Plankton, Status and Role Of

Total Page:16

File Type:pdf, Size:1020Kb

Plankton, Status and Role Of PLANKTON, STATUS AND ROLE OF C. S. Reynolds Freshwater Biological Association and NERC Institute of Freshwater Ecology I. The Structure of Planktonic Communities reproduce on organic carbon sources, taken in dis- II. Habitat Constraints in the Plankton solved or particle form. III. Form, Function, and Selection in the metazoan Literally, a multicelled animal. Phytoplankton mixotrophy The ability of a normally autotrophic or- IV. Form, Function, and Selection in the ganism to switch, circumstantially, to phagotrophy, Zooplankton or to support an otherwise meager food supply by V. Function in the Bacterioplankton resorting to the ingestion and assimilation of bacteria VI. Temporal Patterns in the Organization and or their products. Diversity of Planktonic Communities pelagic The (open-water) part of the aquatic environ- VII. Mechanisms Promoting and Maintaining ment that is far from the shore and the bottom bed. Diversity in the Plankton phagotrophy A type of heterotrophy that involves the VIII. Conclusions and Implications consumption of protists, plants, or animals as food. photoautotrophy A type of autotrophy in which organ- isms gather light energy in order to reduce carbon dioxide to organic carbon; characteristic of green GLOSSARY plants, most algae, and some prokaryotes. prokaryote Organizational state of cells lacking a mem- autotrophy The ability of organisms to grow and repro- brane-bound nucleus and certain other organelles. duce independently of external sources of organic Bacteria, including the Cyanobacteria, are typically carbon compounds. prokaryotic. Ͻ Ȑ eukaryote An organizational state of cellular organisms picophytoplankton The smallest ( 2 m) size class in which the genome of the cell is stored in chromo- of photoautotrophic plankton. somes enclosed in a membrane-bound nucleus; all protists (algae and protozoa), fungi, plants, and ani- mals are eukaryotes. euphotic The top layer of a water body through which ‘‘PLANKTON’’ IS A COLLECTIVE TERM for organisms sufficient light penetrates to support net photosyn- adapted specifically for a life passed mainly in suspen- thetic gain and the growth of photosynthesizing or- sion in the open waters (the pelagic zone) of the sea ganisms. Rarely more than 100 m in depth, the eu- and of such inland waters as lakes, reservoirs, and rivers. photic layer can be as little as 1 m in turbid waters. Planktonic organisms include protists (allegedly sim- heterotrophy The ability of organisms to grow and ple, unicellular, or colony-forming algal primary pro- Encyclopedia of Biodiversity, Volume 4 Copyright 2001 by Academic Press. All rights of reproduction in any form reserved. 569 570 PLANKTON, STATUS AND ROLE OF ducers and their protozoan consumers), microorgan- and its solvent properties, which maintain nutrients isms, and certain types of small metazoan animals, all and metabolic gases in readily assimilable state. sharing a common liability to passive entrainment in In truth, however, the planktonic ways of life have water currents, generated by tide, wind, convection, evolved to accommodate several problems and draw- gravity, and the rotation of the earth. The inherent backs associated with living in open water. Dominant physical variability of open-water habitats typically fa- among these is the issue of turbulence. Water molecules vors absolutely short life histories; rapid changes in experience strong mutual attraction, which makes the dominant species composition, in response to fluctuat- liquid relatively viscous when compared to other fluids. ing environmental conditions, contribute to the mainte- Seeing waves break on the shore, or watching ‘‘white’’ nance of high biological diversity in individual habitats water plunging through riverine rapids, we may be casu- and to the survival of a high species richness among ally impressed by the fluidity of water flow but, without planktonic assemblages in general. the driving energy, calm is rapidly reestablished as vis- cosity overcomes the residual motion at the molecular level. What happens is that the introduced mechanical energy is dissipated through a cascade of propagating I. THE STRUCTURE OF eddies, of diminishing size and velocity, until molecular PLANKTONIC COMMUNITIES attraction imparts order over chaos and the molecular movement is overwhelmed. This behavior is now mea- The functional definition of plankton, ventured at the surable and it has been mathematically described (see, introduction to this chapter, has superseded the origi- for instance, Mann and Lazier, 1991). What is of partic- nal, nineteenth-century allusions to plankton ‘‘floating’’ ular interest here is that, depending upon the intensity in water. Nevertheless, even this is still unsatisfactory, of persistent wind- or gravitational forcing, viscosity for its implication that the suspension is either complete overcomes inertia within the range 0.2 to 3 mm (see or continuous is strictly erroneous. However, genuinely Reynolds, 1997b, for examples). This means that the planktonic organisms—which include the plantlike, immediate environment experienced by organisms chlorophyll-containing primary producers of the phyto- smaller than this (i.e., most of the phytoplankton, bac- plankton, the heterotrophic, decomposer microorgan- terioplankton, and the smaller components of the zoo- isms of the bacterioplankton, and the more animal-like plankton) is wholly viscous: far from being fluid, the consumers of the zooplankton—are too small (often forces acting on the microorganism are comparable to Ͻ20 mm) for their own intrinsic movements to be able those experienced by a human immersed in treacle or to overcome, often or at all, the dispersive effects of unset cement. The organisms do not experience turbu- water movement. Thus ‘‘embedded’’ within the tireless lence, neither are their delicate morphologies threat- and unconstrained motion of open water, planktonic ened with physical damage, but they remain entrained organisms broadly go wherever the flow takes them. In in the turbulent field and continue to be randomized this way, the ecology of plankton is inextricably related throughout its spatial extent. Larger zooplankton (say to the physical properties of the medium, the extent Ͼ0.2 mm), though still too feeble to resist entrainment and limits of its motion, and the environmental condi- consistently, are sufficiently tough and flexible to toler- tions set within these bounds (Reynolds, 1997b). This ate the millimeter range of turbulence and to exploit it situation contrasts with that of most fish and other effectively in food gathering (Rothschild and Os- larger (Ͼ20 mm) animals of open water—the ‘‘nek- borne, 1988). ton’’—whose swimming strength is usually able to over- Beyond the selective constraints imposed by the come normal movement of the water. physical properties of pelagic, open-water environ- The older literature also promulgated a view that ments, it is also necessary to recognize that, with respect suspension in water was necessarily beneficial, suppos- to the obligate material components of living cells, the ing water to be something of an ideal habitat. Living aqueous concentrations of some of these (especially in water does confer some notable positive advantages carbon, nitrogen, phosphorus, iron, and fifteen or so over terrestrial or aerial habitats. These include the micronutrient elements) are often so dilute that their mechanical (‘‘Archimedean’’) support water provides, availabilities place a severe constraint on the assembly as a consequence of its much greater density in compari- of planktonic biomass. Moreover, despite its alleged son with air; its slow temperature fluctuations, as a transparency, the absorbance of solar energy by pure consequence of its much higher specific heat than air; water (see, for instance, Kirk, 1994) is such that, at PLANKTON, STATUS AND ROLE OF 571 depths of Ͼ100 m, it is always as dark as night. Biologi- nia et al., 1991). The total number recorded from inland cal productivity in lakes is often severely constrained waters is not certainly known, but it is estimated that by rarefied resources or by deficiencies in processing there are quite 4000 of these as well (Reynolds, 1996). energy, or by both. Far from being an ideal environ- Few genera and still fewer species are common to both ment, the pelagic is a rather unpromising medium for fresh and salt waters. Even if a fairly conservative view successful exploitation by living communities. of their classification is adopted, the species are drawn Yet, within this general constraint, there is a remark- from at least six distinct protist phyla and at least two able richness of individual species inhabiting the plank- major prokaryote subdivisions (see Table I). The Purple ton of the world’s lakes and seas. Not all have even been (Chromatiaceae) and Green Sulfur Bacteria (Chlorobi- adequately described and separated. The extraordinary aceae) are represented in specialized, anoxic habitats. diversity and phyletic representation of planktonic or- Of the planktonic genera of Cyanoprokaryotes (for- ganisms may only be hinted at in the following subsec- merly classed as Cyanophyceae, or ‘‘blue green algae,’’ tions. As a preface to any such review of the planktonic and now most commonly referred to as ‘‘Cyanobacte- biota, however, it is necessary to emphasize that the ria’’) most occur in lakes, though several are also com- familiar separation, first of plants and animals and then mon in the low-salinity (Ͻ11 parts per thousand) areas their subdivision among phyletic divisions,
Recommended publications
  • The Structure, Arrangement and Intracellular Origin of Tubular Mastigonemes in Ochrqmonas Minute and Nonas Sp
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1973 The trs ucture, arrangement and intracellular origin of tubular mastigonemes in Ochromonas minute and Monas sp (Chrysophyceae) Francis Gordon Hill Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biology Commons, and the Botany Commons Recommended Citation Hill, Francis Gordon, "The trs ucture, arrangement and intracellular origin of tubular mastigonemes in Ochromonas minute and Monas sp (Chrysophyceae) " (1973). Retrospective Theses and Dissertations. 5086. https://lib.dr.iastate.edu/rtd/5086 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
    [Show full text]
  • WO 2019/034354 Al 21 February 2019 (21.02.2019) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2019/034354 Al 21 February 2019 (21.02.2019) W !P O PCT (51) International Patent Classification: TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, C12P 7/64 (2006.01) KM, ML, MR, NE, SN, TD, TG). (21) International Application Number: Published: PCT/EP20 18/069454 — with international search report (Art. 21(3)) (22) International Filing Date: 18 July 2018 (18.07.2018) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/546,808 17 August 2017 (17.08.2017) US 17192347.7 2 1 September 2017 (21 .09.2017) EP (71) Applicants: EVONIK DEGUSSA GMBH [DE/DE]; Rellinghauser StraBe 1-1 1, 45128 Essen (DE). DSM IP ASSETS B.V. [NL/NL]; Het Overloon 1, 641 1 TE Heerlen (NL). (72) Inventors: BURJA, Adam; 11904 Tallwood Court, Po tomac, Maryland 20854 (US). CORONA, Jim; 215 Fel- ton Road, Lutherville, Maryland 21093 (US). GAR¬ CIA, Jose R.; 8232 Red Carnation Court, Lorton, Vir ginia 22079 (US). MAIA, Goncalo Oliveira; 9442 Ma- comber Lane, Columbia, Maryland 21045 (US). PRIE- FERT, Horst; Hanfgarten 33, 48346 Ostbevern (DE). WINDAU, Joachim; Sticking 24b, 4823 1Warendorf (DE). ZAVODSKY, Gabriel; Svermova 22, 97404 Banska Bystrica (SK). (74) Agent: IOANNIDIS, Johannes; Evonik Industries AG, LIC-IP Management, Postcode 84/339, Rodenbacher Chaussee 4, Hanau 63457 (DE). (81) Designated States (unless
    [Show full text]
  • Altitudinal Zonation of Green Algae Biodiversity in the French Alps
    Altitudinal Zonation of Green Algae Biodiversity in the French Alps Adeline Stewart, Delphine Rioux, Fréderic Boyer, Ludovic Gielly, François Pompanon, Amélie Saillard, Wilfried Thuiller, Jean-Gabriel Valay, Eric Marechal, Eric Coissac To cite this version: Adeline Stewart, Delphine Rioux, Fréderic Boyer, Ludovic Gielly, François Pompanon, et al.. Altitu- dinal Zonation of Green Algae Biodiversity in the French Alps. Frontiers in Plant Science, Frontiers, 2021, 12, pp.679428. 10.3389/fpls.2021.679428. hal-03258608 HAL Id: hal-03258608 https://hal.archives-ouvertes.fr/hal-03258608 Submitted on 11 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-12-679428 June 4, 2021 Time: 14:28 # 1 ORIGINAL RESEARCH published: 07 June 2021 doi: 10.3389/fpls.2021.679428 Altitudinal Zonation of Green Algae Biodiversity in the French Alps Adeline Stewart1,2,3, Delphine Rioux3, Fréderic Boyer3, Ludovic Gielly3, François Pompanon3, Amélie Saillard3, Wilfried Thuiller3, Jean-Gabriel Valay2, Eric Maréchal1* and Eric Coissac3* on behalf of The ORCHAMP Consortium 1 Laboratoire de Physiologie Cellulaire et Végétale, CEA, CNRS, INRAE, IRIG, Université Grenoble Alpes, Grenoble, France, 2 Jardin du Lautaret, CNRS, Université Grenoble Alpes, Grenoble, France, 3 Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France Mountain environments are marked by an altitudinal zonation of habitat types.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Species Diversity of Pelagic Algae in Lake Kivu (East Africa)
    Cryptogamie,Algol., 2007, 28 (3): 245-269 © 2007 Adac. Tous droits réservés Species diversity of pelagic algae in Lake Kivu (East Africa) Hugo SARMENTO a,b*, MariaLEITAO b , MayaSTOYNEVA c , PierreCOMPÈRE d ,Alain COUTÉ e ,MwapuISUMBISHO a,f &Jean-PierreDESCY a a Laboratory of Freshwater Ecology, URBO, Department of Biology, University of Namur,B-5000 Namur,Belgium b Bi-Eau,F-4900 Angers,France c Department of Botany, Faculty of Biology, Sofia University “St Kliment Ohridski”, 1164 Sofia, Bulgaria d Jardin Botanique National de Belgique,B-1860 Meise,Belgium e Muséum d’Histoire Naturelle de Paris,Département RDDM, CP 39, 57 rue Cuvier,F-75231 Paris Cedex 05,France f Institut Supérieur Pédagogique de Bukavu, UERHA, Bukavu,D. R. of Congo (Received 24 April 2006, accepted 29 August 2006) Abstract – With regard to pelagic algae, Lake Kivu is the least known among the East- African Great Lakes. The data available on its phytoplanktic communities are limited, dispersed or outdated. This study presents floristic data obtained from the first long term monitoring survey ever made in Lake Kivu (over two and a half years). Samples were collected twice a month from the southern basin, and twice a year (once in each season) from the northern, eastern and western basins. In open lake habitats, the four basins presented similar species composition. The most common species were the pennate diatoms Nitzschia bacata Hust. and Fragilaria danica (Kütz.) Lange-Bert., and the cyanobacteria Planktolyngbya limnetica Lemm. and Synechococcus sp. The centric diatom Urosolenia sp. and the cyanobacterium Microcystis sp. were also very abundant, mostly near the surface under daily stratification conditions.
    [Show full text]
  • A Study on the Phytoplankton of Hasan UĞURLU Dam Lake (Samsun-Turkey)
    Tr. J. of Biology 22 (1998) 447-461 © TÜBİTAK A Study on the Phytoplankton of Hasan UĞURLU Dam Lake (Samsun-Turkey) Arif GÖNÜLOL Ondokuz Mayıs University, Science and Arts Faculty, Department Biology Kurupelit, Samsun-TURKEY Olcay OBALI Ankara University, Faculty of Science, Department Biology Beşevler, Ankara-TURKEY Received: 27.09.1996 Abstract: The composition and seasonal variations of phytoplankton of Hasan UĞURLU Dam Lake were studied using samples collected from two stations between July 1992 to December 1993. 57 taxa were identified belonging to the Bacillariophyta, Chlorophyta, Cyanophyta, Dinophyta and Euglenophyta divisions of phytoplankton. In the phytoplankton, Asterionella formosa, Cyclotella planc- tonica, Pediastrum simplex and Ceratium hirundinella caused water blooms in certain months. The light density and temperature affected the composition and seasonal variations in phytoplankton considerably. Nutrient levels in the lake did not limit the seasonal variations in phytoplankton. It was determined that Lake Hasan Uğurlu had mesotrophic characteristics because of the morpho- metric structure, physical and chemical properties of the water and a phytoplankton type which caused water blooming by various taxa during certain months Key Words: Phytoplankton Hasan Uğurlu Baraj Gölü (Samsun-Türkiye) Fitoplanktonu Üzerinde Bir Araştırma Özet: Hasan Uğurlu Baraj Gölü fitoplankton topluluğu ve mevsimsel değişimi iki istasyondan alınan örneklerde, Temmuz 1992 - Aralık 1993 tarihleri arasında araştırılmıştır. Fitoplanktonda Bacillariophyta,
    [Show full text]
  • Airborne Microalgae: Insights, Opportunities, and Challenges
    crossmark MINIREVIEW Airborne Microalgae: Insights, Opportunities, and Challenges Sylvie V. M. Tesson,a,b Carsten Ambelas Skjøth,c Tina Šantl-Temkiv,d,e Jakob Löndahld Department of Marine Sciences, University of Gothenburg, Gothenburg, Swedena; Department of Biology, Lund University, Lund, Swedenb; National Pollen and Aerobiology Research Unit, Institute of Science and the Environment, University of Worcester, Worcester, United Kingdomc; Department of Design Sciences, Lund University, Lund, Swedend; Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmarke Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concen- tration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosys- tems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and Downloaded from state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmo- spheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our under- standing of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamina- tion events or invasions. he presence of microorganisms in the atmosphere has been phyta and Ochrophyta in the atmosphere (taxonomic classifica- Tdebated over centuries.
    [Show full text]
  • Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye
    Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye To cite this version: Lambert Niyoyitungiye. Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality. Biodiversity and Ecology. Assam University Silchar (Inde), 2019. English. tel-02536191 HAL Id: tel-02536191 https://hal.archives-ouvertes.fr/tel-02536191 Submitted on 9 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. “LIMNOLOGICAL STUDY OF LAKE TANGANYIKA, AFRICA WITH SPECIAL EMPHASIS ON PISCICULTURAL POTENTIALITY” A THESIS SUBMITTED TO ASSAM UNIVERSITY FOR PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN LIFE SCIENCE AND BIOINFORMATICS By Lambert Niyoyitungiye (Ph.D. Registration No.Ph.D/3038/2016) Department of Life Science and Bioinformatics School of Life Sciences Assam University Silchar - 788011 India Under the Supervision of Dr.Anirudha Giri from Assam University, Silchar & Co-Supervision of Prof. Bhanu Prakash Mishra from Mizoram University, Aizawl Defence date: 17 September, 2019 To Almighty and merciful God & To My beloved parents with love i MEMBERS OF EXAMINATION BOARD iv Contents Niyoyitungiye, 2019 CONTENTS Page Numbers CHAPTER-I INTRODUCTION .............................................................. 1-7 I.1 Background and Motivation of the Study ..........................................
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Soft Algae Species Attributes
    SCCWRP Technical Report #0730 Development of Algal Indices of Biotic Integrity for Southern California Wadeable Streams and Recommendations for their Application, v3 This document is the deliverable for Prop 50 grant Task # 4, which entailed preparation of a draft algal IBI for use in southern California wadeable streams. Abstract Using a large dataset from wadeable streams concentrated in southern California, we developed several Indices of Biotic Integrity (IBIs) consisting of metrics derived from diatom and/or non- diatom (“soft”) algal assemblages including cyanobacteria. Over 100 metrics were screened based on metric score distributions, responsiveness to anthropogenic stress, and repeatability. High-performing metrics were combined into IBIs, which were classified according to the amount of field and laboratory effort required to generate their scores. IBIs were screened for responsiveness to anthropogenic stress, repeatability, mean correlation between component metrics, and indifference to natural gradients. Most IBIs resulted in good separation between the most disturbed and least disturbed (i.e., “reference”) site classes, but they varied in terms of how well they distinguished intermediate-disturbance sites from the other classes, and based on some of the other performance criteria listed. In general, the best performing IBIs were “hybrids”, containing a mix of diatom and soft-algae metrics. Of those tested, the soft-algae-only IBIs were better at distinguishing the intermediate from most highly disturbed site classes, and the diatom- only IBIs were marginally better than soft-algae based IBIs at distinguishing reference-quality from intermediate site classes. The single-assemblage IBIs also differed considerably in terms of the natural gradients to which they were most responsive.
    [Show full text]
  • Kingdom Chromista)
    J Mol Evol (2006) 62:388–420 DOI: 10.1007/s00239-004-0353-8 Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista) Thomas Cavalier-Smith, Ema E-Y. Chao Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Received: 11 December 2004 / Accepted: 21 September 2005 [Reviewing Editor: Patrick J. Keeling] Abstract. Heterokonts are evolutionarily important gyristea cl. nov. of Ochrophyta as once thought. The as the most nutritionally diverse eukaryote supergroup zooflagellate class Bicoecea (perhaps the ancestral and the most species-rich branch of the eukaryotic phenotype of Bigyra) is unexpectedly diverse and a kingdom Chromista. Ancestrally photosynthetic/ major focus of our study. We describe four new bicil- phagotrophic algae (mixotrophs), they include several iate bicoecean genera and five new species: Nerada ecologically important purely heterotrophic lineages, mexicana, Labromonas fenchelii (=Pseudobodo all grossly understudied phylogenetically and of tremulans sensu Fenchel), Boroka karpovii (=P. uncertain relationships. We sequenced 18S rRNA tremulans sensu Karpov), Anoeca atlantica and Cafe- genes from 14 phagotrophic non-photosynthetic het- teria mylnikovii; several cultures were previously mis- erokonts and a probable Ochromonas, performed ph- identified as Pseudobodo tremulans. Nerada and the ylogenetic analysis of 210–430 Heterokonta, and uniciliate Paramonas are related to Siluania and revised higher classification of Heterokonta and its Adriamonas; this clade (Pseudodendromonadales three phyla: the predominantly photosynthetic Och- emend.) is probably sister to Bicosoeca. Genetically rophyta; the non-photosynthetic Pseudofungi; and diverse Caecitellus is probably related to Anoeca, Bigyra (now comprising subphyla Opalozoa, Bicoecia, Symbiomonas and Cafeteria (collectively Anoecales Sagenista). The deepest heterokont divergence is emend.). Boroka is sister to Pseudodendromonadales/ apparently between Bigyra, as revised here, and Och- Bicoecales/Anoecales.
    [Show full text]
  • Direct Effects of Daphnia-Grazing, Not Infochemicals, Mediate a Shift
    ARTICLE IN PRESS Limnologica 37 (2007) 137–145 www.elsevier.de/limno Direct effects of Daphnia-grazing, not infochemicals, mediate a shift towards large inedible colonies of the gelatinous green alga Sphaerocystis schroeteri Heike Kampea,Ã, Marie Ko¨nig-Rinkeb, Thomas Petzoldtb,Ju¨rgen Benndorfb aInstitute for Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, D-14469 Potsdam, Germany bInstitute of Hydrobiology, Zellescher Weg 40, 01217 Dresden, Germany Received 30 August 2006; received in revised form 19 December 2006; accepted 5 January 2007 Abstract The influence of Daphnia galeata  hyalina grazing and of infochemicals released by the daphnids on the colony size and growth rate of the colonial gelatinous green alga Sphaerocystis schroeteri (Chlorococcales) was investigated in laboratory batch experiments run for 96 h. High zooplankton grazing pressure was exerted by a final concentration of 100 daphnids LÀ1 in the Daphnia treatments. Infochemicals were obtained by filtration (0.2 mm) of water from D. galeata  hyalina cultures (200 ind. LÀ1 exposed for 24 h). This filtrate was added to the S. schroeteri cultures in two concentrations corresponding to 7 and 50 daphnids LÀ1, respectively. The growth rate of S. schroeteri was neither affected significantly by direct Daphnia grazing nor by the presence of Daphnia infochemicals, in comparison to the control. However, the portion of inedible S. schroeteri colonies (diameter450 mm) increased under direct grazing pressure, whereas the Daphnia infochemicals did not influence the colony size significantly. We conclude that the shift in colony size by direct zooplankton grazing denotes an effective defence mechanism against size selective feeding for colonial gelatinous green algae.
    [Show full text]