EE 311 Device Electronics for Integrated Circuits

Total Page:16

File Type:pdf, Size:1020Kb

EE 311 Device Electronics for Integrated Circuits EE 311 Device Electronics for Integrated Circuits ------------------------------------------------------------------ Course Number: EE-311 Course Name: Device Electronics for Integrated Circuits (Electronic Devices) Credits: 3-0-0-3 Semester: Odd Prerequisites: IC121 Mechanics of Particles and Waves Intended for: UG Elective or Core: Core Preamble: This course builds the knowledge-base on the physics of semiconductors as related to the characteristics and design of solid-state electronic devices. It provides an introduction to the device electronics for integrated circuits, a foundation for the use of device models in circuit analysis and design tools, and motivation for life-long learning. Course Outline: The objective of the course is to provide the fundamental knowledge for understanding concepts of semiconductor devices. This is a required core-course for Electrical Engineering UG students. The first part of the course provides an introduction to the basic physics of electrons in solids, quantum mechanics, and solid-state physics needed to understand nano-electronic devices. The second part is devoted to the fundamental theory of electron dynamics, carrier transport including ballistic transport, drift, diffusion, and recombination/generation. The third part of the course applies the fundamentals to describe the operation of several basic semiconductor devices: p-n junctions, metal-semiconductor junctions, Diodes, metal oxide semiconductor field effect transistors (MOSFETs), Complementary MOSFETs (CMOS) and BipolarJunction Transistors (BJTs). Device Electronics for Integrated Circuits 1. SEMICONDUCTOR ELECTRONICS: Physics of Semiconductor Materials, Band Model of Solids, Holes, Bond Model Donors and Acceptors, Thermal-Equilibrium Statistics, Free Carriers in Semiconductors, Drift Velocity, Mobility and Scattering, Diffusion Current, Device: Hall-Effect Magnetic Sensor, Physics of the Hall Effect, Integrated Hall-Effect Magnetic Sensor. 2.METAL-SEMICONDUCTOR CONTACTS and pn JUNCTIONS: Equilibrium in Electronic Systems, Idealized Metal-Semiconductor junctions, Current-Voltage Characteristics, Schottky Barrierr, Nonrectifying, Tunnel , SchottkyOhmic Contacts, Surface Effects, Surface Effects on Metal-Semiconductor Contacts, Metal-Semiconductor Devices: Schottky Diodes, Schottky Diodes in Integrated Circuits. The pn junction, Step Junction, Linearly Graded Junction, Heterojunctions, Reverse-Biased pn junctions, junction Breakdown, Avalanche Breakdown, Zener Breakdown. Generation and Recombination, Shockley-HaIl-Read Recombination, Current-Voltage Characteristics of pn junctions, Integrated-Circuit Diodes, Light-Emitting Diodes. 3.BIPOLAR TRANSISTORS: BASIC PROPERTIES & LIMITATIONS: Transistor Action, Transistors for Integrated Circuits, Transistor Switching, Regions of Operatio, Ebers-Moll Model, Devices: Planar Bipolar Amplifying and Switching Transistors, Heterojunction Bipolar Transistors, Double Heterojunction Bipolar Transistor, Effects of Collector Bias Variation (Early Effect), Effects at Low and High Emitter Bias, Small-Signal Transistor Model, Frequency Limits of Bipolar Transistors. 4. FIELD-EFFECT TRANSISTORS (MOSFETs): PHYSICAL EFFECTS AND MODELS: The Ideal MOS Structure, MOS Electronics, Capacitance of the MOS System CV Behavior of an Ideal MOS System, Oxide and Interface Charge, Origins of Oxide Charge, Experimental Determination of Oxide Charge, MOS Capacitors and Charge-Coupled Devices, Basic MOSFET Behavior, Improved Models for Short-Channel MOSFETs, Devices: Complementary MOSFETs-CMOS, Electric Fields in the Velocity-Saturation Region, Substrate Current, Gate Current, Device Degradation, Devices: MOS Nonvolatile Memory Structures 5. Electronic Devices and Nanoelectronics Electronic Device Materials: Si, Ge and GaAs. Comparison and properties Advanced Device Technology, Purification and growth, wafer production, epitaxy and deposition, oxidation and metallisation; lithography and implantation Advanced Devices Electronic properties of interfaces and hetero structures, GaAs, MESFET, MISFET and HEMT devices, GaAs IMPATT structures, Emerging Device Technologies Selected topics from: Ge-Si as a device material; molecular electronics; wide band gap semiconductors; microsensors and smart sensors. Text Book: SEMICONDUCTOR DEVICES- Physics and Technology, 3nd Edition, by S. M. Sze and M.K. Lee (John Wiley & Sons, 2012) References: 1. “Physics of Semiconductor Devices” by S. M. Sze and Kwok K.Ng, 3rd, Edition, ( John Wiley & Sons, 2002) 2. “Solid State Electronic Devices”, by Ben G. Steetman and Sanjay Banerjee 6th Edition, Prentice Hall, 2005 3. “Semiconductor Device Fundamentals”, by Robert F. Pierret, Addison-Wesley Publishing, 1996 4. “Semiconductor Physics and Devices”, by Donald A. Neamen, 3rd Eddition, McGrawHill, 2003 5. “Semiconductor Devices- Basic Principles”, by Jasprit Singh, John Wiley and Sons Inc., 2001 .
Recommended publications
  • An Integrated Semiconductor Device Enabling Non-Optical Genome Sequencing
    ARTICLE doi:10.1038/nature10242 An integrated semiconductor device enabling non-optical genome sequencing Jonathan M. Rothberg1, Wolfgang Hinz1, Todd M. Rearick1, Jonathan Schultz1, William Mileski1, Mel Davey1, John H. Leamon1, Kim Johnson1, Mark J. Milgrew1, Matthew Edwards1, Jeremy Hoon1, Jan F. Simons1, David Marran1, Jason W. Myers1, John F. Davidson1, Annika Branting1, John R. Nobile1, Bernard P. Puc1, David Light1, Travis A. Clark1, Martin Huber1, Jeffrey T. Branciforte1, Isaac B. Stoner1, Simon E. Cawley1, Michael Lyons1, Yutao Fu1, Nils Homer1, Marina Sedova1, Xin Miao1, Brian Reed1, Jeffrey Sabina1, Erika Feierstein1, Michelle Schorn1, Mohammad Alanjary1, Eileen Dimalanta1, Devin Dressman1, Rachel Kasinskas1, Tanya Sokolsky1, Jacqueline A. Fidanza1, Eugeni Namsaraev1, Kevin J. McKernan1, Alan Williams1, G. Thomas Roth1 & James Bustillo1 The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes.
    [Show full text]
  • Vlsi Design Lecture Notes B.Tech (Iv Year – I Sem) (2018-19)
    VLSI DESIGN LECTURE NOTES B.TECH (IV YEAR – I SEM) (2018-19) Prepared by Dr. V.M. Senthilkumar, Professor/ECE & Ms.M.Anusha, AP/ECE Department of Electronics and Communication Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India Unit -1 IC Technologies, MOS & Bi CMOS Circuits Unit -1 IC Technologies, MOS & Bi CMOS Circuits UNIT-I IC Technologies Introduction Basic Electrical Properties of MOS and BiCMOS Circuits MOS I - V relationships DS DS PMOS MOS transistor Threshold Voltage - VT figure of NMOS merit-ω0 Transconductance-g , g ; CMOS m ds Pass transistor & NMOS Inverter, Various BiCMOS pull ups, CMOS Inverter Technologies analysis and design Bi-CMOS Inverters Unit -1 IC Technologies, MOS & Bi CMOS Circuits INTRODUCTION TO IC TECHNOLOGY The development of electronics endless with invention of vaccum tubes and associated electronic circuits. This activity termed as vaccum tube electronics, afterward the evolution of solid state devices and consequent development of integrated circuits are responsible for the present status of communication, computing and instrumentation. • The first vaccum tube diode was invented by john ambrase Fleming in 1904. • The vaccum triode was invented by lee de forest in 1906. Early developments of the Integrated Circuit (IC) go back to 1949. German engineer Werner Jacobi filed a patent for an IC like semiconductor amplifying device showing five transistors on a common substrate in a 2-stage amplifier arrangement.
    [Show full text]
  • MOSFET Operation Lecture Outline
    97.398*, Physical Electronics, Lecture 21 MOSFET Operation Lecture Outline • Last lecture examined the MOSFET structure and required processing steps • Now move on to basic MOSFET operation, some of which may be familiar • First consider drift, the movement of carriers due to an electric field – this is the basic conduction mechanism in the MOSFET • Then review basic regions of operation and charge mechanisms in MOSFET operation 97.398*, Physical Electronics: David J. Walkey Page 2 MOSFET Operation (21) Drift • The movement of charged particles under the influence of an electric field is termed drift • The current density due to conduction by drift can be written in terms of the electron and hole velocities vn and vp (cm/sec) as =+ J qnvnp qpv • This relationship is general in that it merely accounts for particles passing a certain point with a given velocity 97.398*, Physical Electronics: David J. Walkey Page 3 MOSFET Operation (21) Mobility and Velocity Saturation • At low values of electric field E, the carrier velocity is proportional to E -the proportionality constant is the mobility µ • At low fields, the current density can therefore be written Jqn= µ qpµ !nE+!p E v n v p • At high E, scattering limits the velocity to a maximum value and the relationship above no longer holds - this is termed velocity saturation 97.398*, Physical Electronics: David J. Walkey Page 4 MOSFET Operation (21) Factors Influencing Mobility • The value of mobility (velocity per unit electric field) is influenced by several factors – The mechanisms of conduction through the valence and conduction bands are different, and so the mobilities associated with electrons and holes are different.
    [Show full text]
  • IX.3. a Semiconductor Device Primer – Bipolar Transistors LBNL 2
    1 IX.3. Bipolar Transistors Consider the npn structure shown below. COLLECTOR n- BASE + +p -IC- + +n- I -B EMITTER The base and emitter form a diode, which is forward biased so that a base current IB flows. The base current injects holes into the base-emitter junction. As in a simple diode, this gives rise to a corresponding electron current through the base-emitter junction. If the potential applied to the collector is sufficiently positive so that the electrons passing from the emitter to the base are driven towards the collector, an external current IC will flow in the collector circuit. The ratio of collector to base current is equal to the ratio of electron to hole currents traversing the base-emitter junction. In an ideal diode IC I nBE Dn / N ALn N D Dn Lp = = = I B I pBE Dp / N D Lp N A Dp Ln Introduction to Radiation Detctors and Electronics, 13-Apr-99 Helmuth Spieler IX.3. A Semiconductor Device Primer – Bipolar Transistors LBNL 2 If the ratio of doping concentrations in the emitter and base regions ND /NA is sufficiently large, the collector current will be greater than the base current. ⇒ DC current gain Furthermore, we expect the collector current to saturate when the collector voltage becomes large enough to capture all of the minority carrier electrons injected into the base. Since the current inside the transistor comprises both electrons and holes, the device is called a bipolar transistor. Dimensions and doping levels of a modern high-frequency transistor (5 – 10 GHz bandwidth) 0 0.5 1.0 1.5 Distance [µm] (adapted from Sze) Introduction to Radiation Detctors and Electronics, 13-Apr-99 Helmuth Spieler IX.3.
    [Show full text]
  • Laboratory Exercise 2 DC Characteristics of Bipolar Junction
    DEPARTMENT OF SEMICONDUCTOR AND OPTOELECTRONIC DEVICES Semiconductor Device Laboratory Laboratory Exercise 2 DC characteristics of Bipolar Junction Transistors (BJT) The aim of the exercise The main aim of this laboratory exercise is to understand principles of operation of Bipolar Junction Transistors (BJT). It covers the measurements of static and small signal parameters. Backgrounds Physical structure of the BJT BJT is a semiconductor device having a three-layer structure with three external electrodes, the emitter (E), the base (B), and the collector (C). As shown in Fig. 1, the structure may be p-n-p or n-p-n type. Despite of the transistor type the emitter layer has always more acceptor or donor impurities added than the base or the collector layer. This asymmetry results from different roles the emitter and the collector layers play in the BJT. In normal operation of the BJT (as an amplifier), the base-emitter junction is forward biased and the base-collector junction is reverse biased. Transistor amplification is controlled by changing the current flow through the base-emitter junction. C N C . C P C . P B. N B. B . B . E . N . E P . E E (a) (b) Fig. 1. The n-p-n BJT (a) and the p-n-p BJT (b) along with their symbols There are three operating configurations of the BJT. These are the common-emitter (OE) configuration, the common-base configuration (OB), and the common-collector (OC) configuration. These configurations are shown in Fig. 2. (a) (b) (c) Fig. 2 The n-p-n transistor operating configurations: (a) common-emitter, (b) common-base, (c) common-collector DC characteristics Four types of characteristics can be defined for each of the transistor operating configurations.
    [Show full text]
  • Fundamentals of MOSFET and IGBT Gate Driver Circuits
    Application Report SLUA618A–March 2017–Revised October 2018 Fundamentals of MOSFET and IGBT Gate Driver Circuits Laszlo Balogh ABSTRACT The main purpose of this application report is to demonstrate a systematic approach to design high performance gate drive circuits for high speed switching applications. It is an informative collection of topics offering a “one-stop-shopping” to solve the most common design challenges. Therefore, it should be of interest to power electronics engineers at all levels of experience. The most popular circuit solutions and their performance are analyzed, including the effect of parasitic components, transient and extreme operating conditions. The discussion builds from simple to more complex problems starting with an overview of MOSFET technology and switching operation. Design procedure for ground referenced and high side gate drive circuits, AC coupled and transformer isolated solutions are described in great details. A special section deals with the gate drive requirements of the MOSFETs in synchronous rectifier applications. For more information, see the Overview for MOSFET and IGBT Gate Drivers product page. Several, step-by-step numerical design examples complement the application report. This document is also available in Chinese: MOSFET 和 IGBT 栅极驱动器电路的基本原理 Contents 1 Introduction ................................................................................................................... 2 2 MOSFET Technology ......................................................................................................
    [Show full text]
  • The Transistor
    Chapter 1 The Transistor The searchfor solid-stateamplification led to the inventionof the transistor. It was immediatelyrecognized that majorefforts would be neededto understand transistorphenomena and to bring a developedsemiconductor technology to the marketplace.There followed a periodof intenseresearch and development, duringwhich manyproblems of devicedesign and fabrication, impurity control, reliability,cost, and manufacturabilitywere solved.An electronicsrevolution resulted,ushering in the eraof transistorradios and economicdigital computers, alongwith telecommunicationssystems that hadgreatly improved performance and that were lower in cost. The revolutioncaused by the transistoralso laid the foundationfor the next stage of electronicstechnology-that of silicon integratedcircuits, which promised to makeavailable to a massmarket infinitely more complexmemory and logicfunctions that could be organizedwith the aid of softwareinto powerfulcommunications systems. I. INVENTION OF THE TRANSISTOR 1.1 Research Leading to the Invention As World War II was drawing to an end, the research management of Bell Laboratories, led by then Vice President M. J. Kelly (later president of Bell Laboratories), was formulating plans for organizing its postwar basic research activities. Solid-state physics, physical electronics, and mi­ crowave high-frequency physics were especially to be emphasized. Within the solid-state domain, the decision was made to commit major research talent to semiconductors. The purpose of this research activity, according
    [Show full text]
  • Field Effect Transistor (FET) Types and Features
    Field Effect Transistor (FET) Types and Features Here I’m discussing about the topic FET. FET is another semiconductor device like BJT which can be used as switch, amplifier, resistor etc. FET consists of 3 terminals. Drain(D) Source(S) Gate(G) In these 3 terminals, Gate terminal acts as a controlling terminal. We know that a BJT acts as a current controlling device. Like that, FET also acts as a voltage controlling device. Here, the voltage between gate and source controls the drain current. So, it is called as voltage controlled device. FET Features: FET is more temperature stable compared to BJT It requires less space compared to BJT. So it is used heavily in circuits. FET has higher input impedance. So, it is more useful in amplifiers. Types of FETs: 1. Junction FET 2. MESFET 3. MOSFET Here I am discussing about the topic JFET. Junction FET (JFET): Basically the JFET is classified into 2 types. N-Channel JFET P-Channel JFET N-Channel JFET: When we consider a silicon bar and fabricated n-type at its two ends and heavily doped p-type materials at each side of the bar, the thin region will be remained as observed in figure is channel. Since this channel is in n-type bar this is called as n-channel FET. Here the current is carried by electrons. P-Channel FET: When we consider a silicon bar and fabricated p-type at its two ends and heavily doped n-type materials at each side of the bar, here the thin region remained as observed in figure is channel.
    [Show full text]
  • How to Select a Capacitor for Power Supplies
    CAPACITOR FUNDAMENTALS 301 HOW TO SELECT A CAPACITOR FOR POWER SUPPLIES 1 Capacitor Committee Upcoming Events PSMA Capacitor Committee Website, Old Fundamentals Webinars, Training Presentations and much more – https://www.psma.com/technical-forums/capacitor Capacitor Workshop “How to choose and define capacitor usage for various applications, wideband trends, and new technologies” The day before APEC, Saturday March 14 from 7:00AM to 6:00PM Capacitor Industry Session as part of APEC “Capacitors That Stand Up to the Mission Profiles of the Future – eMobility, Broadband” Tuesday March 17, 8:30AM to Noon in New Orleans Capacitor Roadmap Webinar – Timing TBD – Latest in Research and Technology Additional info here. Short Introduction of Today‘s Presenter Eduardo Drehmer Director of Marketing FILM Capacitors Background: • Over 20 years experience with knowledge on +1 732 319 1831 Manufacturing, Quality and Application of Electronic Components. [email protected] • Responsible for Technical Marketing for Film Capacitors www.tdk.com 2018-09-25 StM Short Introduction of Today‘s Presenter Edward Lobo was born in Acushnet, MA in 1943 and graduated from the University of Massachusetts in Amherst in 1967 with a BS in Chemistry. Ed worked for Magnetek, Aerovox and CDE where he is currently Chief Engineer for New Product Development. Ed Lobo Ed has served for over 52 years in Chief Engineer, New Product capacitor product development. He holds [email protected] 14 US patents involving capacitors. 4 ABSTRACT This presentation will guide individuals selecting components for their Electronic Power Supplies. Capacitors come in a wide variety of technologies, and each offers specific benefits that should be considered when designing a Power Supply circuit.
    [Show full text]
  • Power MOSFET Basics by Vrej Barkhordarian, International Rectifier, El Segundo, Ca
    Power MOSFET Basics By Vrej Barkhordarian, International Rectifier, El Segundo, Ca. Breakdown Voltage......................................... 5 On-resistance.................................................. 6 Transconductance............................................ 6 Threshold Voltage........................................... 7 Diode Forward Voltage.................................. 7 Power Dissipation........................................... 7 Dynamic Characteristics................................ 8 Gate Charge.................................................... 10 dV/dt Capability............................................... 11 www.irf.com Power MOSFET Basics Vrej Barkhordarian, International Rectifier, El Segundo, Ca. Discrete power MOSFETs Source Field Gate Gate Drain employ semiconductor Contact Oxide Oxide Metallization Contact processing techniques that are similar to those of today's VLSI circuits, although the device geometry, voltage and current n* Drain levels are significantly different n* Source t from the design used in VLSI ox devices. The metal oxide semiconductor field effect p-Substrate transistor (MOSFET) is based on the original field-effect Channel l transistor introduced in the 70s. Figure 1 shows the device schematic, transfer (a) characteristics and device symbol for a MOSFET. The ID invention of the power MOSFET was partly driven by the limitations of bipolar power junction transistors (BJTs) which, until recently, was the device of choice in power electronics applications. 0 0 V V Although it is not possible to T GS define absolutely the operating (b) boundaries of a power device, we will loosely refer to the I power device as any device D that can switch at least 1A. D The bipolar power transistor is a current controlled device. A SB (Channel or Substrate) large base drive current as G high as one-fifth of the collector current is required to S keep the device in the ON (c) state. Figure 1. Power MOSFET (a) Schematic, (b) Transfer Characteristics, (c) Also, higher reverse base drive Device Symbol.
    [Show full text]
  • Electronics and Computer Technology
    Electronics and Computer Technology The Electronics and Computer Technology Department offers several concentrations in electronics and computer technology that are designed to prepare students for a variety of high-tech job/career opportunities in the fields of engineering and technology; electronics technology; computer technology; telecommunication technology; and related technologies. The Electronics and Computer Technology Department offers an associate degree program in engineering technology with an emphasis in electronics, computers, and telecommunications. Technology certificates offered in areas of specialization include: electronics technology, computer technology, telecommunication technology, networking technology, electronic communication technology, and industrial electronics technology. Certificates/certifications offered in specific areas of electronics, computers, and related technology include: Certified Electronics Technician (Associate CET), A+ Certified Computer Service Technician, N+ Certified Networking Technician, CISCO Certified Network Associate (CCNA), CISCO Certified Network Professional (CCNP), Microsoft Certified Systems Engineer (MCSE), Certified Fiber Optics Installer, (FOIC), Electronics Communications (WCM, FCC license) and Digital and Microprocessor Electronics. Career Opportunities Electronics Engineering Technologist, Computer Engineering Technologist, Network Engineering Technologist, Telecommunications Engineering Technologist, Certified Electronics Technician - CET, A+ Certified Computer Technician,
    [Show full text]
  • SI Series Snap-In Elctrolytic Capacitors | NTE Electronics, Inc
    SNAP−IN MOUNT ALUMINUM ELECTROLYTIC SI SERIES SUBMINIATURE MECHANICAL SPECIFICATIONS (SI: Snap−in) Marking: The SI Snap−in series subminiature aluminum electrolytic ca- Consists of series type, nominal capacitance, rated pacitors are especially suitable for applications requiring high ca- voltage, temperature range, anode and/or cathode pacitance, low cost, and very small size. In fact, you’ll find these identification, vendor identification. capacitors in some of the most demanding applications, from Recommended Cleaning Solvents: precision medical electronics and automobiles to the newest personal computers and disk drives. Chlorofluorocarbon solvents used to remove flux from They operate over a broad temperature range and are available printed circuit boards can penetrate the capacitor end− in either blister pack or bulk. seals, cause corrosion when voltage is applied and ca- pacitor failure. Avoid halogenated solvents and consid- RATINGS er these alternatives: Clean the capacitors with Capacitance Range: 47µf to 33,000µf water/detergent or cleaning solvents free of halogen Tolerance: ±20% groups such as alcohol or terpene solution, or mount the capacitor after board cleaning. Voltage Range: 16V to 450V PERFORMANCE SPECIFICATIONS CASE SIZE AND DIMENSIONS: Operating Temperature Range: −40°C to +85°C (−40°F to +185°F) Leakage Current: I ≤ 3 x √CV (measured after 5 minutes @ rated voltage and +20°C (+68°F) I = Leakage Current (µA) C = Nominal Capacitance (µf) V = Rated Voltage (V) Capacitance Tolerance (M): ±20% measured at +20°C (+68°F),
    [Show full text]