Jjmonl 1811.Pmd

Total Page:16

File Type:pdf, Size:1020Kb

Jjmonl 1811.Pmd alactic Observer G John J. McCarthy Observatory Volume 11, No. 11 November 2018 Observe the the Moon Night See page 20 for more information The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky Technical Support It is through their efforts that the McCarthy Observatory Bob Lambert has established itself as a significant educational and recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Route Mike Chiarella Roger Moore Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Doug Delisle Marc Polansky Cecilia Detrich Joe Privitera Dirk Feather Monty Robson Randy Fender Don Ross Louise Gagnon Gene Schilling John Gebauer Katie Shusdock Elaine Green Paul Woodell Tina Hartzell Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT" ................................... 3 REFERENCES ON DISTANCES ................................................. 19 APOLLO 12 ........................................................................ 4 INTERNATIONAL SPACE STATION/IRIDIUM SATELLITES .............. 19 INSIGHT ............................................................................ 4 SOLAR ACTIVITY ................................................................ 19 APOLLO 7 ANNIVERSARY ...................................................... 4 NASA'S GLOBAL CLIMATE CHANGE ................................... 19 50TH ANNIVERSARY COINS ................................................... 5 LAGRANGE POINTS ............................................................. 19 PARKER SOLAR PROBE - STATUS REPORT ............................... 6 FRONT PAGE GRAPHIKC INFORMATION ................................. 20 NEW DWARF PLANET .......................................................... 7 CONTACT INFORMATION ...................................................... 21 HAYABUSA 2 AND MASCOT ............................................... 8 NOVEMBER GRAPHIC CALENDAR ......................................... 22 APOLLO 8 BELATED ACCOLADES ........................................... 8 AGING SPACE OBSERVATORIES .............................................. 9 EXOMOON ......................................................................... 10 GRAND FINALE SCIENCE ......................................................11 LEONID METEOR SHOWER .................................................. 12 DANGER: SPACE DEBRIS ..................................................... 12 NOVEMBER HISTORY: APOLLO 12 ........................................ 14 NOVEMBER NIGHTS ............................................................ 15 SUNRISE AND SUNSET .......................................................... 15 ASTRONOMICAL AND HISTORICAL EVENTS ............................. 16 COMMONLY USED TERMS ................................................... 19 "Out the Window on Your Left" Apollo 12 T'S BEEN OVER 45 years since we left the last footprint Ion the dusty lunar surface. Sadly, as a nation founded on ex- ploration and the conquest of new frontiers, we appear to have lost our will to lead as a space-faring nation. But, what if the average citizen had the means to visit our only natural satellite; what would they see out the window of their spacecraft as they entered orbit around the Moon? This column may provide some thoughts to pon- der when planning your visit (if only in your imagination). The landing site of Apollo 12 is visible in this month's image. The site for the second Moon landing was approximately 930 miles (1,500 km) smooth landing area. The Apollo 12 was required to be at least 500 feet west of the Apollo 11 site and simi- site was selected for its proximity to away from Surveyor). The Sun was lar in that it offered a relatively Copernicus crater, 190 miles (300 only 6° above the horizon at touch- km) to the north and the ejecta that down, casting long shadows across was believed to have covered the site the volcanic plains and adding sharp from the crater's formation. The lo- relief to the geologic features at the cation was also home to Surveyor 3, landing site. an unmanned robotic spacecraft that Conrad and Bean spent 7 hours landed on the Moon in April of 1967. and 45 minutes on the surface, in two The crew of the Apollo 12 Lunar separate excursions, collecting 75 Module (Pete Conrad and Al Bean) pounds (34 kg) of rock and soil executed a pinpoint landing on No- samples and setting up experiments. vember 19, 1969, setting down 535 The astronauts were also able to ven- feet from the Surveyor spacecraft (to ture into the crater in which Surveyor minimize the potential of contami- had landed and remove pieces (in- nating the Surveyor spacecraft by the cluding the TV camera and soil Astronaut Alan Bean inspects descent engine exhaust or from dust scoop) for further study back on Surveyor 3. Credit: NASA kicked up by the engine, the landing Earth. http://www.mccarthyobservatory.org JJMO Nov 2018 • 3 InSight instruments and equipment from the The miniature spacecrafts are NASA's Discovery Program lander's deck and place them on the trailing behind InSight and will be mission InSight (Interior Explora- ground. The arm is also equipped in position to monitor InSight's tion using Seismic Investigations, with a camera which will survey the decent and landing onto the Red Geodesy and Heat Transport) was area around the landing site for Planet (being equipped with high- launched on May 5th from the optimal instrument placement. This gain antennas, radios and color Vandenberg Air Force Base in will be the first time that a robotic cameras). Although not vital to California aboard a United Launch arm will be used for this purpose mission performance (NASA's Alliance Atlas V rocket. It was the (moving instruments and equipment Mars orbiters will be used for data agency's first interplanetary into position on another world). relay), MarCO success could benefit mission launched from the west The InSight spacecraft was future missions to other places in coast. InSight is scheduled to land launched with two CubeSats, the solar system where such assets on Mars' Elysium Planitia, a called Mars Cube One (MarCO). are not available. relatively smooth plain in Mars' northern hemisphere, on November 26th at approximately 4 pm EST. The 794 pound InSight lander is built on a platform similar to that used for the successful Phoenix mission that explored the planet's polar region, saving testing time and development cost. The lander is equipped with two science instruments, a seismometer and heat probe, as well as communication antennae for a radio science experi- ment. The seismometer will provide information on the nature of the planet's crust, mantle and core by detecting seismic waves (vibra- tions) generated from marsquakes,InOMN Highlight meteorite impacts or other events,Mare Humorum and Gassendi as they pass through and interactCrater with the planet's interior. The heat probe will burrow into the soil, up Artist Illustration of Proposed Landing Credit: NASA/JPL-Caltech to a depth of 16 feet (5 meters), to measure the heat from the planet's Apollo 7 Anniversary interior and pinpoint its source. Fifty years ago, on October 11, equal on both sides, pieces to be The lander's antennae will be used 1968, Apollo 7 lifted off from what brought into the spacecraft, and 60 to precisely determine the planet's is now the Cape Canaveral Air to 90 seconds to egress under the position in space as Mars orbits the Force Station, atop a Saturn 1B best conditions was changed to a Sun, and measure the planet's rocket. It was the first manned one-piece (unified) hatch with a wobble about its axis. From this flight since the Apollo 1 pad fire pressurized gas, quick-release data, the size, composition and on January 27, 1967 in which three which opened outward in 3 sec- state (solid or liquid) of the astronauts were lost. The flight was Eleven Day Old onds and allowed the crew to interior can be inferred. The designed to qualify an Apollo Moon egress in less than 30 seconds. science from InSight is also Command and Service Module in Visualizations by Commander Wally Schirra expected to contribute to our low-Earth orbit that had undergone Ernie Wright (Mercury 8) and rookies Command understanding of the formation of extensive design changes since the Module Pilot Donn Eisele other rocky and terrestrial planets. fire. For example, the three-piece, and Lunar Module Pilot Walt InSight is equipped with a unwieldly main hatch in Apollo 1 Cunningham made up the three-man robotic arm that will remove the that required the pressure to be Apollo crew. Objectives of the 4 • Nov 2018 JJMO http://www.mccarthyobservatory.org eleven-day mission included the field testing of spacecraft systems - Launch of Apollo 7 in particular, the Service Module's engine which would be used to place the spacecraft in lunar orbit and back out of lunar orbit for the trip home on future missions. All eight firings of the Service Module's engine were successful, with the final firing used to slow the spacecraft for re-entry. Eisele also practiced a simu- lated docking with the rocket's sec- ond stage, required on a lunar mis- sion to extract the Lunar Module from the adapter atop the Saturn V's third stage. The Apollo 7 flight took
Recommended publications
  • Space Administration
    https://ntrs.nasa.gov/search.jsp?R=19700024651 2020-03-23T18:20:34+00:00Z TO THE CONGRESSOF THE UNITEDSTATES : Transmitted herewith is the Twenty-first Semiannual Repol* of the National Aeronautics and Space Administration. Twen~-first SEMIANNUAL REPORT TO CONGRESS JANUARY 1 - JUNE 30, 1969 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546 Editors: G. B. DeGennaro, H. H. Milton, W. E. Boardman, Office of Public Affairs; Art work: A. Jordan, T. L. Lindsey, Office of Organiza- tion and Management. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402-Price $1.25 THE PRESIDENT May 27,1970 The White House I submit this Twenty-First Semiannual Report of the National Aeronautics and Space Aldministration to you for transmitttal to Congress in accordance with section 206(a) of the National Aero- nautics and Space Act of 1958. It reports on aotivities which took place betiween January 1 and June 30, 1969. During this time, the Nation's space program moved forward on schedule. ApolIo 9 and 10 demonstrated the ability of ;the man- ned Lunar Module to operate in earth and lunar orbit and its 'eadi- ness to attempt the lunar landing. Unmanned observatory and ex- plorer class satellites carried on scientific studies of the regions surrounding the Earth, the Moon, and the Sun; a Biosatellite oarwing complex biological science experiment was orbited; and sophisticated weather satellites and advanced commercial com- munications spacecraft became operational. Advanced research projects expanded knowledge of space flighk and spacecraft engi- neering as well as of aeronautics.
    [Show full text]
  • The Active Centaurs
    The Astronomical Journal, 137:4296–4312, 2009 May doi:10.1088/0004-6256/137/5/4296 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE ACTIVE CENTAURS David Jewitt Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA; [email protected] Received 2009 January 5; accepted 2009 February 24; published 2009 April 3 ABSTRACT The Centaurs are recent escapees from the Kuiper Belt that are destined either to meet fiery oblivion in the hot inner regions of the solar system or to be ejected to the interstellar medium by gravitational scattering from the giant planets. Dynamically evolved Centaurs, when captured by Jupiter and close enough to the Sun for near-surface water ice to sublimate, are conventionally labeled as “short-period” (specifically, Jupiter-family) comets. Remarkably, some Centaurs show comet-like activity even when far beyond the orbit of Jupiter, suggesting mass loss driven by a process other than the sublimation of water ice. We observed a sample of 23 Centaurs and found nine to be active, with mass-loss rates measured from several kg s−1 to several tonnes s−1. Considered as a group, we find that the “active Centaurs” in our sample have perihelia smaller than the inactive Centaurs (median 5.9 AU versus 8.7 AU), and smaller than the median perihelion distance computed for all known Centaurs (12.4 AU). This suggests that their activity is thermally driven. We consider several possibilities for the origin of the mass loss from the active Centaurs. Most are too cold for activity at the observed levels to originate via the sublimation of crystalline water ice.
    [Show full text]
  • A Dwarf Planet Class Object in the 21:5 Resonance with Neptune
    A dwarf planet class object in the 21:5 resonance with Neptune Holman, M. J., Payne, M. J., Fraser, W., Lacerda, P., Bannister, M. T., Lackner, M., Chen, Y. T., Lin, H. W., Smith, K. W., Kokotanekova, R., Young, D., Chambers, K., Chastel, S., Denneau, L., Fitzsimmons, A., Flewelling, H., Grav, T., Huber, M., Induni, N., ... Weryk, R. (2018). A dwarf planet class object in the 21:5 resonance with Neptune. Astrophysical Journal Letters, 855(1), [L6]. https://doi.org/10.3847/2041-8213/aaadb3 Published in: Astrophysical Journal Letters Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2018 American Astronomical Society. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected].
    [Show full text]
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • The Icha Newsletter Newsletter of the Inter-Union Commission For
    International Astronomical Union International Union of the History and Philosophy of Science DHS/IUHPS ______________________________________________________________________________________________________________________ THE ICHA NEWSLETTER NEWSLETTER OF THE INTER-UNION COMMISSION FOR HISTORY OF ASTRONOMY* ____________________________________________________________ __________________________________________________________ No. 11 – January 2011 SUMMARY A. Archaeoastronomy and Ethnoastronomy: Building Bridges between Cultures – IAU Symposium S278 Report by C. Ruggles ..................................................... 1 B. Historical Observatory building to be restored by A. Simpson …..…..…...… 5 C. History of Astronomy in India by B. S. Shylaja ……………………………….. 6 D. Journals and Publications: - Acta Historica Astronomiae by Hilmar W. Duerbeck ................................ 8 Books 2008/2011 ............................................................................................. 9 Some research papers by C41/ICHA members - 2009/2010 ........................... 9 E. News - Exhibitions on the Antikythera Mechanism by E. Nicolaidis ……………. 10 - XII Universeum Meeting by M. Lourenço, S. Talas, R. Wittje ………….. 10 - XXX Scientific Instrument Symposium by K.Gaulke ..………………… 12 F. ICHA Member News by B. Corbin ………………………………………… 13 * The ICHA includes IAU Commission 41 (History of Astronomy), all of whose members are, ipso facto, members of the ICHA. ________________________________________________________________________________________________________________________
    [Show full text]
  • Visible and Near-Infrared Colors of Transneptunian Objects and Centaurs from the Second ESO Large Program
    A&A 493, 283–290 (2009) Astronomy DOI: 10.1051/0004-6361:200810561 & c ESO 2008 Astrophysics Visible and near-infrared colors of Transneptunian objects and Centaurs from the second ESO large program F. E. DeMeo1, S. Fornasier1,2, M. A. Barucci1,D.Perna1,3,4, S. Protopapa5, A. Alvarez-Candal1, A. Delsanti1, A. Doressoundiram1, F. Merlin1, and C. de Bergh1 1 LESIA, Observatoire de Paris, 92195 Meudon Principal Cedex, France e-mail: [email protected] 2 Université de Paris 7 Denis Diderot, Paris, France 3 INAF – Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone, Italy 4 Università di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma, Italy 5 Max Planck Institute for Solar System Research, Lindau, Germany Received 10 July 2008 / Accepted 9 October 2008 ABSTRACT Aims. We investigate color properties and define or check taxonomic classifications of objects observed in our survey. Methods. All observations were performed between October 2006 and September 2007 at the European Southern Observatory 8 m Very Large Telescope, UT1 and UT2 at the Paranal Observatory in Chile. For visible photometry, we used the FORS1 instrument, and for near-infrared, ISAAC. Taxonomic classifications from the Barucci system were assigned using G-mode analysis. Results. We present photometric observations of 23 TNOs and Centaurs, nine of which have never been previously observed. Eighteen of these objects were assigned taxonomic classifications: six BB, four BR, two RR, and six that are given two or more categories due to insufficient data. Three objects that had been previously observed and classified, changed classes most likely due to surface vari- ation: 26375 (1999 DE9), 28978 (Ixion), and 32532 (Thereus).
    [Show full text]
  • Jjmonl 1603.Pmd
    alactic Observer GJohn J. McCarthy Observatory Volume 9, No. 3 March 2016 GRAIL - On the Trail of the Moon's Missing Mass GRAIL (Gravity Recovery and Interior Laboratory) was a NASA scientific mission in 2011/12 to map the surface of the moon and collect data on gravitational anomalies. The image here is an artist's impres- sion of the twin satellites (Ebb and Flow) orbiting in tandem above a gravitational image of the moon. See inside, page 4 for information on gravitational anomalies (mascons) or visit http://solarsystem. nasa.gov/grail. The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory Technical Support has established itself as a significant educational and Bob Lambert recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Mike Chiarella Roger Moore Route Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Cecilia Dietrich Marc Polansky Dirk Feather Joe Privitera Randy Fender Monty Robson Randy Finden Don Ross John Gebauer Gene Schilling Elaine Green Katie Shusdock Tina Hartzell Paul Woodell Tom Heydenburg Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT" ............................... 4 SUNRISE AND SUNSET ...................................................... 13 MARE HUMBOLDTIANIUM AND THE NORTHEAST LIMB ......... 5 JUPITER AND ITS MOONS ................................................. 13 ONE YEAR IN SPACE ....................................................... 6 TRANSIT OF JUPITER'S RED SPOT ....................................
    [Show full text]
  • Direct Measure of Radiative and Dynamical Properties of an Exoplanet Atmosphere
    DIRECT MEASURE OF RADIATIVE AND DYNAMICAL PROPERTIES OF AN EXOPLANET ATMOSPHERE The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Wit, Julien de, et al. “DIRECT MEASURE OF RADIATIVE AND DYNAMICAL PROPERTIES OF AN EXOPLANET ATMOSPHERE.” The Astrophysical Journal, vol. 820, no. 2, Mar. 2016, p. L33. © 2016 The American Astronomical Society. As Published http://dx.doi.org/10.3847/2041-8205/820/2/L33 Publisher American Astronomical Society Version Final published version Citable link http://hdl.handle.net/1721.1/114269 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal Letters, 820:L33 (6pp), 2016 April 1 doi:10.3847/2041-8205/820/2/L33 © 2016. The American Astronomical Society. All rights reserved. DIRECT MEASURE OF RADIATIVE AND DYNAMICAL PROPERTIES OF AN EXOPLANET ATMOSPHERE Julien de Wit1, Nikole K. Lewis2, Jonathan Langton3, Gregory Laughlin4, Drake Deming5, Konstantin Batygin6, and Jonathan J. Fortney4 1 Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 3 Department of Physics, Principia College, Elsah, IL 62028, USA 4 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA 5 Department of Astronomy, University of Maryland at College Park, College Park, MD 20742, USA 6 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA Received 2016 January 28; accepted 2016 February 18; published 2016 March 28 ABSTRACT Two decades after the discovery of 51Pegb, the formation processes and atmospheres of short-period gas giants remain poorly understood.
    [Show full text]
  • PDF (Volume 84:1, Spring 2021)
    Contents Spring 2021 Features Departments Online 2 Letters Frances Arnold (p. 6) Video: Acceptance Speech for 4 SoCaltech President’s Council of Advisors on Science and Technology 15 In the Community: Millikan and Other Eugenicists’ Names to be Removed from Campus Buildings, Assets, and Honors 39 In Memoriam 40 Endnotes: We have been living with the impact and challenges of the coronavirus pandemic for a The Earthquake Experts (back cover) year now. How have you changed Website: Caltech Science Exchange and what have you learned? Left: This illustration by Kristen Uroda depicts the serotonin molecule, whose role in sleep is explored in Neural Networking (p. 36) the most recent issue of The Caltech Website: The Caltech Effect Effect. See article on page 36. 16 22 26 32 36 Worlds Together Story of a Lonely Planet Crossing Paths A Global Treasure Hunt Neural Networking The Caltech Center for Przemyslaw Mroz, a postdoc- The two most recent Nobel How a term paper on With the opening of the Comparative Planetary toral scholar at Caltech, and Prize-winning Caltech alumni, Newton’s Principia led to Tianqiao and Chrissy Chen Evolution unites astronomers, his colleagues have discovered Charles Rice (PhD ’81) and a decade-long search for Neuroscience Research geologists, and planetary the smallest known “rogue Andrea Ghez (PhD ’92), talk first-edition copies around Building, Caltech scientists scientists on a shared planet,” a free-floating world with a fellow alum about the world. have a vital new hub for mission to understand what without a star. their work, their campus interdisciplinary brain different planets can tell us experiences, and life after research.
    [Show full text]
  • Maria Margaretha Kirch - Wikipedia Seite 1 Von 2 Anlage 3
    Maria Margaretha Kirch - Wikipedia Seite 1 von 2 Anlage 3 WIKIPEDIA Maria Margaretha Kirch Marua Margareföa Kirch, geborene Wmkelmann (' 25 Februar i67o in Pamtzsch bei Leipmg, t 29 Dezember 1720 in Berlin), war eine deutsche Astronomin. Inhaltsverzeichnis Leben Ehrungen Literatur Weblinks Einzelnachweise Leben Maria Margareföa Winkelmann war die jüngste von drei Töchtern des lutherischen Pa.stors Matthias Winkelmann ('+ 1682) und der Buch- und Tuchhändlerstochter Maria Töllner (t i683). Der Vater soll ihr Interesse an der Astronomie geweckt und gefördert haben. Mit i3 Jahren wurde sie durch den Tod ihrer Mutter Vollwaise und wuchs seitdem bei ihrer Schvvester Sara Elisabeth auf. Als Vormund erzog und unterwies sie der pietistische Amtsnachfolger ihres Vaters in Panitzsch, Justinus Töllner, der später ihre Schwester heiratete. Ihre zweite Schwester Anna Magdalena heiratete dessen Bruder Heinrich Tönner. Maria Margaretha trat, vermutlich als Dienstbotin, in den Haushalt des mit Justinus Töllner befreundeten Bauernastronomen Ch0stp?ph Amold im Nachbardorf Sommerfeld ein, bei dem sie sich grundlegende Kenntnisse und Erfahrungen im Tätigkeitsbereich astronomischer Beobachtungen aneignete. Dort wurde sie auch in die ersten Gmndlagen der Meteorologie eingeführt. Bei Arnold lernte sie ihren späteren Ehemann, den dreißig Jahre älteren verwitweten Astronomen und Kalendermacher Gottfried Kirch kennen, der Arnold Unterricht in Astronomie gab und mit ihm gemeinsame Beobachtungen durchführte. Im Mai 1692 heiratete sie Gottfried Kirch, den sie bei den Observationen und Berechnungen unterstützte. Beide waren radikale Pietisten und mussten im Laufe der Verfolgungen der evangelischen Reformbewegung aufgmnd der Festnahme einiger Glaubensbrüder Leipzig verlassen, worauföin sie in Gottfrieds Geburtsstadt Guben zogen. Dort gebar sie ihre Kinider Marie (i6g3 -i6g7), Christfrjed, Chris0ne und Sophie (i6g8-1699).
    [Show full text]
  • Asymmetric Terracing of Lunar Highland Craters: Influence of Pre-Impact Topography and Structure
    Proc. L~lnorPli~nel. Sci. Corrf. /Of11 (1979), p. 2597-2607 Printed in the United States of America Asymmetric terracing of lunar highland craters: Influence of pre-impact topography and structure Ann W. Gifford and Ted A. Maxwell Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institition, Washington, DC 20560 Abstract-The effects of variable pre-impact topography and substrate on slumping and terrace for- mation have been studied on a group of 30 craters in the lunar highlands. These craters are charac- terized by a distinct upper slump block and are all situated on the rim of a larger, older crater or a degraded rim segment. Wide, isolated terraces occur where the rim of the younger crater coincides with a rim segment of the older crater. The craters are all located in Nectarianlpre-Nectarian highland units, and range in age from Imbrian to Copernican. A proposed model for formation of slump blocks in these craters includes the existence of layers with different competence in an overturned rim of the pre-existing crater. Such layering could have resulted from overturning of more coherent layers during formation of the Nectarian and pre-Nec- tarian craters. A combination of material and topographic effects is therefore responsible for terrace formation. Similar terrain effects may be present on other planets and should be considered when interpreting crater statistics in relation to morphology. INTRODUCTION Slumping, terracing or wall failure is an important process in formation and mod- ification of lunar craters. The process of slumping has been investigated by both geometrical (Cintala et a1 ., 1977) and theoretical models (Melosh, 1977; Melosh and McKinnon, 1979); however, these studies are dependent on morphologic constraints imposed by the geologic setting of the craters.
    [Show full text]