6-8 Study Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mahimahi (Coryphaenamahimahi Hippurus)
mahimahi (CoryphaenaMahimahi hippurus) Mahimahi is the Hawaiian of Hawaii’s commercial landings Quality name that has become the common of mahimahi. Trollers catch nearly market name for this fish. It is also 40% of the landings. Schools of ma- Fresh mahimahi has a shelf life of known as dorado or dolphin (the himahi are common around flotsam 10 days if properly cared for. The fish, not the mammal) in other parts drifting at sea and near fish aggre- fish caught by trolling are only one of the country. When a mahimahi gation buoys. or two days on ice when landed and are typically fresher than the ma- takes the hook, its colors are bril- Although mahimahi have been liant blue and silver dappled with himahi caught by longline boats on raised successfully in tanks from extended trips. yellow. These fade quickly when the eggs to adults, the high cost has fish dies. made commercial aquaculture un- The first external evidence of de- Seasonality & How feasible to date. terioration in a whole mahimahi is They Are Caught softening and fading of bright skin Distribution: colors. In a dressed fish, discolor- Availability and Seasonality: The popularity of fresh mahimahi ation of the flesh exposed around Locally-caught mahimahi is avail- in the tourist industry and with resi- the collar bone would indicate a loss able most of the year, with peak dents has created a steady demand of quality. Mahimahi retains better catches usually March to May and for this fish and consistently good quality if it is not filleted until short- from September to November. -
Consumption Impacts by Marine Mammals, Fish, and Seabirds on The
83 Consumption impacts by marine mammals, fish, and seabirds on the Gulf of Maine–Georges Bank Atlantic herring (Clupea harengus) complex during the years 1977–2002 W. J. Overholtz and J. S. Link Overholtz, W. J. and Link, J. S. 2007. Consumption impacts by marine mammals, fish, and seabirds on the Gulf of Maine–Georges Bank Atlantic herring (Clupea harengus) complex during the years 1977–2002. ICES Journal of Marine Science, 64: 83–96. A comprehensive study of the impact of predation during the years 1977–2002 on the Gulf of Maine–Georges Bank herring complex is presented. An uncertainty approach was used to model input variables such as predator stock size, daily ration, and diet composition. Statistical distributions were constructed on the basis of available data, producing informative and uninformative inputs for estimating herring consumption within an uncertainty framework. Consumption of herring by predators tracked herring abundance closely during the study period, as this important prey species recovered following an almost complete collapse during the late 1960s and 1970s. Annual consumption of Atlantic herring by four groups of predators, demersal fish, marine mammals, large pelagic fish, and seabirds, averaged just 58 000 t in the late 1970s, increased to 123 000 t between 1986 and 1989, 290 000 t between 1990 and 1994, and 310 000 t during the years 1998–2002. Demersal fish consumed the largest proportion of this total, followed by marine mammals, large pelagic fish, and seabirds. Sensitivity analyses suggest that future emphasis should be placed on collecting time-series of diet composition data for marine mammals, large pelagic fish, and seabirds, with additional monitoring focused on the abundance of seabirds and daily rations of all groups. -
Forage Fish Management Plan
Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis .................................................................................................................................... -
Coryphaena Hippurus (Linnaeus, 1758) in Maltese Waters, Central Mediterranean M
Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.706 Age, Growth and Reproduction of Coryphaena hippurus (Linnaeus, 1758) in Maltese Waters, Central Mediterranean M. GATT1, M. DIMECH1 and P.J. SCHEMBRI1 1 Department of Biology, University of Malta, Msida MSD 2080, Malta Corresponding author: [email protected] Handling Editor: Kostas Stergiou Received: 24 November 2014; Accepted: 22 January 2015; Published on line: 27 April 2015. Abstract Age, growth and reproduction of the dolphinfishCoryphaena hippurus Linnaeus, 1758 collected from the Central Mediterranean in the period 2004-2010 by the traditional Maltese fish aggregating devices (FAD) and surface longline fisheries were studied. The a and b parameters of the length-weight relationship for fish 11-142 cm fork length (FL) (n = 4042) were determined as a = 0.018 and 0.022 with b = 2.85 and 2.79, for males and females respectively. The counting of annual increments from dorsal spines of >65 cm FL dolphinfish at X25 magnification (n = 47) permitting an age reading resolution in years, and the counting of daily increments from sagittal otoliths of <65 cm FL dolphinfish at X400 magnification (n = 583) permitting an age reading resolution in days, were estimated; the von Bertalanffy growth model applied to these fish gave the following parameters:L∞ = 107.8 cm FL and 120.2 cm FL, and K = 1.9 yr-1 and 1.56 yr-1, for males and females respectively. -
Orange Roughy New Zealand
Orange Roughy Hoplostethus atlanticus Image ©Monterey Bay Aquarium New Zealand Bottom Trawl July 21, 2014 Andy Woolmer and Jess Woo, Consulting Researcher 2 About Seafood Watch® The Monterey Bay Aquarium Seafood Watch® program evaluates the ecological sustainability of wild- caught and farmed seafood commonly found in the North American marketplace. Seafood Watch defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. The program’s mission is to engage and empower consumers and businesses to purchase environmentally responsible seafood fished or farmed in ways that minimize their impact on the environment or are in a credible improvement project with the same goal. Each sustainability recommendation is supported by a seafood report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s Sustainability Criteria to arrive at a recommendation of “Best Choice,” “Good Alternative,” or “Avoid.” In producing the seafood reports, Seafood Watch utilizes research published in academic, peer-reviewed journals whenever possible. Other sources of information include government technical publications, fishery management plans and supporting documents, and other scientific reviews of ecological sustainability. Seafood Watch research analysts also communicate with ecologists, fisheries and aquaculture scientists, and members of industry and conservation organizations when evaluating fisheries and aquaculture practices. Capture fisheries and aquaculture practices are highly dynamic; as the scientific information on each species changes, Seafood Watch’s sustainability recommendations and the underlying seafood reports will be updated to reflect these changes. -
Wasted Catch: Unsolved Problems in U.S. Fisheries
© Brian Skerry WASTED CATCH: UNSOLVED PROBLEMS IN U.S. FISHERIES Authors: Amanda Keledjian, Gib Brogan, Beth Lowell, Jon Warrenchuk, Ben Enticknap, Geoff Shester, Michael Hirshfield and Dominique Cano-Stocco CORRECTION: This report referenced a bycatch rate of 40% as determined by Davies et al. 2009, however that calculation used a broader definition of bycatch than is standard. According to bycatch as defined in this report and elsewhere, the most recent analyses show a rate of approximately 10% (Zeller et al. 2017; FAO 2018). © Brian Skerry ACCORDING TO SOME ESTIMATES, GLOBAL BYCATCH MAY AMOUNT TO 40 PERCENT OF THE WORLD’S CATCH, TOTALING 63 BILLION POUNDS PER YEAR CORRECTION: This report referenced a bycatch rate of 40% as determined by Davies et al. 2009, however that calculation used a broader definition of bycatch than is standard. According to bycatch as defined in this report and elsewhere, the most recent analyses show a rate of approximately 10% (Zeller et al. 2017; FAO 2018). CONTENTS 05 Executive Summary 06 Quick Facts 06 What Is Bycatch? 08 Bycatch Is An Undocumented Problem 10 Bycatch Occurs Every Day In The U.S. 15 Notable Progress, But No Solution 26 Nine Dirty Fisheries 37 National Policies To Minimize Bycatch 39 Recommendations 39 Conclusion 40 Oceana Reducing Bycatch: A Timeline 42 References ACKNOWLEDGEMENTS The authors would like to thank Jennifer Hueting and In-House Creative for graphic design and the following individuals for their contributions during the development and review of this report: Eric Bilsky, Dustin Cranor, Mike LeVine, Susan Murray, Jackie Savitz, Amelia Vorpahl, Sara Young and Beckie Zisser. -
Guide to the Coastal Marine Fishes of California
STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 157 GUIDE TO THE COASTAL MARINE FISHES OF CALIFORNIA by DANIEL J. MILLER and ROBERT N. LEA Marine Resources Region 1972 ABSTRACT This is a comprehensive identification guide encompassing all shallow marine fishes within California waters. Geographic range limits, maximum size, depth range, a brief color description, and some meristic counts including, if available: fin ray counts, lateral line pores, lateral line scales, gill rakers, and vertebrae are given. Body proportions and shapes are used in the keys and a state- ment concerning the rarity or commonness in California is given for each species. In all, 554 species are described. Three of these have not been re- corded or confirmed as occurring in California waters but are included since they are apt to appear. The remainder have been recorded as occurring in an area between the Mexican and Oregon borders and offshore to at least 50 miles. Five of California species as yet have not been named or described, and ichthyologists studying these new forms have given information on identification to enable inclusion here. A dichotomous key to 144 families includes an outline figure of a repre- sentative for all but two families. Keys are presented for all larger families, and diagnostic features are pointed out on most of the figures. Illustrations are presented for all but eight species. Of the 554 species, 439 are found primarily in depths less than 400 ft., 48 are meso- or bathypelagic species, and 67 are deepwater bottom dwelling forms rarely taken in less than 400 ft. -
Fish Identification Guide Depicts More Than 50 Species of Fish Commonly Encoun- Make the Proper Identification of Every Fish Caught
he identification of different spe- Most species of fish are distinctive in appear- ance and relatively easy to identify. However, cies of fish has become an im- closely related species, such as members of the portant concern for recreational same “family” of fish, can present problems. For these species it is important to look for certain fishermen. The proliferation of T distinctive characteristics to make a positive regulations relating to minimum identification. sizes and possession limits compels fishermen to The ensuing fish identification guide depicts more than 50 species of fish commonly encoun- make the proper identification of every fish caught. tered in Virginia waters. In addition to color illustrations of each species, the description of each species lists the distinctive characteristics which enable a positive identification. Total Length FIRST DORSAL FIN Fork Length SECOND NUCHAL DORSAL FIN BAND SQUARE TAIL NARES FORKED TAIL GILL COVER (Operculum) CAUDAL LATRAL PEDUNCLE CHIN BARBELS LINE PECTORAL CAUDAL FIN ANAL FINS FIN PELVIC FINS GILL RAKERS GILL ARCH UNDERSIDE OF GILL COVER GILL RAKER GILL FILAMENTS GILL FILAMENTS DEFINITIONS Anal Fin – The fin on the bottom of fish located between GILL ARCHES 1st the anal vent (hole) and the tail. 2nd 3rd Barbels – Slender strands extending from the chins of 4th some fish (often appearing similar to whiskers) which per- form a sensory function. Caudal Fin – The tail fin of fish. Nuchal Band – A dark band extending from behind or Caudal Peduncle – The narrow portion of a fish’s body near the eye of a fish across the back of the neck toward immediately in front of the tail. -
AWI Comments on Resolution on Food Security (IWC/65/10 Rev
AWI Comments on Resolution on Food Security (IWC/65/10 Rev 2). Food security is an important issue globally, nationally, and locally. With the exception of aboriginal subsistence whaling, however, the International Convention for the Regulation of Whaling which established the International Whaling Commission (IWC) is not – and was It has been well documented that marine fish stocks are never – considered a treaty that included food security in crisis. According to the FAO, the share of marine fish as a primary concern. Instead, there are numerous other stocks that are over-exploited has increased from 10 international conventions, declarations, and agencies percent in 1970 to nearly one third in 2009. A further 52 that have, as their primary focus, food security and percent of fish stocks are considered fully exploited. related issues. Such international fora include, inter alia, According to a 2012 report “Pirate Fishing Exposed – The the Food and Agriculture Organization’s Committee on Fight Against Illegal Fishing in West Africa and the EU” by World Food Security, the International Food Security the Environmental Justice Foundation: Treaty (proposed),1 and the Food Assistance Convention2 (formerly the Food Aid Convention3). Losses (globally) due to IUU fishing are estimated to be between US$10 billion and US$23.5 billion In addition, there are numerous reports and declarations per year, representing between 11 and 26 million on the subject, including a report entitled Sustainable tonnes of fish. West African waters are estimated Contribution -
02 Casazza FB106(4).Indd
Fishes associated with pelagic Sargassum and open water lacking Sargassum in the Gulf Stream off North Carolina Item Type article Authors Casazza, Tara L.; Ross, Steve W. Download date 26/09/2021 20:35:41 Link to Item http://hdl.handle.net/1834/25466 348 Abstract—The community structure Fishes associated with pelagic Sargassum of fishes associated with pelagic Sar- gassum spp. and open water lacking and open water lacking Sargassum Sargassum was examined during summer and fall cruises, 1999–2003, in the Gulf Stream off North Carolina in the Gulf Stream off North Caro- lina. Significantly more individual Tara L. Casazza (contact author) fishes (n= 18,799), representing at least 80 species, were collected from Steve W. Ross samples containing Sargassum habi- Email address for T.L. Casazza: [email protected] tat, compared to 60 species (n=2706 Center for Marine Science individuals) collected from open- University of North Carolina Wilmington water habitat. The majority (96%) 5600 Marvin Moss Lane of fishes collected in both habitats Wilmington, North Carolina 28409 were juveniles, and planehead filefish (Stephanolepis hispidus) dominated both habitats. Regardless of sam- pling time (day or night), Sargassum habitat yielded significantly higher numbers of individuals and species compared with open-water collections. In the western North Atlantic Ocean, Atlantic have varied (Howard and Overall, fishes collected by neuston pelagic brown algae of the genus Sar- Menzies, 1969; Butler and Stoner, net tows from Sargassum habitat were gassum form a dynamic, floating habi- 1984), the majority of pelagic Sar- significantly larger in length than tat that supports a diverse assemblage gassum has persisted and reproduced fishes collected from open-water habi- of fishes, invertebrates, sea turtles, vegetatively in the western North At- tat with neuston nets. -
Meat Consumption from Stranded Whales and Marine Mammals in New Zealand: Public Health and Other Issues
Meat consumption from stranded whales and marine mammals in New Zealand: Public health and other issues M W Cawthorn Cawthorn & Associates Marine Mammals/Fisheries Consultants 53 Motuhara Road Plimmerton Wellington Published by Department of Conservation Head Office, PO Box 10-420 Wellington, New Zealand This report was commissioned by Hawke's Bay, Wellington and Otago Conservancies ISSN 1171-9834 1997 Department of Conservation, P.O. Box 10-420, Wellington, New Zealand Reference to material in this report should be cited thus: Cawthorn, M.W., 1997 Meat consumption from stranded whales and marine mammals in New Zealand: Public health and other issues. Conservation Advisory Science Notes No. 164, Department of Conservation, Wellington. Keywords: Whales, seals, food preparation (marine mammal), meat quality assessment (marine mammal), flensing, pathogens, contaminants Abstract Interest in the use of stranded whales as a source of food and the use of seals for cultural purposes has been expressed to the Department of Conservation by Ngati Hawea and Ngai Tahu Maori respectively. The known and anecdotal history of consumption of whale and seal meat in New Zealand and elsewhere is briefly discussed. Comments on the palatibility of marine mammal meat and the use of whales and seals as food are presented. Post-stranding damage and carcass contamination result in unsuitability of meat for human consump- tion. Criteria for the assessment of meat quality from stranded animals are presented. The transmission of parasites, particularly Anisakis sp., and the cumulative effects of persistent pesticides and heavy metals from consump- tion of meat from species such as pilot whales is discussed. Meat collection and storage should be conducted under the same conditions and constraints applied to terrestrial mammals. -
Age, Growth, and Migration Patterns of Dolphinfish (Coryphaena Hippurus) in the Northwestern Gulf of Mexico
AGE, GROWTH, AND MIGRATION PATTERNS OF DOLPHINFISH (CORYPHAENA HIPPURUS) IN THE NORTHWESTERN GULF OF MEXICO Prepared by Peter Cole Young November 2014 A Thesis Submitted In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE The Fisheries and Mariculture Graduate Program Department of Life Sciences Texas A&M University-Corpus Christi APPROVED: _____________________________ Date: __________ Dr. Gregory W. Stunz, Chair _____________________________ Date: __________ Dr. Matthew Johnson, Co-Chair ____________________________ Date: __________ Dr. Larry McKinney, Committee Member ____________________________ Date: __________ Dr. Jennifer Pollack, Committee Member _____________________________ Date: __________ Dr. Joe Fox, Chair Department of Life Sciences _____________________________ Date: __________ Dr. Frank Pezold, Dean College of Science and Engineering Format: Transactions of the American Fisheries Society i ABSTRACT The common Dolphinfish (Coryphaena hippurus) is a well-known pelagic food and gamefish with cosmopolitan distribution in tropical and subtropical waters. Dolphinfish are an economically important species as they support artisanal, recreational, and commercial fisheries throughout the world. Dolphinfish occur in U.S. waters in the Pacific off the coast of California, in the Atlantic from North Carolina to the Florida east coast and in the Gulf of Mexico from the Florida west coast to Texas. In the Western North Atlantic, Dolphinfish support an impressive commercial and recreational fishery. The recreational sector has grown more than 20% in the past 20 years creating the fastest growing fisheries sector in the Gulf of Mexico. Highly migratory species present unique management challenges, and scientific information is much needed. Key information gaps for Dolphinfish in the Gulf of Mexico include our lack of knowledge of their life history and migration patterns.