Oregon Forage Fish Management Plan

Total Page:16

File Type:pdf, Size:1020Kb

Oregon Forage Fish Management Plan Oregon Forage Fish Management Plan June 15, 2016 DRAFT Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife · DRAFT · 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship with Other State Policies ...................................................................................................... 7 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ..................................................................................................................................... 9 A.1. Description of the species included in the Plan ................................................................................. 9 A.2. Biological and ecological information on Forage Fish ..................................................................... 10 A.2.a. Mesopelagic fishes .................................................................................................................... 10 A.2.b. Pacific Sand Lance (Ammodytes hexapterus) ........................................................................... 13 A.2.c. Pacific saury (Cololabis saira) .................................................................................................... 13 A.2.d. Silversides (family Atherinopsidae) ........................................................................................... 14 A.2.e. Osmerid smelts ......................................................................................................................... 15 A.2.f. Pelagic Squids (excluding Humboldt squid) ............................................................................... 16 A.3. Predator-prey relationships: Federally-managed FMP species and Forage Fish ............................ 18 A.3.a. Coastal Pelagic Species ............................................................................................................. 18 A.3.b. Groundfish ................................................................................................................................ 19 A.3.c. Highly Migratory Species .......................................................................................................... 21 A.3.d. Salmon ...................................................................................................................................... 23 A.4. Predator-prey relationships: Seabirds and Forage Fish ................................................................... 24 A.5 Predator-prey relationships: Marine Mammals and Forage Fish ..................................................... 24 A.5.a. Odontocetes ............................................................................................................................. 25 A.5.b. Mysticetes ................................................................................................................................. 26 A.5.c. Pinnipeds ................................................................................................................................... 26 A.6 Predator-prey relationships: Listed species and Forage Fish ........................................................... 27 A.7. Fishery-independent and fishery-dependent data .......................................................................... 27 A.7.a Mesopelagic fishes ..................................................................................................................... 27 A.7.b. Pacific sand lance ...................................................................................................................... 28 A.7.c. Pacific saury............................................................................................................................... 29 Oregon Department of Fish & Wildlife · DRAFT · 2 A.7.d. Silversides ................................................................................................................................. 29 A.7.e. Osmerid smelts ......................................................................................................................... 30 A.7.f. Pelagic squids (except Humboldt squid) ................................................................................... 30 A.8. Threats from climate change and oceanographic factors ............................................................... 31 A.9. Threats from non-fishery sources.................................................................................................... 32 A.10. Sustainable harvest levels ............................................................................................................. 33 A.11. Information gaps and research needs ........................................................................................... 34 B. Harvest Management Strategy ............................................................................................................... 36 B.1. Management goals .......................................................................................................................... 36 B.1.a. Biological/Ecological ................................................................................................................. 36 B.1.b. Socioeconomic .......................................................................................................................... 36 B.1.c. Goals related to other fisheries management .......................................................................... 36 B.1.d. Metrics and Monitoring ............................................................................................................ 36 B.2. Current issues related to the resource ............................................................................................ 37 B.3. Analysis of Forage Fish landings ...................................................................................................... 37 B.4. Social and cultural uses .................................................................................................................... 39 B.5. Biological reference points .............................................................................................................. 40 B.6. Evaluation of management tools ..................................................................................................... 40 B.6.a Federal regulations on Forage Fish ............................................................................................ 40 B.6.b. Osmerid smelts ......................................................................................................................... 40 B.6.c. Regulatory conformance ........................................................................................................... 42 B.6.d. Monitoring ................................................................................................................................ 42 B.6.e. Allowance for new directed commercial harvest ..................................................................... 42 C. Literature cited and general reference material .................................................................................... 43 Oregon Department of Fish & Wildlife · DRAFT · 3 Executive Summary The Oregon Forage Fish Management Plan (hereafter ‘Plan’) is intended to provide active protection for a defined suite of forage fish species in Oregon marine waters. This Plan specifically pertains to commercial species that are not currently managed, regulated, or targeted by Oregon marine fisheries (hereafter ‘Forage Fish’). These protections are conveyed by a number of management tools, including prohibition of new directed commercial harvest of these species, and limiting bycatch in other fisheries. Forage Fish provide great benefit to the ecosystem as a whole and to all of Oregon’s marine finfish fisheries as an important source of prey for a wide range of species in Oregon waters. Fisheries supported by Forage Fish prey include both state and federal fisheries for groundfish, highly migratory species, coastal pelagic species, and salmon. Ecosystem sustainability also depends on Forage Fish, which provide prey for marine mammals and marine birds and other non-fishery species. In recognition of the importance of Forage Fish to the state and the larger ecosystem, the Plan complements protections provided through joint federal action by the Pacific Fisheries Management Council and the National Marine Fisheries Service, by extending similar protections into state waters. In combination, these state and federal protections promote coordinated management for these species across their distribution
Recommended publications
  • Faunal Assemblage Structure on the Patton Seamount (Gulf of Alaska, USA)
    Faunal Assemblage Structure on the Patton Seamount (Gulf of Alaska, USA) Gerald R. Hoff and Bradley Stevens Reprinted from the Alaska Fishery Research Bulletin Vol. 11 No. 1, Summer 2005 The Alaska Fisheries Research Bulletin can be found on the World Wide Web at URL: http://www.adfg.state.ak.us/pubs/afrb/afrbhome.php Alaska Fishery Research Bulletin 11(1):27–36. 2005. Copyright © 2005 by the Alaska Department of Fish and Game Faunal Assemblage Structure on the Patton Seamount (Gulf of Alaska, USA) Gerald R. Hoff and Bradley Stevens ABSTRACT: Epibenthic and demersal assemblages of fish and invertebrates on the Patton Seamount in the Gulf of Alaska, U.S.A., were studied in July 1999 using the Deep Sea Research Vehicle Alvin. Faunal associations with depth were described using video analysis of 8 dives from 151 to 3,375 m. A cluster analysis applied to the observations suggests three benthic faunal communities based on depth: 1) a shallow-water community (151–950 m) consisting mainly of rockfishes, flatfishes, sea stars, and attached suspension feeders, 2) a mid-depth community (400–1500 m) also consisting of numerous attached suspension-feeding organisms such as corals, sponges, crinoids, sea anemones, and sea cucumbers and fish such as the sablefishAnoplopoma fimbria and the giant grenadier Albatrossia pectoralis both of which were aggregated over a relatively narrow depth range, and 3) a deep-water community (500–3,375 m) consisting of fewer attached suspension feeders and more highly mobile species such as the Pacific grenadier Coryphaenoides acrolepis, popeye grenadier C. cinereus, Pacific flatnose Antimora microlepis, and large mobile crabs Macroregonia macrochira and Chionoecetes spp.
    [Show full text]
  • Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011
    SGR 129 Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011 DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR FOOD SAFETY AND APPLIED NUTRITION OFFICE OF FOOD SAFETY Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – April 2011 Additional copies may be purchased from: Florida Sea Grant IFAS - Extension Bookstore University of Florida P.O. Box 110011 Gainesville, FL 32611-0011 (800) 226-1764 Or www.ifasbooks.com Or you may download a copy from: http://www.fda.gov/FoodGuidances You may submit electronic or written comments regarding this guidance at any time. Submit electronic comments to http://www.regulations. gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register. U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition (240) 402-2300 April 2011 Table of Contents: Fish and Fishery Products Hazards and Controls Guidance • Guidance for the Industry: Fish and Fishery Products Hazards and Controls Guidance ................................ 1 • CHAPTER 1: General Information .......................................................................................................19 • CHAPTER 2: Conducting a Hazard Analysis and Developing a HACCP Plan
    [Show full text]
  • Mahimahi (Coryphaenamahimahi Hippurus)
    mahimahi (CoryphaenaMahimahi hippurus) Mahimahi is the Hawaiian of Hawaii’s commercial landings Quality name that has become the common of mahimahi. Trollers catch nearly market name for this fish. It is also 40% of the landings. Schools of ma- Fresh mahimahi has a shelf life of known as dorado or dolphin (the himahi are common around flotsam 10 days if properly cared for. The fish, not the mammal) in other parts drifting at sea and near fish aggre- fish caught by trolling are only one of the country. When a mahimahi gation buoys. or two days on ice when landed and are typically fresher than the ma- takes the hook, its colors are bril- Although mahimahi have been liant blue and silver dappled with himahi caught by longline boats on raised successfully in tanks from extended trips. yellow. These fade quickly when the eggs to adults, the high cost has fish dies. made commercial aquaculture un- The first external evidence of de- Seasonality & How feasible to date. terioration in a whole mahimahi is They Are Caught softening and fading of bright skin Distribution: colors. In a dressed fish, discolor- Availability and Seasonality: The popularity of fresh mahimahi ation of the flesh exposed around Locally-caught mahimahi is avail- in the tourist industry and with resi- the collar bone would indicate a loss able most of the year, with peak dents has created a steady demand of quality. Mahimahi retains better catches usually March to May and for this fish and consistently good quality if it is not filleted until short- from September to November.
    [Show full text]
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Consumption Impacts by Marine Mammals, Fish, and Seabirds on The
    83 Consumption impacts by marine mammals, fish, and seabirds on the Gulf of Maine–Georges Bank Atlantic herring (Clupea harengus) complex during the years 1977–2002 W. J. Overholtz and J. S. Link Overholtz, W. J. and Link, J. S. 2007. Consumption impacts by marine mammals, fish, and seabirds on the Gulf of Maine–Georges Bank Atlantic herring (Clupea harengus) complex during the years 1977–2002. ICES Journal of Marine Science, 64: 83–96. A comprehensive study of the impact of predation during the years 1977–2002 on the Gulf of Maine–Georges Bank herring complex is presented. An uncertainty approach was used to model input variables such as predator stock size, daily ration, and diet composition. Statistical distributions were constructed on the basis of available data, producing informative and uninformative inputs for estimating herring consumption within an uncertainty framework. Consumption of herring by predators tracked herring abundance closely during the study period, as this important prey species recovered following an almost complete collapse during the late 1960s and 1970s. Annual consumption of Atlantic herring by four groups of predators, demersal fish, marine mammals, large pelagic fish, and seabirds, averaged just 58 000 t in the late 1970s, increased to 123 000 t between 1986 and 1989, 290 000 t between 1990 and 1994, and 310 000 t during the years 1998–2002. Demersal fish consumed the largest proportion of this total, followed by marine mammals, large pelagic fish, and seabirds. Sensitivity analyses suggest that future emphasis should be placed on collecting time-series of diet composition data for marine mammals, large pelagic fish, and seabirds, with additional monitoring focused on the abundance of seabirds and daily rations of all groups.
    [Show full text]
  • HMS App a August 2003
    APPENDIX F U.S. WEST COAST HIGHLY MIGRATORY SPECIES: LIFE HISTORY ACCOUNTS AND ESSENTIAL FISH HABITAT DESCRIPTIONS (Originally Appendix A to the FMP) U.S. West Coast Highly Migratory Species Plan Development Team Pacific Fishery Management Council Originally Available January 16, 2003 HMS FMP - Appendix Fi June 2007 TABLE OF CONTENTS REVIEW OF METHODS AND DEFINITIONS.............................................F-1 1.0SHARKS ....................................................................F-1 1.1Common Thresher ...........................................................F-1 1.1.8 Essential Fish Habitat for Common Thresher ................................F-4 1.2Pelagic Thresher.............................................................F-5 1.2.8 Essential Fish Habitat for Pelagic Thresher..................................F-6 1.3Bigeye Thresher .............................................................F-7 1.3.8 Essential Fish Habitat for Bigeye Thresher ..................................F-9 1.4Shortfin Mako ...............................................................F-9 1.4.8 Essential Fish Habitat for Shortfin Mako ...................................F-12 1.5Blue Shark.................................................................F-12 1.5.8 Essential Fish Habitat for Blue Shark......................................F-16 2.0TUNAS.......................................................................F-16 2.1Albacore ..................................................................F-16 2.1.8 Essential Fish Habitat for Albacore .......................................F-20
    [Show full text]
  • Activity and Food Choice of Piscivorous Perch (Perca Fluviatilis)
    Freshwater Biology (2002) 47, 2370–2379 Activity and food choice of piscivorous perch (Perca fluviatilis) in a eutrophic shallow lake: a radio-telemetry study LENE JACOBSEN, SØREN BERG, MADS BROBERG, NIELS JEPSEN and CHRISTIAN SKOV Danish Institute for Fisheries Research, Department of Inland Fisheries, Vejlsøvej, Silkeborg, Denmark SUMMARY 1. Radio transmitters were implanted in large perch (27–37 cm) in a shallow lake in Denmark. Between 6 and 13 perch were tracked every 3 h for 24-h periods twice (summer) or once a month (winter) from August 1997 to July 1998. Activity levels were recorded as minimum distance moved per hour. 2. No significant differences in activity levels of individual fish were observed. 3. Highest activities were observed at daytime with peaks at dawn and dusk or midday. This diel pattern was most pronounced from October to April, whereas diel variations were less in the summer months, with no peaks occurring in midsummer. The general lack of activity at night supports the idea that perch is a visually oriented forager. 4. There was no significant relationship between daytime activity during the year and temperature or day length, but nighttime activity was correlated with temperature. In contrast with previous findings, activity levels varied little seasonally, except for high activity levels that occurred concomitantly with high temperatures in August. Instead, we found a significant relationship between the total distances moved per day and temperature, indicating that perch moved at the same average speed in the wintertime, but did so for shorter periods than in summer because of shorter day lengths. 5.
    [Show full text]
  • Technical Report No. 447 1974 •
    FISHERIES RESEARCH BOARD OF CANADA TECHNICAL REPORT NO. 447 1974 • ... FISHERIES RESEARCH BOARD OF CANADA Technical Reports FRB Technical Reports are research documents that are of sufficient importance to be preserved, but which ·for some reason are not appropriate for primary scientific publication. No restriction is placed on subject matter and the series should reflect the broad research interests of FRB. These Reports can be cited in publications, but care should be taken to indicate their manuscript status. Some of the material in these Reports will eventually appear in the primary scientific literature. Inquiries concerning any particular Report should be directed to the issuing FRB establishment which is indicated on the title page. FISHERIES AND MARINE SERVICE TECHNICAL REPORT NO. 44 7 THE SQUID OF BRITISH COLUMBIA AS A POTENTIAL FISHERY RESOURCE - A PRELIMINARY REPORT by S.A. Macfarlane and M. Yamamoto Fisheries and Marine Service Vancouver Laboratory Vancouver, B.C. TABLE OF CONTENTS Page No. I. INTRODUCTION 1 II. BIOLOGICAL ASPECTS 3 III. COMMERCIAL ASPECTS 8 A. Fishing Methods 8 B. International Squid Fisher,y 15 c. Status of Squid in British Co1uabia 19 IV. NUTRITIONAL ASPECTS 27 v. PROCESSING 28 VI. DISCUSSION 30 VII. ACKNOWLEDGMENTS 32 VIII. REFERENCES 33 1. I. INTRODUCTION Available catch statistics from 1965 through 1971 indicate • that world-wide landings of squid totalled roughly 700,000 metric tons annually. An additional 100,000 metric tons of cuttlefish and about 160,000 metric tons of octopus were also landed annually. Apart from the well-established squid fishery in the Monterey area of California and the relatively minor inshore squid fishery off Newfoundland, the North American fishing industry has tended to ignore the possibility of further exploitation and utilization of this resource.
    [Show full text]
  • Does Climate Change Bolster the Case for Fishery Reform in Asia? Christopher Costello∗
    Does Climate Change Bolster the Case for Fishery Reform in Asia? Christopher Costello∗ I examine the estimated economic, ecological, and food security effects of future fishery management reform in Asia. Without climate change, most Asian fisheries stand to gain substantially from reforms. Optimizing fishery management could increase catch by 24% and profit by 34% over business- as-usual management. These benefits arise from fishing some stocks more conservatively and others more aggressively. Although climate change is expected to reduce carrying capacity in 55% of Asian fisheries, I find that under climate change large benefits from fishery management reform are maintained, though these benefits are heterogeneous. The case for reform remains strong for both catch and profit, though these numbers are slightly lower than in the no-climate change case. These results suggest that, to maximize economic output and food security, Asian fisheries will benefit substantially from the transition to catch shares or other economically rational fishery management institutions, despite the looming effects of climate change. Keywords: Asia, climate change, fisheries, rights-based management JEL codes: Q22, Q28 I. Introduction Global fisheries have diverged sharply over recent decades. High governance, wealthy economies have largely adopted output controls or various forms of catch shares, which has helped fisheries in these economies overcome inefficiencies arising from overfishing (Worm et al. 2009) and capital stuffing (Homans and Wilen 1997), and allowed them to turn the corner toward sustainability (Costello, Gaines, and Lynham 2008) and profitability (Costello et al. 2016). But the world’s largest fishing region, Asia, has instead largely pursued open access and input controls, achieving less long-run fishery management success (World Bank 2017).
    [Show full text]
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • Clean &Unclean Meats
    Clean & Unclean Meats God expects all who desire to have a relationship with Him to live holy lives (Exodus 19:6; 1 Peter 1:15). The Bible says following God’s instructions regarding the meat we eat is one aspect of living a holy life (Leviticus 11:44-47). Modern research indicates that there are health benets to eating only the meat of animals approved by God and avoiding those He labels as unclean. Here is a summation of the clean (acceptable to eat) and unclean (not acceptable to eat) animals found in Leviticus 11 and Deuteronomy 14. For further explanation, see the LifeHopeandTruth.com article “Clean and Unclean Animals.” BIRDS CLEAN (Eggs of these birds are also clean) Chicken Prairie chicken Dove Ptarmigan Duck Quail Goose Sage grouse (sagehen) Grouse Sparrow (and all other Guinea fowl songbirds; but not those of Partridge the corvid family) Peafowl (peacock) Swan (the KJV translation of “swan” is a mistranslation) Pheasant Teal Pigeon Turkey BIRDS UNCLEAN Leviticus 11:13-19 (Eggs of these birds are also unclean) All birds of prey Cormorant (raptors) including: Crane Buzzard Crow (and all Condor other corvids) Eagle Cuckoo Ostrich Falcon Egret Parrot Kite Flamingo Pelican Hawk Glede Penguin Osprey Grosbeak Plover Owl Gull Raven Vulture Heron Roadrunner Lapwing Stork Other birds including: Loon Swallow Albatross Magpie Swi Bat Martin Water hen Bittern Ossifrage Woodpecker ANIMALS CLEAN Leviticus 11:3; Deuteronomy 14:4-6 (Milk from these animals is also clean) Addax Hart Antelope Hartebeest Beef (meat of domestic cattle) Hirola chews
    [Show full text]
  • ICES Marine Science Symposia
    ICES mar. Sei. Symp., 199: 459-467. 1995 Genetic differentiation in Berryteuthis magister from the North Pacific O. N. Katugin Katugin, O. N. 1995. Genetic differentiation in Berryteuthis magister from the North Pacific. - ICES mar. Sei. Symp., 199: 459-467. Berryteuthis magister is a widespread quasibenthic commercial squid from the North Pacific. Intraspecific genetic differentiation was determined by allozyme electrophore­ tic analysis. Eighteen sample lots (2100 individuals) from geographically separated North Pacific regions were subjected to allozyme electrophoretic analysis using a total of 14 enzymes and unidentified ganglion protein spectra with polymorphic zones. Four loci with variant allele frequencies greater than 0.05 were found to be useful for population studies. No significant violations of the Hardy-Weinberg equilibrium were found at any loci in the samples. There was no evidence of genetic differences between sexes. Analysis of genetic differentiation using Wright’s F-statistics, cluster analysis of genetic distances, and contingency chi-square analysis suggested that there are popu­ lation differences between squids from the three major geographical localities: the Sea of Japan, the Kurile-Komandor region, and the Gulf of Alaska. Genetic divergence between squid from the Kurile-Komandor part of the species range probably reflects subpopulation differentiation of local stocks from successive generations. O. N. Katugin: Pacific Research Institute o f Fisheries and Oceanography (TINRO), Vladivostok, 690 600, Russia [tel: (+7) 4232 25 7790, fax: (+7) 4232 25 7783], been investigated electrophoretically. This family is con­ Introduction sidered to be the most abundant group of cephalopods in During the last two decades biochemical genetic tech­ the subarctic waters of the Pacific Ocean where it pre­ niques based on electrophoretic separation of multiple sumably originated and diverged (Nesis, 1973).
    [Show full text]