Revolution and Enlightenment 1550

Total Page:16

File Type:pdf, Size:1020Kb

Revolution and Enlightenment 1550 Introducing Focus Revolution and MAKING CONNECTIONS Enlightenment 1550 –1800 How did the Section 1 The Scientific Revolution Enlightenment influence Section 2 The Enlightenment art and society? Section 3 The Impact of the Enlightenment Ask students to look at the photo- Section 4 The American Revolution graph and examine the details on the building. Ask them to com- ment on the style. Is this type of architectural style common in MAKING CONNECTIONS buildings in their community? The How did the Enlightenment original baroque style was intended to emphasize power and influence art and society? The brightly painted, lavish Catherine Palace in St. Petersburg is grandeur. However, subsequent an example of Russian baroque architecture. It was named for the rulers had renovations made to Russian empress Catherine I, who commissioned the grand palace reflect more current styles. For during her reign. In this chapter you will learn about the effects of the Enlightenment. example, Catherine II emphasized • Do any buildings in your community feature baroque architecture? the neoclassical style that domi- Name some examples. nated the seventeenth century • Describe the emotions that these grand buildings are designed to create. and continued into the eigh- teenth century. The new ideas conceived in the Enlightenment gave architects the freedom to use older styles, but also to use innovative new styles. Teach 1633 EUROPE, 1543 Galileo’s teachings Copernicus publishes ORTH MERICA are condemned The Big Ideas N A , his proposal of a by the Church As students study the chapter, AND INDIA sun-centered universe remind them to consider the 1550 1600 1650 section-based Big Ideas included THE WORLD 1566 1636 in each section’s Guide to Süleyman I Manchus Reading. The Essential Questions dies invade Korea in the activities below tie in to the 536 Big Ideas and help students think Galleria Palatina, Palazzo Pitti, Florence/Bridgeman Art Library, Scott Gilchrist/Masterfile about and understand important chapter concepts. In addition, the Hands-On Chapter Projects with The Scientific Revolution The Enlightenment their culminating activities relate Essential Question: How did scientific discover- Essential Question: How did new patterns of the content from each section to ies change people’s attitudes towards natural thought affect the ways that people studied the Big Ideas. These activities events and religious faith? (Discoveries promoted social problems? (Thinkers believed that if the build on each other as students a view of the universe as a machine with natural universe was subject to laws, then institutions such progress through the chapter. laws that weren’t supported by religious teachings as governments and economies must be subject to Section activities culminate in the based on faith.) Point out that in Section 1 stu- natural laws as well.) Point out that in Section 2 wrap-up activity on the Visual dents will learn how new approaches to science students will learn about thinkers who studied Summary page. changed people’s beliefs about the universe and governments, economies, and other institutions institutions such as the church. O L as well as new directions in religion. O L 536 Introducing More About the Photo Visual Literacy Catherine Palace sits atop a hill fifteen miles south of St. Petersburg in the town of Pushkin, formerly Tsarskoye Selo, or Tsar’s Village. The original struc- ture began as a small, two-story summer residence commissioned by Catherine I. Under the Empress Elizabeth, architect Bartolomeo Francesco Rastrelli dramatically expanded the building to a length of 985 feet and guilded its exterior and interior with more than 220 pounds of gold. In reaction against the excesses of this baroque style, Catherine II ordered architect Charles Cameron to carry out extensive renovations reflecting her neoclassical taste. Today the palace and surrounding park and structures represent the work of hundreds of architects, artists, and designers and attract thousands of tourists each year. Dinah Zike’s Revolu tion Breakthroughs Organizing Make a in in Medicine Astro and nomy Foldables 1702 Four-Door Book to orga- Chemistry First daily 1756 nize significant facts on Dinah Zike’s Foldables are three- news paper The Seven 1776 astronomy, medicine and Desc chemistry, Descartes, artes The and is printed Years’ War American colonies declare Rea Scientifc dimensional, interactive graphic and the scientific method son Method in London begins independence from Britain during the Scientific organizers that help students Revolution. 1700 1750 1800 practice basic writing skills, review vocabulary terms, and 1795 identify main ideas. Instructions Rule of Emperor Qianlong ends (ISTORY /.,).% for creating and using Foldables Chapter Overview—Visit glencoe.com to preview Chapter 17. can be found in the Appendix at Scott Gilchrist/Masterfile, (t) Joseph Sohm/Jupiter Images, (b) Hu Weibiao/Panorama/The Image Works the end of this book and in the Dinah Zike’s Reading and Study Skills Foldables booklet. OL The Impact of the Enlightenment The American Revolution Essential Question: Do you think Essential Question: How did the American Enlightenment ideas affected the actions of Revolution reflect Enlightenment ideals? European rulers at the time? (Some students (Enlightenment beliefs in self-government and (ISTORY /.,).% may believe the ideas changed rulers’ actions, the use of reason in constructing governments Introduce students to chapter but others won’t.) Point out that in Section 3 were reflected in the American Revolution, content and key terms by hav- students will learn about the impact of the Declaration of Independence, and Constitution.) ing them access the Chapter 17 Enlightenment on European politics and the Point out that in Section 4 students will learn Overview at glencoe.com. mixed legacy of Enlightenment ideas. OL how the American struggle for independence was influenced by Enlightenment ideals. OL 537 CHAPTER 17 • SECTION 1 Focus The Scientific Revolution Of all the changes that swept Europe in the sixteenth and Bellringer GUIDE TO READING seventeenth centuries, the most widely influential was the Daily Focus Transparency 17.1 Scientific Revolution. We often associate this revolution with Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc. The BIG Idea ANSWERS UNIT 1. observation 2. change it, discard it, or let it stand as is 3. an unproven theory 3 DAILY FOCUS SKILLS Chapter 17 TRANSPARENCY 17-1 New Technologies The Scientific the various scientific and technological changes made during The Scientific Revolution 1 What is the first step in the 2 What are the possibilities 3 What is a hypothesis? Revolution gave Europeans a new way to view scientific process? following the testing of a hypothesis? this time. However, the Scientific Revolution was also about the ŀ ŀ ŀ 3 humankind’s place in the universe. 2 Test the Formulate Hypothesis Hypothesis changes in the way Europeans looked at themselves and their ŀ ŀ FPO 4 Change 1 Observation Hypothesis, Content Vocabulary world. Discard It, or Let It Stand As Is • geocentric (p. 540) • scientific method • heliocentric (p. 540) (p. 545) • universal law of • inductive reasoning Causes of the Scientific Revolution gravitation (p. 541) (p. 545) • rationalism (p. 545) The development of new technology and scientific theories became GUIDE TO READING the foundation of the Scientific Revolution. Academic Vocabulary HISTORY & YOU How would you feel if you had to share the school’s only text- • philosopher (p. 538) • sphere (p. 540) book with everyone in your school? Learn how new tools such as the printing Answers to Graphic: press contributed to scientific knowledge. People and Places Copernicus Heliocentric universe • Nicolaus Copernicus • Maria Winkelmann (p. 540) (p. 543) In the Middle Ages, many educated Europeans took great inter- Kepler Laws of planetary motion • Johannes Kepler • René Descartes est in the world around them. However, these “natural philoso- (p. 540) (p. 544) phers,” as medieval scientists were known, did not make • Galileo Galilei (p. 540) • Francis Bacon (p. 545) observations of the natural world. Instead they relied on a few Galileo Planets’ substance like earth • Isaac Newton (p. 541) ancient authorities—especially Aristotle—for their scientific • Margaret Cavendish knowledge. During the fifteenth and sixteenth centuries, a num- Newton Laws of motion, gravity (p. 543) ber of changes occurred that caused the natural philosophers to Reading Strategy abandon their old views and to develop new ones. Summarizing Information As you read, use a table like the one below to chart the Impact of the Renaissance contributions of Copernicus, Kepler, Galileo, and Renaissance humanists had mastered Greek as well as Latin. Newton to a new concept of the universe. Section Spotlight Video These language skills gave them access to newly discovered works Copernicus by Ptolemy (TAH•luh•mee), Archimedes, and Plato. These writ- Kepler To generate student interest and ings made it obvious that some ancient thinkers had disagreed with Aristotle and other accepted authorities of the Middle Ages. provide a springboard for class discussion, access the Chapter 17, New Technology and Mathematics Section 1 video at glencoe.com or Other developments also encouraged new ways of thinking. on the video DVD. Technical problems that required careful observation and accurate measurements, such as calculating the amount of weight that ships could hold, served to stimulate scientific
Recommended publications
  • The Icha Newsletter Newsletter of the Inter-Union Commission For
    International Astronomical Union International Union of the History and Philosophy of Science DHS/IUHPS ______________________________________________________________________________________________________________________ THE ICHA NEWSLETTER NEWSLETTER OF THE INTER-UNION COMMISSION FOR HISTORY OF ASTRONOMY* ____________________________________________________________ __________________________________________________________ No. 11 – January 2011 SUMMARY A. Archaeoastronomy and Ethnoastronomy: Building Bridges between Cultures – IAU Symposium S278 Report by C. Ruggles ..................................................... 1 B. Historical Observatory building to be restored by A. Simpson …..…..…...… 5 C. History of Astronomy in India by B. S. Shylaja ……………………………….. 6 D. Journals and Publications: - Acta Historica Astronomiae by Hilmar W. Duerbeck ................................ 8 Books 2008/2011 ............................................................................................. 9 Some research papers by C41/ICHA members - 2009/2010 ........................... 9 E. News - Exhibitions on the Antikythera Mechanism by E. Nicolaidis ……………. 10 - XII Universeum Meeting by M. Lourenço, S. Talas, R. Wittje ………….. 10 - XXX Scientific Instrument Symposium by K.Gaulke ..………………… 12 F. ICHA Member News by B. Corbin ………………………………………… 13 * The ICHA includes IAU Commission 41 (History of Astronomy), all of whose members are, ipso facto, members of the ICHA. ________________________________________________________________________________________________________________________
    [Show full text]
  • Maria Margaretha Kirch - Wikipedia Seite 1 Von 2 Anlage 3
    Maria Margaretha Kirch - Wikipedia Seite 1 von 2 Anlage 3 WIKIPEDIA Maria Margaretha Kirch Marua Margareföa Kirch, geborene Wmkelmann (' 25 Februar i67o in Pamtzsch bei Leipmg, t 29 Dezember 1720 in Berlin), war eine deutsche Astronomin. Inhaltsverzeichnis Leben Ehrungen Literatur Weblinks Einzelnachweise Leben Maria Margareföa Winkelmann war die jüngste von drei Töchtern des lutherischen Pa.stors Matthias Winkelmann ('+ 1682) und der Buch- und Tuchhändlerstochter Maria Töllner (t i683). Der Vater soll ihr Interesse an der Astronomie geweckt und gefördert haben. Mit i3 Jahren wurde sie durch den Tod ihrer Mutter Vollwaise und wuchs seitdem bei ihrer Schvvester Sara Elisabeth auf. Als Vormund erzog und unterwies sie der pietistische Amtsnachfolger ihres Vaters in Panitzsch, Justinus Töllner, der später ihre Schwester heiratete. Ihre zweite Schwester Anna Magdalena heiratete dessen Bruder Heinrich Tönner. Maria Margaretha trat, vermutlich als Dienstbotin, in den Haushalt des mit Justinus Töllner befreundeten Bauernastronomen Ch0stp?ph Amold im Nachbardorf Sommerfeld ein, bei dem sie sich grundlegende Kenntnisse und Erfahrungen im Tätigkeitsbereich astronomischer Beobachtungen aneignete. Dort wurde sie auch in die ersten Gmndlagen der Meteorologie eingeführt. Bei Arnold lernte sie ihren späteren Ehemann, den dreißig Jahre älteren verwitweten Astronomen und Kalendermacher Gottfried Kirch kennen, der Arnold Unterricht in Astronomie gab und mit ihm gemeinsame Beobachtungen durchführte. Im Mai 1692 heiratete sie Gottfried Kirch, den sie bei den Observationen und Berechnungen unterstützte. Beide waren radikale Pietisten und mussten im Laufe der Verfolgungen der evangelischen Reformbewegung aufgmnd der Festnahme einiger Glaubensbrüder Leipzig verlassen, worauföin sie in Gottfrieds Geburtsstadt Guben zogen. Dort gebar sie ihre Kinider Marie (i6g3 -i6g7), Christfrjed, Chris0ne und Sophie (i6g8-1699).
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title The science of the stars in Danzig from Rheticus to Hevelius / Permalink https://escholarship.org/uc/item/7n41x7fd Author Jensen, Derek Publication Date 2006 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO THE SCIENCE OF THE STARS IN DANZIG FROM RHETICUS TO HEVELIUS A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History (Science Studies) by Derek Jensen Committee in charge: Professor Robert S. Westman, Chair Professor Luce Giard Professor John Marino Professor Naomi Oreskes Professor Donald Rutherford 2006 The dissertation of Derek Jensen is approved, and it is acceptable in quality and form for publication on microfilm: _________________________________________ _________________________________________ _________________________________________ _________________________________________ _________________________________________ Chair University of California, San Diego 2006 iii FOR SARA iv TABLE OF CONTENTS Signature Page........................................................................................................... iii Dedication ................................................................................................................. iv Table of Contents ...................................................................................................... v List of Figures ..........................................................................................................
    [Show full text]
  • Comet ISON! (Comet of the Century?)
    1 Mr. Justin J McCollum (BS, MS Physics) Lab Physics Coordinator Dept. of Physics Lamar University 2 Table of Contents ISON network………………..….………………….…...3 – 6 C/2012 S1 Discoverers………….…...……….…...…7 – 10 CoLiTech System…………………….……….….………...11 Discovery & Prediscovery……………….…….………...12 Early Orbital Analysis…………………….……….…….…13 Speculations of Comet ISON…………..…………14 - 15 Oort or Oort – Opik Cloud………….……........16 – 17 Origin of Comet ISON……….………………….……….18 Sungrazer Comets…………………………………….19 - 20 Evolution of Comet ISON………………………………21 Facts about Comet ISON…………………....…..22 – 23 ISON a Pristine Comet?...............................24 – 25 Photometry & Current Brightness……………..26 – 27 Nature and State of the Coma…………………..28 – 30 Central Nucleus of Comet ISON………………31 – 32 Nucleus to the Tail……………………………….…..……33 Nature & State of the Tail…………………………34 – 35 Future & Expectations………………………….....36 – 39 Getting to know more about Comets!...........40 – 46 After Perihelion Passage!..............................47 – 49 Catching the Comet in December!…………….50 – 53 ISON in the Daytime…….…………………………….…54 NASA Involvement!.............................................55 C/2012 S1 Orbital Structure………………..…………..56 Ephemeris Terminology………………………………...57 Data Spreadsheet Introduction………………………..58 Data Table Spreadsheets…………………………..59 - 60 Comet ISON Updates………………………………61 - 62 Knowing where & how to find ISON……...…63 – 64 Current ISON Observing Campaign………….65 – 66 Comet ISON photo contest…………………………….67 End Page……………………………………………………...68 3 Imperial Academy of
    [Show full text]
  • Wreaths of Time: Perceiving the Year in Early Modern Germany (1475-1650)
    Wreaths of Time: Perceiving the Year in Early Modern Germany (1475-1650) Nicole Marie Lyon October 12, 2015 Previous Degrees: Master of Arts Degree to be conferred: PhD University of Cincinnati Department of History Dr. Sigrun Haude ii DISSERTATION ABSTRACT “Wreaths of Time” broadly explores perceptions of the year’s time in Germany during the long sixteenth century (approx. 1475-1650), an era that experienced unprecedented change with regards to the way the year was measured, reckoned and understood. Many of these changes involved the transformation of older, medieval temporal norms and habits. The Gregorian calendar reforms which began in 1582 were a prime example of the changing practices and attitudes towards the year’s time, yet this event was preceded by numerous other shifts. The gradual turn towards astronomically-based divisions between the four seasons, for example, and the use of 1 January as the civil new year affected depictions and observations of the year throughout the sixteenth century. Relying on a variety of printed cultural historical sources— especially sermons, calendars, almanacs and treatises—“Wreaths of Time” maps out the historical development and legacy of the year as a perceived temporal concept during this period. In doing so, the project bears witness to the entangled nature of human time perception in general, and early modern perceptions of the year specifically. During this period, the year was commonly perceived through three main modes: the year of the civil calendar, the year of the Church, and the year of nature, with its astronomical, agricultural and astrological cycles. As distinct as these modes were, however, they were often discussed in richly corresponding ways by early modern authors.
    [Show full text]
  • Jürgen Hamel Wissenschaftsförderung Und
    61 Jürgen Hamel Wissenschaftsförderung und Wissenschaftsalltag in Berlin 1700- 1720 - dargestellt anhand des Nachlasses des ersten Berliner Akademieastronomen Gottfried Kirch und seiner Familie1 1. Zur Vorgeschichte der Sternwartengründung in Berlin In der Gründung der Societät der Wissenschaften und der Sternwarte in der Haupt- und Residenzstadt des Kurfürstentums Brandenburg laufen verschie- dene Interessen und Ereignisse zusammen, die sowohl in der Literatur zur Akademiegeschichte als auch in der zur Geschichte der Astronomie in Berlin mehrfach untersucht wurden, weshalb ich hier auf die einschlägigen Dar- stellungen verweisen kann2. In gebotener Kürze nur so viel: 1. Die Kalenderreform 1700: Im Jahre 1582 wurde durch Papst Gregor XIII. eine Kalenderreform ins Werk gesetzt, mit der die bis dahin aufgelaufe- nen Fehler der Kalenderrechnung eliminiert und für lange Zeit eine Übereins- timmung des Kalenders mit dem Lauf der Sonne und des Mondes erreicht werden sollte. Wissenschaftlich standen die Bestimmungen dieses Kalenders auf der Höhe der Zeit. Dennoch wurde die Reform nur in den katholisch re- gierten Ländern angenommen und das hatte fast ausschließlich theologische Gründe. Die protestantischen Länder argwöhnten, der Papst wolle mit dem Kalender eine erste Bresche in die Freiheit der evangelischen Kirche schla- gen, um künftig, Stück für Stück, seine Macht wiederherzustellen. Unter in- tellektueller Führung des Landgrafen Wilhelm IV. von Hessen und des 1. Vortrag in der Klasse Naturwissenschaften der Leibniz-Sozietät am 18. April 2002. Herrn Klaus-Dieter Herbst (Jena), dem zur Zeit wohl besten Kenner des Lebens und Schaf- fens von Gottfried Kirch, danke ich für eine kritische Durchsicht des Manuskriptes und viele wichtige Hinweise. Die von Herrn Herbst z.Z.
    [Show full text]
  • Transition Toward Invisibility Women’S Scienti‹C Activities Around 1800
    Transition toward Invisibility Women’s Scienti‹c Activities around 1800 Beate Ceranski Kein Frauenzimmer muß eine Gelehrte von Profession werden. [No woman needs to become a professional scholar.] Der Gesellige, 1748 Science, of course, constituted women’s business neither before nor after 1800. Indeed, the exclusion of women from regular university attendance and academic careers is one of the fundamental continu- ities in the social setting of science in the early modern as well as the modern period up to at least the 1880s. Yet a marked difference exists between the late seventeenth and the eighteenth centuries on the one hand and the nineteenth century on the other. During the late seven- teenth and eighteenth centuries, quite a remarkable number of women throughout Central Europe participated in science. In the ‹rst half of the nineteenth century, however, the diversity and intensity of female involvement with science suffered a considerable decline in the Ger- man states.1 Conversely, the ‹rst half of the nineteenth century brought to German science what has been called the “great transition” from poor dispersed scholars to a vigorous university system with a strong research ethos and a scienti‹c level soon considered the best in Europe.2 It is therefore tempting to examine if and how these two developments are connected to one another and to the greater sociopo- litical changes of that period of transition. Indeed, I will show that in some instances, a direct causal relationship exists between the two; in other respects both processes are deeply informed by the overarching changes connected with the emergence of the bürgerliche Gesellschaft between approximately 1780 and 1850.
    [Show full text]
  • Euler: Genius Blind Astronomer Mathematician
    Euler: Genius Blind Astronomer Mathematician Dora E. Musielak University of Texas at Arlington [email protected] Résumé. Leonhard Euler, the most prolific mathematician in history, contributed to advance a wide spectrum of topics in celestial mechanics. At the St. Petersburg Observatory, Euler observed sunspots and tracked the movements of the Moon. Combining astronomical observations with his own mathematical genius, he determined the orbits of planets and comets. Euler laid the foundations of the methods of planetary perturbations and solved many of the Newtonian mechanics problems of the eighteenth century that are relevant today. In his study of the three-body problem, Euler discovered two of five equilibrium points so-called the Lagrangian points. His pioneering work in astronomy was recognized with six of the twelve prizes he won from the Paris Academy of Sciences. In this article, we review some of Euler’s most interesting work in astronomy. Résumé. Leonard Euler, el matemático más prolífico de la historia, contribuyó al avance de una amplia gama de temas en la mecánica celeste. En el Observatorio de San Petersburgo, Euler observó las manchas solares e hizo observaciones de los movimientos de la Luna. Combinando las observaciones astronómicas con su propio genio matemático, él determinó las órbitas de los planetas y los cometas. Euler sentó las bases de los métodos de perturbaciones planetarias y resolvió muchos de los problemas de la mecánica newtoniana del siglo XVIII que aun hoy en día son relevantes. En su estudio sobre el problema de los tres cuerpos Euler descubrió dos de los puntos de equilibrio también llamados puntos de LaGrange.
    [Show full text]
  • “A Woman's Place Is in the Dome”: Gender and the Astronomical
    MP: An Online Feminist Journal October 2009 "A Woman's Place is in the Dome”: Gender and the Astronomical Observatory, 1670-1970 by Kristine Larsen Introduction The astronomical community prides itself as being not only the oldest science, but in some ways the most inclusive. To this day, unpaid amateurs continue to work alongside professionals, and women have played an important role in this science throughout its history. However, inclusivity does not necessarily equate to equality. It is estimated that 15% of all astronomers today are female, but this percentage varies widely from country to country (AAS). For example, although women earned 46% of the Bachelors degrees in astronomy in 2003, they only received 26% of the Ph.D.s (Ivie and Ray 3). That same year, women represented only 14% of faculty in astronomy departments, and were represented in higher numbers at the lower academic ranks and in departments that did not grant graduate degrees (Ivie and Ray 1). In order to understand the status of women in astronomy today, it is instructional to survey their past participation, and how that participation has (or has not) been documented. As the Women and Geography Study Group (19) notes, “groups which are disadvantaged, being in some way dominated or oppressed by other groups…. do not figure as prominently in historical accounts as their social significance or sheer weight of numbers would suggest. Often, such groups are barely mentioned at all.” In the 1980s, scientists and historians of science joined in a movement to “right the record” of women‟s contributions to science (e.g., Rossiter; Alic; Abir-am and Outram; Kass-Simon and Farnes).
    [Show full text]
  • The Comet's Tale
    1 ‘The People look at the great comet of 1264’. Taken from the Italian Nuova Cronica, a 14th century history of Florence created in a year by year linear format by the banker, Giovanni Villani. (Wikimedia Commons) THE COMET’S TALE Comet Section – British Astronomical Association Journal – Number 39 2020 July britastro.org/comet C/2020 F3 (NEOWISE) 2020 July 12 David Swan, Tynemouth 2 Table of Contents Contents Author Page 1 Director’s Welcome Nick James 3 Section Director 2 The Discovery of Michael Mattiazzo 6 Comet C/2020 F8 SWAN 3 Comet Swift Tuttle, Neil Norman 9 the elusive giant 4 Comets and Katrin Raynor-Evans 15 Philately 5 The Fascination of Stefan Beck 20 Comets, a personal story 6 Comets Observing in Chris Wyatt 23 Australia 7 Melvyn Taylor’s Alex Pratt 32 Observations of Comet 1P/Halley 1982i 8 Comet Medal of The Denis Buczynski 36 Astronomical Society of the Pacific 9 Donati’s Comet by Richard Miles 46 William Turner of Oxford 10 Maria Margaretha Janice McClean 49 Winckelmann Contacts Picture Gallery Please note that copyright of all images belongs with the Observer 3 1 From the Director – Nick James I hope you enjoy reading this issue of the conferencing using tools such as Zoom and Comet’s Tale. There is plenty of varied Webex. I have been working from home on material and you should find something most days and so have used the latter to that will interest you. Very many thanks to keep in touch with my team and our Janice McClean for editing it and to Denis customers.
    [Show full text]
  • Tafel Maria Margaretha Kirch
    Am 25. Februar 1670 wird Maria Margaretha Winckelmann als Tochter des Pfarrers Matthias Winckelmann und seiner Frau Maria geb. Töllner in Panitzsch bei Leipzig geboren. Ihr Interesse an der Astronomie wird vom autodidaktischen Bauern - astro nomen Christoph Arnold entdeckt und entwik - kelt, so dass sie sogar für ihn arbeitet. In dieser Zeit lernt sie den 30 Jahre älteren Astronomen und Ka len - dermacher Gottfried Kirch kennen und heiratet ihn im Mai 1692. Das Paar zieht in Gottfrieds Ge burts - stadt Guben und bekommt sechs Kinder, darunter 1694 Sohn Christ fried und 1697 Tochter Christine. Gottfried Kirch wird von der Kurfürstlich-Bran den - burgischen Societät der Wissenschaften zu Berlin als Astronom eingestellt und so gehen er im Juni 1700 Phantasiezeichnung von Elly Strick, Maria Margaretha Kirch zugeordnet und wenig später die Familie nach Berlin. In all den aus: Bernd Rüdiger, Preussens berühmte Frauen, Taucha 2000, S. 7 Jahren arbeiten Maria und Gottfried gemeinsam an Beobachtungen, Berech nungen, Wetter beob ach tun - gen, Kalen dern und Ephemeriden (Tabellen des täg - lichen Gestirn standes). Allerdings wird sie immer als Assistentin und nicht als gleichwertiges Mitglied der Ar beits gemeinschaft gesehen. Am 21. April 1702 entdeckt Maria als erste Frau den Kometen C/1702H1. In der Öffentlichkeit wird je doch Gottfried als Entdecker benannt. Unter ei ge nem Na - men und in deutscher Sprache veröffentlicht sie spä - ter ihre Beobachtungen, z. B. jene der Aurora bo re - alis, ein 1707 erschienenes Polar licht. Nach dem Tod Gottfrieds 1710 holt sie ein Freund der Familie, Bernhard Friedrich Baron von Krosigk, an sein privates Observatorium. Gemeinsam mit ihren Kin dern setzt sie die astronomische Tradition der Fa mi lie mit ZERNIKOW der Herstellung von Kalendern fort.
    [Show full text]
  • Jjmonl 1811.Pmd
    alactic Observer G John J. McCarthy Observatory Volume 11, No. 11 November 2018 Observe the the Moon Night See page 20 for more information The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky Technical Support It is through their efforts that the McCarthy Observatory Bob Lambert has established itself as a significant educational and recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Route Mike Chiarella Roger Moore Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Doug Delisle Marc Polansky Cecilia Detrich Joe Privitera Dirk Feather Monty Robson Randy Fender Don Ross Louise Gagnon Gene Schilling John Gebauer Katie Shusdock Elaine Green Paul Woodell Tina Hartzell Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT" ................................... 3 REFERENCES ON DISTANCES ................................................. 19 APOLLO 12 ........................................................................ 4 INTERNATIONAL SPACE STATION/IRIDIUM SATELLITES .............. 19 INSIGHT ............................................................................ 4 SOLAR ACTIVITY ...............................................................
    [Show full text]