Conservation of the Midwest’s in Giant SerpentBromeliads ...................... Joshua M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: A Hypothetical Excursion ............................................................................................................................Robert W. Henderson 198 L. Yusnaviel García-Padrón RESEARCH ARTICLES Sociedad Espeleológica de Cuba, La Habana, Cuba; Sociedad Cubana de Zoología, La Habana 12000, Cuba ([email protected]) . The Texas Horned Lizard in Central and Western TexasPhotographs ....................... by the Emily author. Henry, Jason Brewer, Krista Mougey, and Gad Perry 204 . The Knight Anole (Anolis equestris) in Florida .............................................Brian J. Camposano, Kenneth L. Krysko, Kevin M. Enge, Ellen M. Donlan, and Michael Granatosky 212 CONSERVATION ALERT noles (Anolis spp.) lay single eggs buried in soil, under (22º32'20"N, 83º50'04"W; WGS 84; elev. 230 m asl). All of . World’s Mammals in Crisis ............................................................................................................................................................
    [Show full text]
  • The Development of Complex Tooth Shape in Reptiles
    ORIGINAL RESEARCH ARTICLE published: 25 February 2014 doi: 10.3389/fphys.2014.00074 The development of complex tooth shape in reptiles Oldrich Zahradnicek 1,MarcelaBuchtova2,3, Hana Dosedelova 2,3 and Abigail S. Tucker 4* 1 Department of Teratology, Institute of Experimental Medicine, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic 2 Laboratory of Animal Embryology, Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic 3 Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic 4 Department of Craniofacial Development and Stem Cell Biology, and Department of Orthodontics, King’s College London, Guy’s Hospital, London, UK Edited by: Reptiles have a diverse array of tooth shapes, from simple unicuspid to complex Cyril Charles, Ecole Normale multicuspid teeth, reflecting functional adaptation to a variety of diets and eating styles. Supérieure de Lyon, France In addition to cusps, often complex longitudinal labial and lingual enamel crests are Reviewed by: widespread and contribute to the final shape of reptile teeth. The simplest shaped Amel Gritli-Linde, University of Gothenburg, Sweden unicuspid teeth have been found in piscivorous or carnivorous ancestors of recent diapsid Daniel Graf, University of Zurich, reptiles and they are also present in some extant carnivores such as crocodiles and snakes. Switzerland However, the ancestral tooth shape for squamate reptiles is thought to be bicuspid, *Correspondence: indicating an insectivorous diet. The development of bicuspid teeth in lizards has recently Abigail S. Tucker, Department of been published, indicating that the mechanisms used to create cusps and crests are very Craniofacial Development and Stem Cell Biology, and Department of distinct from those that shape cusps in mammals.
    [Show full text]