Hasselblad V to Fuji GFX Speedbosster Press
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
About Raspberry Pi HQ Camera Lenses Created by Dylan Herrada
All About Raspberry Pi HQ Camera Lenses Created by Dylan Herrada Last updated on 2020-10-19 07:56:39 PM EDT Overview In this guide, I'll explain the 3 main lens options for a Raspberry Pi HQ Camera. I do have a few years of experience as a video engineer and I also have a decent amount of experience using cameras with relatively small sensors (mainly mirrorless cinema cameras like the BMPCC) so I am very aware of a lot of the advantages and challenges associated. That being said, I am by no means an expert, so apologies in advance if I get anything wrong. Parts Discussed Raspberry Pi High Quality HQ Camera $50.00 IN STOCK Add To Cart © Adafruit Industries https://learn.adafruit.com/raspberry-pi-hq-camera-lenses Page 3 of 13 16mm 10MP Telephoto Lens for Raspberry Pi HQ Camera OUT OF STOCK Out Of Stock 6mm 3MP Wide Angle Lens for Raspberry Pi HQ Camera OUT OF STOCK Out Of Stock Raspberry Pi 3 - Model B+ - 1.4GHz Cortex-A53 with 1GB RAM $35.00 IN STOCK Add To Cart Raspberry Pi Zero WH (Zero W with Headers) $14.00 IN STOCK Add To Cart © Adafruit Industries https://learn.adafruit.com/raspberry-pi-hq-camera-lenses Page 4 of 13 © Adafruit Industries https://learn.adafruit.com/raspberry-pi-hq-camera-lenses Page 5 of 13 Crop Factor What is crop factor? According to Wikipedia (https://adafru.it/MF0): In digital photography, the crop factor, format factor, or focal length multiplier of an image sensor format is the ratio of the dimensions of a camera's imaging area compared to a reference format; most often, this term is applied to digital cameras, relative to 35 mm film format as a reference. -
Test Pentax 645D an Accessible Medium Format DSLR?
Test Pentax 645D An accessible medium format DSLR? o announce a camera costing With time, cameras evolved, and The 645D sports digital SLR will have no problem card followed by the other, etc.) €10,000 as "accessible" might today the most modern models the classic form of a solid medium working with a 645D. As the overall The Raw format used is DNG, and T sound somewhat strange to (Hasselblad H and Leica S) have format camera. It ergonomics are based on highly in- images can be read directly by many photographers. The term de- abandoned the "body plus inter- is pleasing to tuitive controls, you can instantly Adobe software. Other Raw conver- serves a few explanations. Finan- changeable back" form for a solid handle and find your way around. ters (DxO and others) should very cially, it is justified because a 40 architecture that enables a more ef- comfortable to Original functions are also found use: Pentax has shortly be able to read 645D files. Mpix digital medium format cur- ficient design. This is the type of given it the very in the 645D, for example double The camera handles nicely. The rently sells for more than €15,000, construction used by Pentax. best in APS-C SLR level (front/back and right/left tilt), a grip, which seems a little uncomfor- whereas the Pentax 654D is at The "body plus separate back" ar- ergonomics. A misty landscape Use in the handheld position would be good! camera is less rapid (continuous very useful feature for shooting table at first, turns out to be very ef- Jpeg and Raw €9,900 (including VAT). -
Minolta Electronic Auto-Exposure 35Mm Single Lens Reflex Cameras and CLE
Minolta Electronic Auto-Exposure 35mm Single Lens Reflex Cameras and CLE Minolta's X-series 35mm single lens user the creative choice of aperture and circuitry requires a shutter speed faster reflex cameras combine state-of-the-art shutter-priority automation, plus metered than 1/1000 second. These cameras allow photographic technology with Minolta's tra manual operation at the turn of a lever. The full manual control for employing sophisti ditional fine handling and human engineer photographer can select shutter-priority cated photo techniques. The silent elec ing to achieve precision instruments that operation to freeze action or control the tronic self-timer features a large red LED are totally responsive to creative photogra amount of blur for creative effect. Aperture signal which pulsates with increasing fre phy. Through-the-Iens metering coupled priority operation is not only useful for quency during its ten-second operating with advanced, electronically governed depth-of-field control , auto~exposure with cycle to indicate the approaching exposure. focal-plane shutters provide highly accu bellows, extension tubes and mirror lenses, The Motor Drive 1, designed exclusively rate automatic exposure control. All X but for the control of shutter speed as well . for the XG-M, provides single-frame and series cameras are compatible with the Full metered-manual exposure control continuous-run film advance up to 3.5 vast array of lenses and accessories that allows for special techniques. frames per second. Plus, auto winders and comprise the Minolta single lens reflex A vibration-free electromagnetic shutter "dedicated" automatic electronic flash units system. release triggers the quiet electronic shutter. -
AUTO LENS ADAPTER USER MANUAL LAE-CM-CEF Canon EF/EF-S Lens to Canon EOS-M Camera INTRODUCTION
AUTO LENS ADAPTER USER MANUAL LAE-CM-CEF Canon EF/EF-S Lens to Canon EOS-M Camera INTRODUCTION Thank you for purchasing the Vello LAE-CM-CEF Auto Lens Adapter – Canon EF/EF-S Lens to Canon EOS-M Camera. This adapter allows you to mount any Canon EF or EF-S lens to a Canon EOS-M camera. With an EF or EF-S lens mounted to a Canon EOS-M camera using this adapter, all automatic functions, such as auto focus and auto exposure, are available and fully operational. A removable tripod mount collar with a ¼" socket is included. 2 CONTENTS INCLUDE • Vello LAE-CM-CEF Auto Lens Adapter - Canon EF/EF-S Lens to Canon EOS-M Camera • Front and rear caps • Removable tripod mount collar • User manual 3 INTRODUCTION The Vello Auto Lens Adapter – Canon EF/EF-S Lens to Canon EOS-M Camera can expand the arsenal of lenses for your Canon EOS-M camera using lenses you already own. With this adapter, you can mount any Canon EF or EF-S lens to a Canon EOS-M camera. Just attach the adapter to your EF or EF-S lens, then mount the lens and adapter to your Canon EOS-M camera. 4 When using an EF lens, there will be a crop factor of 1.6x, so that the apparent focal length of the lens will be 1.6x of the actual focal length. With EF-S lenses, there is no apparent change in the focal length. All camera functions will operate normally, including auto focus, auto exposure, and touch-screen modes. -
Operations Instructions Manual Table of Contents
E-mount Parts and controls Triple-dial-control Custom Key assignment AF/MF button/AEL button General Operations Instructions Manual Table of contents This instruction manual - Operations - describes the basic operation of the camera, and some advanced operations using the major functions. See Getting Started for information on how to set up the camera, and the Handbook on the CD-ROM (supplied) for more detailed functions and operations. Parts and controls Recording ...........................................................................................................................................................................................................3 Playback ...............................................................................................................................................................................................................5 Setup .....................................................................................................................................................................................................................6 Triple-dial-control Triple-dial-control operation ..................................................................................................................................................................7 Control Dials .....................................................................................................................................................................................................9 Settings modes ............................................................................................................................................................................................10 -
User Manual H4D-200 MS H4D-60 H4D-50 MS H4D-50 H4D-40 H4D-31
H4D User Manual H4D-200 MS H4D-60 H4D-50 MS H4D-50 H4D-40 H4D-31 H4D C O N T E N T S Introduction 4 Lens cap 33 System requirements 8 Filters 33 Warnings & restrictions 8 Lens shades 33 Shutter and aperture control 33 1 H4D models 9 Depth-of-field calculation 34 2 General overview – Depth-of-field / visual preview 34 controls and displays 13 Infrared focus settings 34 Button functions 14 Focus assist 34 Display information 15 Manual focus 35 Grip display 16 Autofocus 35 Viewfinder display 17 Single 36 Sensor unit display 18 Continuous 36 Spirit level 19 True Focus 37 Buttons and controls – details 20 Audio feedback 22 6 Light Metering & Exposure Control 41 3 Camera Body 24 ISO & white balance button 42 Carrying strap 25 Metering method 43 Rechargeable battery 25 Exposure method 43 Battery charger 25 Manual exposure mode 44 Charging the battery 26 Automatic exposure mode 44 Rechargeable battery grip − general 26 AE-L button 45 Rechargeable battery grip − precautions 27 Exposure compensation/Quick Adjust 46 Battery life 27 Battery status 28 7 Profiles 48 Power 28 Making a profile 49 On 28 Using profiles 50 Standby 28 Viewfinder screen 28 8 SU – introduction 51 Accessory connection 29 Parts and components 53 PC-connector 29 Overview of menu system and navigation 55 Base plate 29 Overview of menu structure 56 Description of menu items 57 4 Viewfinder 30 Parts & Components 31 9 SU – initial settings 58 Attaching and removing the viewfinder 31 Setting the menu language 59 Eyepiece adjustment 31 Capture storage 60 Eye cup 31 Capture destination 60 Integral flash unit 31 Compact cards 61 Formatting 62 5 Lenses 32 Tethered to a computer 63 Parts & Components 33 Attaching a lens 33 Removing a lens 33 The images in this manual were not taken with a Hasselblad H4D. -
Hasselblad Expands Reach of Medium Format Imaging for Even More
Press information – for immediate release Gothenburg, Sweden 19 June 2019 HASSELBLAD EXPANDS REACH OF MEDIUM FORMAT IMAGING FOR EVEN MORE CREATIVE VERSATILITY Introducing the X1D II 50C, XCD 35-75 zoom lens, Phocus Mobile 2, and revealing details of the upcoming CFV II 50C digital back and 907X camera body Following the revolutionary introduction of the world’s first mirrorless medium format digital camera, the X1D-50c, Hasselblad introduces new additions to its product portfolio that bring the joy of medium format photography to image makers with the capabilities to support their creative endeavours. This includes the evolved X1D II 50C camera, the eagerly awaited XCD 3,5-4,5/35-75 Zoom Lens and Phocus Mobile 2. In addition, Hasselblad reveals the development details of the upcoming CFV II 50C digital back and 907X camera body. Hasselblad’s newest offerings yet again expand the potential of medium format pho- tography with modularity and flexibility, all while offering the brand’s renowned, stunning image quality. X1D II 50C – AN EVOLVED MEDIUM FORMAT PHOTOGRAPHY EXPERIENCE In the pursuit to continue the journey of taking medium format outside of the studio, Hasselblad is pleased to announce the next installment of the X System – the X1D II 50C Mirrorless Medium Format Digital Camera. Dedicated to optimising the X System for a wider audience of creatives, Hasselblad has listened to user feedback and improved upon the first generation with enhanced electronics for a quicker and more intuitive medium format experience. Continuing in the legacy of being the most portable and lightweight digital medium format camera, the X1D II 50C lets you take the power of medium format in a footprint smaller than most full frame DSLRs in a beautifully designed, compact package. -
LEICA SL-SYSTEM Technical Data
LEICA SL-SYSTEM Technical Data. Camera Type LeiCa SL (Typ 601) Order No. 10 850 Mirrorless Fullframe System Camera Current Firmware 2.0 Lenses Lens Mount Leica L-Mount Applicable lenses Leica Vario-Elmarit-SL 24–90 mm f/2.8–4 ASPH. Order No. 11 176 Leica APO-Vario-Elmarit-SL 90–280 mm f/2.8–4 Order No. 11 175 Leica Summilux-SL 50 mm f/1.4 ASPH. Order No. 11 180 Lenses from the Leica T Camera System, Leica M-Lenses with Leica M-Adapter T, Leica S-Lenses with Leica S-Adapter L, Leica R-Lenses with Leica R-Adapter L and Leica Cine lenses with Leica PL-Adapter L. Sensor Type 24-MP-CMOS-Sensor (24 × 36 mm) Resolution Full Frame (24 MP): 6000 × 4000 Pixel, APS-C (10 MP): 3936 × 2624 Pixel Filter IR-Filter, no Lowpass Filter ISO ISO 50–ISO 50000 Sensor Cleaning Provided Processor Type Leica Maestro II series Internal RAM 2 GB: 33 DNGs or 30 JPEGs and DNGs image Image Data Format JPEG, DNG Colordepth 14 bit (DNG), 8 bit (JPEG) JPEG Color Space Adobe RGB, ECI RGB, sRGB Motion File Format MP4, MOV Resolution 4K (4096 × 2160) @ 24 fps; 4K (3840 × 2160) @ 25 and 30 fps; 1080 @ 24, 25, 30, 50, 60, 100 and 120 fps; 720 @ 24, 25, 30, 50, 60, 100 and 120 fps Bitrate 8 bit (recording); 10 bit (HDMI not recording) Color sampling 4:2:2/10 bit (HDMI only); 4:2:0/8 bit (recording on SD card) Video L-Log selectable Audio Manual/Auto; Stereo microphone, 48 kHz, 16 bit; Wind elimination Audio external via Audio-Adapter Audio-In (3.5 mm phone jack), Audio-Out (3.5 mm phone jack) Movie Length Max. -
AG-AF100 28Mm Wide Lens
Contents 1. What change when you use the different imager size camera? 1. What happens? 2. Focal Length 2. Iris (F Stop) 3. Flange Back Adjustment 2. Why Bokeh occurs? 1. F Stop 2. Circle of confusion diameter limit 3. Airy Disc 4. Bokeh by Diffraction 5. 1/3” lens Response (Example) 6. What does In/Out of Focus mean? 7. Depth of Field 8. How to use Bokeh to shoot impressive pictures. 9. Note for AF100 shooting 3. Crop Factor 1. How to use Crop Factor 2. Foal Length and Depth of Field by Imager Size 3. What is the benefit of large sensor? 4. Appendix 1. Size of Imagers 2. Color Separation Filter 3. Sensitivity Comparison 4. ASA Sensitivity 5. Depth of Field Comparison by Imager Size 6. F Stop to get the same Depth of Field 7. Back Focus and Flange Back (Flange Focal Distance) 8. Distance Error by Flange Back Error 9. View Angle Formula 10. Conceptual Schema – Relationship between Iris and Resolution 11. What’s the difference between Video Camera Lens and Still Camera Lens 12. Depth of Field Formula 1.What changes when you use the different imager size camera? 1. Focal Length changes 58mm + + It becomes 35mm Full Frame Standard Lens (CANON, NIKON, LEICA etc.) AG-AF100 28mm Wide Lens 2. Iris (F Stop) changes *distance to object:2m Depth of Field changes *Iris:F4 2m 0m F4 F2 X X <35mm Still Camera> 0.26m 0.2m 0.4m 0.26m 0.2m F4 <4/3 inch> X 0.9m X F2 0.6m 0.4m 0.26m 0.2m Depth of Field 3. -
Astrophotography a Beginner’S Guide
Astrophotography A Beginner’s Guide By James Seaman Copyright © James Seaman 2018 Contents Astrophotography ................................................................................................................................... 5 Equipment ........................................................................................................................................... 6 DSLR Cameras ..................................................................................................................................... 7 Sensors ............................................................................................................................................ 7 Focal Length .................................................................................................................................... 8 Exposure .......................................................................................................................................... 9 Aperture ........................................................................................................................................ 10 ISO ................................................................................................................................................. 11 White Balance ............................................................................................................................... 12 File Formats .................................................................................................................................. -
Does Size Matter.Sanitized-20151026-GGCS
Does Size Matter? What’s New in Small Cameras and Should I Switch? Doug Kaye dougkaye.com [email protected] • Portfolio at DougKaye.com • Co-Host of All About the Gear • Cuba & Street Photography Workshops • Frequent guest on This Week in Photo • Active on Social Media • Portfolio at DougKaye.com • Co-Host of All About the Gear • Cuba & Street Photography Workshops • Frequent guest on This Week in Photo • Active on Social Media The Acronyms • DSLR: Digital Single-Lens Reflex • MILC: Mirrorless Interchangeable-Lens Camera • APS-C: ~1.5x Crop-Factor Sensor Size • MFT: Micro Four-Thirds • LCD: Liquid Crystal Display (rear) • OVF: Optical Viewfinder • EVF: Electronic Viewfinder MILCs • Mirrorless • Interchangeable Lens • Autofocus • Electronic Viewfinder Who’s Who • The Old Guard • Nikon & Canon • The Upstarts • Sony & Fujifilm (Full-Frame and APS-C) • Olympus & Panasonic/Lumix (MFT) • Leica? Samsung? iPhone? DSLR vs. Mirrorless MILC History MILC History • 2004: Epson RD-1 (1st Mirrorless) • 2006: Leica M8 (1st Digital Leica) • 2008: Panasonic G1 (1st MFT) • 2009: Leica M9 (1st Full Frame) • 2010: Sony NEX-5 (1st M-APS-C, Hybrid AF) • 2012: Fuji X-Pro1 (Hybrid VF, X-Trans) • 2013: Olympus OM-D E-M1 • 2014: Sony a7S (High ISO), a7R (36MP) • 2015: Sony a7 II, a7R II, a7S II (Full-Frame IBIS) MILC Advantages • Smaller & Lighter • Simpler & Less Expensive • EVF vs. OVF • Always in LiveView Mode (WYSIWYG) • Accurate Autofocus • Quieter & Less Vibration • Simpler Wide-Angle Lens Designs • Compatible w/Other Lens Mounts MILC Disadvantages • EVF vs. OVF? • Continuous Autofocus Speed/Accuracy • Lack of Accessories • Legacy Wide-Angle Lens Issues Sensor Size • Full 35mm Frame (FF): 1x • APS-C: 1.5x • MFT: 2x Pixel Size • Larger Pixels Capture More Light • Higher ISO, Lower Noise • Broader Dynamic Range • 16MP APS-C = 36MP Full Frame • 16MP MFT = 64MP Full Frame Field of View (FoV) • Smaller sensors just crop the image. -
A Practical Guide to Panoramic Multispectral Imaging
A PRACTICAL GUIDE TO PANORAMIC MULTISPECTRAL IMAGING By Antonino Cosentino 66 PANORAMIC MULTISPECTRAL IMAGING Panoramic Multispectral Imaging is a fast and mobile methodology to perform high resolution imaging (up to about 25 pixel/mm) with budget equipment and it is targeted to institutions or private professionals that cannot invest in costly dedicated equipment and/or need a mobile and lightweight setup. This method is based on panoramic photography that uses a panoramic head to precisely rotate a camera and shoot a sequence of images around the entrance pupil of the lens, eliminating parallax error. The proposed system is made of consumer level panoramic photography tools and can accommodate any imaging device, such as a modified digital camera, an InGaAs camera for infrared reflectography and a thermal camera for examination of historical architecture. Introduction as thermal cameras for diagnostics of historical architecture. This article focuses on paintings, This paper describes a fast and mobile methodo‐ but the method remains valid for the documenta‐ logy to perform high resolution multispectral tion of any 2D object such as prints and drawings. imaging with budget equipment. This method Panoramic photography consists of taking a can be appreciated by institutions or private series of photo of a scene with a precise rotating professionals that cannot invest in more costly head and then using special software to align dedicated equipment and/or need a mobile and seamlessly stitch those images into one (lightweight) and fast setup. There are already panorama. excellent medium and large format infrared (IR) modified digital cameras on the market, as well as scanners for high resolution Infrared Reflec‐ Multispectral Imaging with a Digital Camera tography, but both are expensive.