Versatile As a Swiss Army Knife

Total Page:16

File Type:pdf, Size:1020Kb

Versatile As a Swiss Army Knife TECHNOLOGY LENSES VERsatILE AS A SWIss ARMY KNIFE Hasselblad’s new superstar lens isn’t even a real lens: The HTS 1.5 took its makers through uncharted The ingenious HTS 1.5 tilt and territory. It’s the first HC/HCD lens shift adapter enables you to tilt by adapter makes it possible for five HC/HCD lenses to tilt and shift. Plus: ever to employ glass elements with ±10 degrees or shift by ±18 mm. a new universal zoom lens, the HCD 4-5.6/35-90 Aspherical now rounds aspherical surfaces. Aspherical sur- You decide whether you want to faces are known to provide the lens be well-behaved and use it for off the already sizable palette of H lenses. designer with more options, usually perspective corrections or break resulting in more compact designs the rules and place the focal plane with fewer elements. However, it was in unexpected positions BY HANNS W. FRIEDRICH and that creates a big enough mar- to the adapter – tilt, shift and rota- only until recently that aspherical gin for tilting and shifting, while also tion – is registered by sensors and lenses could be made to the required preserving the character of the lens. saved in the image meta data. Every sizes. Compared with the HC 3.5- What use is the best camera with- Mounted on the HTS 1.5, the HCD aberration that arises from the opti- 4.6/50-110, the new zoom lens offers out the best lens? Of course, the lens 4/28 remains a genuine wide-angle cal system as a whole is corrected more wide-angle while being thinner alone won’t create an image – the lens with a 71-degree diagonal and in the computer software thanks to and about one third lighter. digital age shows us the importance corresponds to a 6.3/45. The shift Hasselblad’s Digital Auto Correc- It is the second HCD lens after the of sensor technology – but it does covers up to 18 mm and the tilt up tion (DAC). The photographer can HCD 4/28. The ‘D’ alludes to optimi- still provide the foundation for the to 10 degrees. Maximum rotation indulge in the HTS 1.5’s wealth of zation for H3D digital cameras while camera and software to build upon. to either left or right measures 90 options without having to fear the simultaneously signifying incompat- The extensive range of Hasselblad degrees and allows for almost any loss of image quality. ibility with film cameras. To achieve HC/HCD lenses covers the profes- form of correction. The adjustment What was formerly limited to compactness, the lens’s light pro- sional photographer’s every need ranges are extensive and allow you to owners of view cameras with narrow jection was adapted to the ‘48 mm with nine fixed focal lengths lenses shift by 18 mm up or down and tilt depth-of-field values is now avail- full format’ sensor of the H3DII-39 ranging from a 28 mm super wide- by ± 10 degrees. able to Hasselblad cameras with their and -50. At the wide-angle setting angle to a 300 mm telephoto lens, Hasselblad has invested a tre- extra-large sensors and outstanding in particular, designers balanced two universal zoom lenses; the new mendous amount of technological HC/HCD lenses. What’s more – and improvements in lens performance tilt and shift adapter; one telephoto know-how into the development of this is the key difference – the DAC against a slightly greater distortion converter; extension tubes and the HTS 1.5. Every adjustment made function guarantees outstanding and vignetting as these can be elimi- impressive accessories. The result is images that are completely error-free nated without quality concessions a complete lens gamut teeming with and provides for all the photographic with the aid of DAC. The outcome is solutions for all requirements. SYNOPSIS freedoms you could possibly a powerful tool that zooms between • Hasselblads HC/HCD lenses imagine. There is no limit to your an extreme 83-degree wide-angle and creativity: Correct convergent lines just beyond the fringes of the normal TILT AND SHIFT cover a wide range of focal in architecture, shift the focal plane lens. Because it is optimized for digi- lengths between 28 and 300 mm Hasselblad’s new lens champion, the in portraiture or adjust the focus and tal use it remains nice and compact and deliver excellent image qual- HTS 1.5 is a tilt and shift adapter that blur on a three-dimensional plane. and relatively light in weight. ity – and so does the new family represents a real feat of cutting-edge The HTS 1.5 shines with technical member, the HCD 4-5,6/35-90 engineering. H photographers have perfection and it will inspire sponta- Aspherical, a very universal and COMMON ASPECTS always longed for a tilt and shift solu- neity and push you to break the rules compact wide-angle zoom. tion that would tilt the focal plane for interesting effects. It will be avail- All HC/HCD lenses are tailored to and shift the lens’s optical axis to • The new HTS 1.5 tilt and shift able from January 2009. VICTOR’s deliver the highest image quality correct convergent lines. The idea to adapter transforms five HC/HCD next issue will take a closer look. and fulfill even the most exacting develop a universal adapter for exist- lenses into real tilt and shift demands in film and digital photo- ing HC/HCD lenses, however, was lenses without making compro- graphy. They not only compete with mises in image quality. HCD 4-5.6/35-90 a true stroke of genius and one that ASPHERICAL Hasselblad’s legendary CF lenses for Hasselblad has patented: The con- • All HC/HCD lenses are opti- the V series, they beat them. It was verter transforms five different lenses mized for all ranges and thanks The second innovation in the HC/ of utmost importance to Hasselblad into a bona fide tilt and shift. It can to DAC they show extreme HCD range – the new HCD 4-5.6/35- that the HC/HCD lenses deliver high- be mounted with the HCD 4/28, HC sharpness and no vignetting or 90 Aspherical – is a zoom lens that est performance not only at infinity 3.5/35, HC 3.5/50, HC 2.8/80 and distortion on H3DII cameras. sets its engineers some very special but also at close range, where they HC 2.2/100 and is also compatible • Numerous accessories – ex- challenges. Zoom lenses can’t afford are most frequently used. with Hasselblad’s extension tubes. tension rings, a tele converter any weakness, especially when it The patented central shutter The new HTS 1.5 tilt and shift The concept is as simple as it is and the CF-adapter increase the comes to high-quality cameras like mechanism inherent in HC/HCD adapter transforms five HC/HCD ingenious as the HTS 1.5 is also a potential of the lens program. the H3DII. On the contrary, they lenses operates to extreme precision. lenses into real tilt and shift telephoto converter, extending the are expected to substitute for their The fastest shutter speed of 1/800 sec- lenses, maintaining their excep- focal length of a mounted lens by a fixed-length counterparts without ond is on point and well within the tional optical performance and factor of 1.5. The lens’s image circle is additional constraints. To achieve accepted ISO specifications. Thanks broadening the creative freedom enlarged by that same denominator this, the HCD 4-5.6/35-90 Aspherical to 100 percent electronic control, the for the photographer 36 SPECIAL/2008 TECHNOLOGY LENSES HCD 4/28: The 28 mm super wide- HC 3.5/35: The HC 3,5/35 mm lens HC 3.5/50: The 50 mm lens for HC 2.8/80 : The term ‘normal lens’ HC 2,2/100: The compact 100 mm angle lens is only designed for is still considered super wide-an- H3DII users represents the equiva- sounds a little derogatory in the is the fastest HC lens of all, ideal for digital H cameras and boasts gle. Mounted on the H2F it reaches lent of a 35 mm universal lens in context of high-class lenses. But action photography and low light a spectacular 95 degree angle an 89 degree angle of view; in con- 35 mm photography. It’s a wide the HC 2,8/80 is not only the most photography outside the studio. of view mounted on an H3DII-39 junction with the 48 mm full format angle that offers ample perspective affordable but also one of the Its slight telephoto effect and ex- or -50, and a sizable 89 degree it covers 82 degrees. It’s a powerful without seeming unnatural, best HCs in the market. It’s a high- tremely low depth of field makes it angle on the H3DII-31. Its close lens for creative photography that making it the classic lens in report- speed lens that sports a luminous ideal in portraiture up performance is outstanding – is also easy to use age photography. The universal viewfinder image along with the subject can be as close as 10 HC 3.5/50 makes a stand with high the ideal conditions for low light cm from the front lens performance values photography. The 2.8/80 is also exceptionally compact, making it an excellent choice for light-weight photography outdoors True Exposure feature of the H cam- more, the Phocus software permits CF lens adapter: The CF adapter eras will automatically correct any you to activate and deactivate the allows all lenses from the V system deviations from the actual shutter automatic controls for vignetting, to be used on H system camera speed when the lens is set to small distortion and chromatic aberra- bodies and correctly uses the cen- aperture values.
Recommended publications
  • About Raspberry Pi HQ Camera Lenses Created by Dylan Herrada
    All About Raspberry Pi HQ Camera Lenses Created by Dylan Herrada Last updated on 2020-10-19 07:56:39 PM EDT Overview In this guide, I'll explain the 3 main lens options for a Raspberry Pi HQ Camera. I do have a few years of experience as a video engineer and I also have a decent amount of experience using cameras with relatively small sensors (mainly mirrorless cinema cameras like the BMPCC) so I am very aware of a lot of the advantages and challenges associated. That being said, I am by no means an expert, so apologies in advance if I get anything wrong. Parts Discussed Raspberry Pi High Quality HQ Camera $50.00 IN STOCK Add To Cart © Adafruit Industries https://learn.adafruit.com/raspberry-pi-hq-camera-lenses Page 3 of 13 16mm 10MP Telephoto Lens for Raspberry Pi HQ Camera OUT OF STOCK Out Of Stock 6mm 3MP Wide Angle Lens for Raspberry Pi HQ Camera OUT OF STOCK Out Of Stock Raspberry Pi 3 - Model B+ - 1.4GHz Cortex-A53 with 1GB RAM $35.00 IN STOCK Add To Cart Raspberry Pi Zero WH (Zero W with Headers) $14.00 IN STOCK Add To Cart © Adafruit Industries https://learn.adafruit.com/raspberry-pi-hq-camera-lenses Page 4 of 13 © Adafruit Industries https://learn.adafruit.com/raspberry-pi-hq-camera-lenses Page 5 of 13 Crop Factor What is crop factor? According to Wikipedia (https://adafru.it/MF0): In digital photography, the crop factor, format factor, or focal length multiplier of an image sensor format is the ratio of the dimensions of a camera's imaging area compared to a reference format; most often, this term is applied to digital cameras, relative to 35 mm film format as a reference.
    [Show full text]
  • Optics – Panoramic Lens Applications Revisited
    Panoramic Lens Applications Revisited Simon Thibault* M.Sc., Ph.D., Eng Director, Optics Division/Principal Optical Designer ImmerVision 2020 University, Montreal, Quebec, H3A 2A5 Canada ABSTRACT During the last few years, innovative optical design strategies to generate and control image mapping have been successful in producing high-resolution digital imagers and projectors. This new generation of panoramic lenses includes catadioptric panoramic lenses, panoramic annular lenses, visible/IR fisheye lenses, anamorphic wide-angle attachments, and visible/IR panomorph lenses. Given that a wide-angle lens images a large field of view on a limited number of pixels, a systematic pixel-to-angle mapping will help the efficient use of each pixel in the field of view. In this paper, we present several modern applications of these modern types of hemispheric lenses. Recently, surveillance and security applications have been proposed and published in Security and Defence symposium. However, modern hemispheric lens can be used in many other fields. A panoramic imaging sensor contributes most to the perception of the world. Panoramic lenses are now ready to be deployed in many optical solutions. Covered applications include, but are not limited to medical imaging (endoscope, rigiscope, fiberscope…), remote sensing (pipe inspection, crime scene investigation, archeology…), multimedia (hemispheric projector, panoramic image…). Modern panoramic technologies allow simple and efficient digital image processing and the use of standard image analysis features (motion estimation, segmentation, object tracking, pattern recognition) in the complete 360o hemispheric area. Keywords: medical imaging, image analysis, immersion, omnidirectional, panoramic, panomorph, multimedia, total situation awareness, remote sensing, wide-angle 1. INTRODUCTION Photography was invented by Daguerre in 1837, and at that time the main photographic objective was that the lens should cover a wide-angle field of view with a relatively high aperture1.
    [Show full text]
  • Step up to the Latest in Ultra-Telephoto Zoom Lenses
    Lightest in its class* Shoot precisely in the moment Extremely portable, with a highly responsive AF. Now you can seize the moment with lasting effect. Step up to the latest in ultra-telephoto zoom lenses 100-400mm F/4.5-6.3 Di VC USD (Model A035) For Canon and Nikon mounts Di: For full-frame and APS-C format DSLR cameras * Among 100-400mm interchangeable lenses for DSLR cameras (as of Oct, 2017; Tamron) Tripod mount is an option. Heavyweight Performance in a Lightweight Lens Excellent AF performance meets Mobility meets precision enhanced VC (Vibration Compensation) with the A035 ultra-telephoto lens eBAND Coating delivers sharp, clear photos Focal Length: 300mm Exposure: F/8 1/500sec ISO: 200 Precise AF tracking and VC (Vibration Compensation) are essential to ultra-telephoto lens performance. Tamron’s Dual MPU high-speed control system** helps make this possible. In addition to an MPU (micro-processing unit) with a built-in DSP for superior signal processing, the A035 features a separate MPU dedicated exclusively to vibration compensation. With AF tracking and enhanced VC, you can enjoy shooting fast-moving subjects with stability and ease— even in low-light. Focal Length: 140mm Exposure: F/14 1/200sec ISO: 200 The Tamron 100-400mm F/4.5-6.3 Di VC USD (Model A035) is a highly portable, Expand your possibilities ultra-telephoto zoom lens with AF precision for shooting instantaneous movement with an optional tripod mount with the utmost clarity. With this effectively positioned, extraordinary glass LD (Low Dispersion) lens, aberrations typical with many telephoto lenses are a thing of the Using a tripod is as easy as shooting handheld with the past.
    [Show full text]
  • 6 Tips for Near-Macro Photography with a Telephoto Lens a Post By: Elliot Hook
    6 Tips for Near-Macro Photography with a Telephoto Lens A Post By: Elliot Hook Macro photography is the art of capturing the fine detail of very small subjects that may not be able to be seen by the naked eye. Technically, to fall under the term ‘macro’, the subject should be captured with a reproduction ratio of 1:1, i.e. the subject will be captured on the sensor at 100 % life size. Macro lenses are specially designed to minimise the focussing distance, allowing the photographer to get closer to the subject and so increase the reproduction ratio. There are a number of other techniques that can be used to help achieve the desired magnification without a dedicated lens (extension tubes, close-up filters, reversing rings), however, one of less often considered techniques is to use something that you probably already have in your kit bag: a telephoto lens. Milking Bonnet Fungi (Mycena galopus) Telephoto lenses offer extreme magnification but generally have much larger minimum focussing distances pushing the photographer further from the subject and so reducing the reproduction ratio. Some telephoto lenses, when combined with camera systems utilising smaller sensors, are able to offer 1:1 magnification (‘true macro’) however, typically, telephoto lenses are limited to close-up photography, at near-macro reproduction ratios. Using a telephoto lens for this kind of work offers a couple of advantages over a dedicated macro lens that are a direct result of the large minimum focus distance. Because the working distance to the subject is in the region of 1 metre (compared to 15 – 30 cm of standard macro lenses) the risk of disturbing your subject as you compose your shot is much reduced.
    [Show full text]
  • AG-AF100 28Mm Wide Lens
    Contents 1. What change when you use the different imager size camera? 1. What happens? 2. Focal Length 2. Iris (F Stop) 3. Flange Back Adjustment 2. Why Bokeh occurs? 1. F Stop 2. Circle of confusion diameter limit 3. Airy Disc 4. Bokeh by Diffraction 5. 1/3” lens Response (Example) 6. What does In/Out of Focus mean? 7. Depth of Field 8. How to use Bokeh to shoot impressive pictures. 9. Note for AF100 shooting 3. Crop Factor 1. How to use Crop Factor 2. Foal Length and Depth of Field by Imager Size 3. What is the benefit of large sensor? 4. Appendix 1. Size of Imagers 2. Color Separation Filter 3. Sensitivity Comparison 4. ASA Sensitivity 5. Depth of Field Comparison by Imager Size 6. F Stop to get the same Depth of Field 7. Back Focus and Flange Back (Flange Focal Distance) 8. Distance Error by Flange Back Error 9. View Angle Formula 10. Conceptual Schema – Relationship between Iris and Resolution 11. What’s the difference between Video Camera Lens and Still Camera Lens 12. Depth of Field Formula 1.What changes when you use the different imager size camera? 1. Focal Length changes 58mm + + It becomes 35mm Full Frame Standard Lens (CANON, NIKON, LEICA etc.) AG-AF100 28mm Wide Lens 2. Iris (F Stop) changes *distance to object:2m Depth of Field changes *Iris:F4 2m 0m F4 F2 X X <35mm Still Camera> 0.26m 0.2m 0.4m 0.26m 0.2m F4 <4/3 inch> X 0.9m X F2 0.6m 0.4m 0.26m 0.2m Depth of Field 3.
    [Show full text]
  • A Guide to Smartphone Astrophotography National Aeronautics and Space Administration
    National Aeronautics and Space Administration A Guide to Smartphone Astrophotography National Aeronautics and Space Administration A Guide to Smartphone Astrophotography A Guide to Smartphone Astrophotography Dr. Sten Odenwald NASA Space Science Education Consortium Goddard Space Flight Center Greenbelt, Maryland Cover designs and editing by Abbey Interrante Cover illustrations Front: Aurora (Elizabeth Macdonald), moon (Spencer Collins), star trails (Donald Noor), Orion nebula (Christian Harris), solar eclipse (Christopher Jones), Milky Way (Shun-Chia Yang), satellite streaks (Stanislav Kaniansky),sunspot (Michael Seeboerger-Weichselbaum),sun dogs (Billy Heather). Back: Milky Way (Gabriel Clark) Two front cover designs are provided with this book. To conserve toner, begin document printing with the second cover. This product is supported by NASA under cooperative agreement number NNH15ZDA004C. [1] Table of Contents Introduction.................................................................................................................................................... 5 How to use this book ..................................................................................................................................... 9 1.0 Light Pollution ....................................................................................................................................... 12 2.0 Cameras ................................................................................................................................................
    [Show full text]
  • Choosing Digital Camera Lenses Ron Patterson, Carbon County Ag/4-H Agent Stephen Sagers, Tooele County 4-H Agent
    June 2012 4H/Photography/2012-04pr Choosing Digital Camera Lenses Ron Patterson, Carbon County Ag/4-H Agent Stephen Sagers, Tooele County 4-H Agent the picture, such as wide angle, normal angle and Lenses may be the most critical component of the telescopic view. camera. The lens on a camera is a series of precision-shaped pieces of glass that, when placed together, can manipulate light and change the appearance of an image. Some cameras have removable lenses (interchangeable lenses) while other cameras have permanent lenses (fixed lenses). Fixed-lens cameras are limited in their versatility, but are generally much less expensive than a camera body with several potentially expensive lenses. (The cost for interchangeable lenses can range from $1-200 for standard lenses to $10,000 or more for high quality, professional lenses.) In addition, fixed-lens cameras are typically smaller and easier to pack around on sightseeing or recreational trips. Those who wish to become involved in fine art, fashion, portrait, landscape, or wildlife photography, would be wise to become familiar with the various types of lenses serious photographers use. The following discussion is mostly about interchangeable-lens cameras. However, understanding the concepts will help in understanding fixed-lens cameras as well. Figures 1 & 2. Figure 1 shows this camera at its minimum Lens Terms focal length of 4.7mm, while Figure 2 shows the110mm maximum focal length. While the discussion on lenses can become quite technical there are some terms that need to be Focal length refers to the distance from the optical understood to grasp basic optical concepts—focal center of the lens to the image sensor.
    [Show full text]
  • Astrophotography a Beginner’S Guide
    Astrophotography A Beginner’s Guide By James Seaman Copyright © James Seaman 2018 Contents Astrophotography ................................................................................................................................... 5 Equipment ........................................................................................................................................... 6 DSLR Cameras ..................................................................................................................................... 7 Sensors ............................................................................................................................................ 7 Focal Length .................................................................................................................................... 8 Exposure .......................................................................................................................................... 9 Aperture ........................................................................................................................................ 10 ISO ................................................................................................................................................. 11 White Balance ............................................................................................................................... 12 File Formats ..................................................................................................................................
    [Show full text]
  • Does Size Matter.Sanitized-20151026-GGCS
    Does Size Matter? What’s New in Small Cameras and Should I Switch? Doug Kaye dougkaye.com [email protected] • Portfolio at DougKaye.com • Co-Host of All About the Gear • Cuba & Street Photography Workshops • Frequent guest on This Week in Photo • Active on Social Media • Portfolio at DougKaye.com • Co-Host of All About the Gear • Cuba & Street Photography Workshops • Frequent guest on This Week in Photo • Active on Social Media The Acronyms • DSLR: Digital Single-Lens Reflex • MILC: Mirrorless Interchangeable-Lens Camera • APS-C: ~1.5x Crop-Factor Sensor Size • MFT: Micro Four-Thirds • LCD: Liquid Crystal Display (rear) • OVF: Optical Viewfinder • EVF: Electronic Viewfinder MILCs • Mirrorless • Interchangeable Lens • Autofocus • Electronic Viewfinder Who’s Who • The Old Guard • Nikon & Canon • The Upstarts • Sony & Fujifilm (Full-Frame and APS-C) • Olympus & Panasonic/Lumix (MFT) • Leica? Samsung? iPhone? DSLR vs. Mirrorless MILC History MILC History • 2004: Epson RD-1 (1st Mirrorless) • 2006: Leica M8 (1st Digital Leica) • 2008: Panasonic G1 (1st MFT) • 2009: Leica M9 (1st Full Frame) • 2010: Sony NEX-5 (1st M-APS-C, Hybrid AF) • 2012: Fuji X-Pro1 (Hybrid VF, X-Trans) • 2013: Olympus OM-D E-M1 • 2014: Sony a7S (High ISO), a7R (36MP) • 2015: Sony a7 II, a7R II, a7S II (Full-Frame IBIS) MILC Advantages • Smaller & Lighter • Simpler & Less Expensive • EVF vs. OVF • Always in LiveView Mode (WYSIWYG) • Accurate Autofocus • Quieter & Less Vibration • Simpler Wide-Angle Lens Designs • Compatible w/Other Lens Mounts MILC Disadvantages • EVF vs. OVF? • Continuous Autofocus Speed/Accuracy • Lack of Accessories • Legacy Wide-Angle Lens Issues Sensor Size • Full 35mm Frame (FF): 1x • APS-C: 1.5x • MFT: 2x Pixel Size • Larger Pixels Capture More Light • Higher ISO, Lower Noise • Broader Dynamic Range • 16MP APS-C = 36MP Full Frame • 16MP MFT = 64MP Full Frame Field of View (FoV) • Smaller sensors just crop the image.
    [Show full text]
  • A Practical Guide to Panoramic Multispectral Imaging
    A PRACTICAL GUIDE TO PANORAMIC MULTISPECTRAL IMAGING By Antonino Cosentino 66 PANORAMIC MULTISPECTRAL IMAGING Panoramic Multispectral Imaging is a fast and mobile methodology to perform high resolution imaging (up to about 25 pixel/mm) with budget equipment and it is targeted to institutions or private professionals that cannot invest in costly dedicated equipment and/or need a mobile and lightweight setup. This method is based on panoramic photography that uses a panoramic head to precisely rotate a camera and shoot a sequence of images around the entrance pupil of the lens, eliminating parallax error. The proposed system is made of consumer level panoramic photography tools and can accommodate any imaging device, such as a modified digital camera, an InGaAs camera for infrared reflectography and a thermal camera for examination of historical architecture. Introduction as thermal cameras for diagnostics of historical architecture. This article focuses on paintings, This paper describes a fast and mobile methodo‐ but the method remains valid for the documenta‐ logy to perform high resolution multispectral tion of any 2D object such as prints and drawings. imaging with budget equipment. This method Panoramic photography consists of taking a can be appreciated by institutions or private series of photo of a scene with a precise rotating professionals that cannot invest in more costly head and then using special software to align dedicated equipment and/or need a mobile and seamlessly stitch those images into one (lightweight) and fast setup. There are already panorama. excellent medium and large format infrared (IR) modified digital cameras on the market, as well as scanners for high resolution Infrared Reflec‐ Multispectral Imaging with a Digital Camera tography, but both are expensive.
    [Show full text]
  • Hasselblad V to Fuji GFX Speedbosster Press
    Metabones® Introduces Hasselblad V to Fuji G mount (GFX) Speed Booster® Press Release n Los Angeles, CA, USA, Aug 16, 2019: Caldwell Photographic Inc. and Metabones® are pleased to announce a new Speed Booster® Ultra 0.71x, exclusively designed for the exciting new Fuji GFX medium format camera. The initial version is specifically optimized for use with the famous Hasselblad V series lenses. This new Speed Booster uses an advanced 6-element design to achieve excellent optical performance at apertures up to f/1.4 when paired with the Hasselblad 110mm f/2 lens. Although the Fuji GFX uses an extremely large sensor, it is nevertheless significantly smaller than the 6x6 cm film format. The new Speed Booster Ultra 0.71x is an ideal match for 6x6 Hasselblad V lenses since they can now be fully utilized as they were originally designed when mounted to the Fuji GFX. Unlike 35mm format lenses used on the Fuji GFX via glassless adapters, Hasselblad V lenses adapted to the GFX via the Speed Booster Ultra are completely free of disturbing vignetting and other corner issues. In addition to increasing the field of view and lens speed, the new Speed Booster Ultra achieves superb performance by being carefully matched to the unique optical characteristics of the Hasselblad V lenses. All of the Hasselblad V lenses were analyzed for exit pupil size and location, and this was fully taken into account in the new Speed Booster Ultra for the Fuji GFX. This approach dictated the use of extremely large lens elements throughout in order to avoid vignetting and maintain high quality imagery into the corners, but the results speak for themselves.
    [Show full text]
  • Innovation and Recurring Shifts in Industrial Leadership: Three Phases of Change and Persistence in the Camera Industry*
    Innovation and Recurring Shifts in Industrial Leadership: Three Phases of Change and Persistence in the Camera Industry* Hyo Kang† Jaeyong Song‡ Forthcoming in Research Policy 46(2), 2017 Abstract This study examines factors underlying three phases of change/persistence in industrial leadership in the segment of interchangeable-lens cameras over the past century. During this period there were two major phases of leadership change, both associated with the emergence of innovations involving major discontinuities in the industry’s core technologies. First, Japan won market leadership from Germany in the mid-1960s after commercializing the single-lens reflex (SLR) camera that replaced the previously dominant German rangefinder camera. Second, in the late-2000s, Japanese latecomer firms and a Korean firm developed Mirrorless cameras, which allowed them to capture the majority of market shares from the incumbent Japanese leaders. We also examine the long period (about 60 years) between these two phases of change, during which leading Japanese firms were able to sustain their market leadership despite the digital revolution from the 1980s to 1990s. This paper explores the factors influencing these contrasting experiences of change and persistence in industry leadership. The analysis integrates several aspects of sectoral innovation systems – i.e., windows of opportunity associated with technology, demand, and institution – as well as the strategies of incumbents and latecomer firms. The conclusions highlight the complex and diverse combinations and importance of the factors that help explain the patterns of leadership shift. Keywords: catch-up cycle; industrial leadership; innovation; interchangeable-lens camera JEL: N70, L63, O33 * This research has been supported by the Center for Global Business and Research, Seoul National University.
    [Show full text]