Molecular Genetics of Alzheimer's Disease

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Genetics of Alzheimer's Disease DkYb[_Y7Y_ZiWdZCeb[YkbWh8_ebe]o 23 I[h_[i;Z_jeh >$@$=heii Institut für Biochemie Biozentrum Am Hubland 97074 Würzburg Germany Dieter B. Wildenauer (Ed.) Molecular Biology of Neuropsychiatric Disorders With 15 Figures and 8 Tables Editor Dieter B. Wildenauer Graylands Hospital Center for Clinical Research in Neuropsychiatry (CCRN) Claremont WA 6910 Australia ISBN 978-3-540-85382-4 e-ISBN 978-3-540-85383-1 ISSN 0933-1891 Library of Congress Control Number: 2008933566 © 2009 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Boekhorst Design BV, The Netherlands Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com Preface The intention of this book is to give an overview about ongoing research into molecular causes for disorders that affect the human brain. These disorders afflict mainly human behavior and are, since borders between “normal” and “abnormal” behaviors are continuous and hard to define, not always easy to diagnose. We have included the major psychoses (schizophrenia and affective disorders), autism, attention deficit hyperactivity, and anxiety disorders, as well as addictive and suicidal behavior. Neuropathological alterations in these disorders are usually not detectable or restricted to sporadic cases and, if present, not easy to define as causative. In contrast, patho- logical alterations in the brain are present in the two included neuropsychiatric disor- ders, Alzheimer’s and Parkinson’s disease. Detection of pathological abnormalities has been helpful as a starting point for studies of the biochemistry and molecular biology of these diseases. Our goal was to describe current research directions using new methods and information provided by molecular biology and molecular genetics. We have included selected, but in our opinion (and therefore biased) most promising, findings rather than attempting to give a complete overview of findings in these disorders. Given the large number of publications appearing each month in the field (up to 50 in one month as estimated from the PubMed entry) it is almost certain that the book would be already out of date while still in print. Specific databases that col- lect all new information on websites accessible to the public are superior and already available for schizophrenia (http://www.schizophreniaforum.org/res/sczgene/default. asp), Alzheimer’s disease (http://www.alzforum.org/res/com/gen/alzgene/default. asp), and Parkinson’s disease (http://www.pdgene.org/). The complex nature of psychiatric disorders with many factors contributing to susceptibility, but not always necessary for expression of the disease, renders the identification of molecular causes extremely difficult. Whilst causes for the two neurodegenerative disorders, Alzheimer’s and Parkinson’s disease, have been uncovered and their molecular biology is being studied, the search for causes for other neuropsychiatric disorders has not yet led to convincing findings. Complexity and variation in phenotype are major obstacles for these studies. In particular, the difficulty of phenotype definition makes it is hard to establish identical samples for replication or confirmation of findings. As a consequence, most of the published findings are not easy to prove or disprove and may just add to the flood of unconfirmed positive findings in the field. Nevertheless, we are optimistic that a continuing collection v vi Preface of data will be of help in the discovery of the molecular connections and pathways that play a critical role in the development of these disorders. Finally, I wish to thank all contributors to this book, as well as Professor Dr. Hans J. Gross for encouragement and Frau Gramm from Springer Verlag for help in submission for publication. Perth Dieter B. Wildenauer June 2008 Contents Decoding the Genetics and Underlying Mechanisms of Mood Disorders ............................................................................................ 1 Sevilla D. Detera-Wadleigh and Takeo Yoshikawa 1 Introduction .................................................................................................... 2 2 Bipolar Disorder ............................................................................................. 5 2.1 Clinical Presentation and Epidemiology .............................................. 5 2.2 Genetic Analysis ................................................................................... 6 2.3 Alternative and Complementary Strategies .......................................... 15 3 Depression ...................................................................................................... 24 3.1 Clinical Presentation and Epidemiology .............................................. 24 3.2 Genetic Analysis of Depression ............................................................ 25 3.3 Therapeutics and Associated Mechanisms; Pharmacogenetics ............ 27 3.4 Neurogenesis ......................................................................................... 29 3.5 The Endocrine System (hypothalamic-pituitary-adrenal (HPA) axis) .......................................................................................... 31 3.6 Animal Studies ...................................................................................... 33 3.7 Postmortem Brain Studies .................................................................... 36 4 Perspectives ......................................................................................................................... 37 References .......................................................................................................... 38 Dissecting the Molecular Causes of Schizophrenia ...................................... 51 Dieter B. Wildenauer, Diah Mutiara B. Wildenauer, and Sibylle G. Schwab 1 Introduction ................................................................................................ 52 2 Diagnosis .................................................................................................... 52 3 Therapy ...................................................................................................... 52 4 Incidence, Prevalence ................................................................................. 53 5 The Search for Biological Causes ............................................................. 53 6 Epidemiology ............................................................................................. 54 7 Neuropathology .......................................................................................... 56 8 Neurotransmitter Hypotheses .................................................................... 57 vii viii Contents 9 Molecular Genetics .................................................................................... 58 9.1 Localization of Susceptibility Genes by Linkage Analysis ....................................................................... 58 9.2 Genetic Association........................................................................ 59 10 Gene Expression ........................................................................................ 69 10.1 mRNA Expression .......................................................................... 70 10.2 miRNA ........................................................................................... 70 10.3 Protein Expression.......................................................................... 71 10.4 Epigenetics ..................................................................................... 71 11 Animal Models .......................................................................................... 72 12 Conclusion ................................................................................................. 73 References .......................................................................................................... 73 Autism Spectrum Disorders ............................................................................ 81 Sabine M Klauck 1 Introduction ............................................................................................... 81 2 Molecular Genetic Screening.................................................................... 84 2.1 Genome-Wide Screens and Fine-Mapping Approaches ....................................................................................... 84 2.2 Chromosomal Aberrations ................................................................ 88 2.3 Candidate Genes ............................................................................... 89 3 Future Directions ...................................................................................... 91 References .........................................................................................................
Recommended publications
  • New Issues in Genetic Counseling of Hereditary Colon Cancer Patrick M
    New Issues in Genetic Counseling of Hereditary Colon Cancer Patrick M. Lynch Abstract Clinicians face significant challenges in the diagnosis and management of familial colorectal cancer predisposition. Many of the challenges concern the rarity of individual conditions and their unfamiliarity to most clinicians, even those in the subspecialty areas of gastroenterology, colorec- tal surgery, and medical oncology. Because the World Wide Web now offers a wealth of informa- tion, familiarity with available online resources should be a minimal expectation of clinicians. Notably, these same resources are available to the lay public, so a more informed group of patients can be expected and is already being encountered.The web sites noted throughout this article are merely early examples of what should become an opportunity for instant access to the most up-to-date knowledge of rare familial colorectal cancers and their clinical features, molecular diagnostics, and clinical management and prevention. Many professional organizations have pro- duced guidelines (in print and online) for use by practitioners in various specialties.The consisten- cy, growing evidence base, and ready availability of these guidelines to providers and patients alike will likely foster greater recognition of the need to be in compliance with them. Finally, as investigators make progress with the genetics of these rare diseases, one can anticipate a ‘‘coop- erative group’’approach to clinical trials. Identification of inherited susceptibility to colon cancer is now protein expression, which is followed by mutational testing readily possible, with genes identified for familial adenomatous when MSI and/or immunohistochemical screens are informa- polyposis (FAP) and its variants (1–3), hereditary nonpoly- tive.
    [Show full text]
  • Analysis of Consumption of Energy Drinks by a Group of Adolescent Athletes
    International Journal of Environmental Research and Public Health Article Analysis of Consumption of Energy Drinks by a Group of Adolescent Athletes Dariusz Nowak 1,* and Artur Jasionowski 2 1 Department of Nutrition and Dietetics, Faculty of Health Sciences, Nicolaus Copernicus University in Toru´n,Ludwik Rydygier Collegium Medicum in Bydgoszcz, D˛ebowa3, Bydgoszcz 85-626, Poland 2 Department of Theoretical Foundations of Biomedical Sciences and Medical Informatics, Faculty of Pharmacy, Nicolaus Copernicus University in Toru´n, Ludwik Rydygier Collegium Medicum in Bydgoszcz, D˛ebowa3, Bydgoszcz 85-626, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-525-855-401; Fax: +48-525-855-403 Academic Editor: María M. Morales Suárez-Varela Received: 28 April 2016; Accepted: 5 July 2016; Published: 29 July 2016 Abstract: Background: Energy drinks (EDs) have become widely popular among young adults and, even more so, among adolescents. Increasingly, they are consumed by athletes, particularly those who have just begun their sporting career. Uncontrolled and high consumption of EDs, in addition to other sources of caffeine, may pose a threat to the health of young people. Hence, our objective was to analyze the consumption of EDs among teenagers engaged in sports, including quantity consumed, identification of factors influencing consumption, and risks associated with EDs and EDs mixed with alcohol (AmEDs). Methods: The study involved a specially designed questionnaire, which was completed by 707 students, 14.3 years of age on average, attending secondary sports schools. Results: EDs were consumed by 69% of the young athletes, 17% of whom drank EDs quite often: every day or 1–3 times a week.
    [Show full text]
  • The Search for the Elusive Link Between Genome Structure and Gene Function Michel Morange
    Pseudoalleles and gene complexes: the search for the elusive link between genome structure and gene function Michel Morange To cite this version: Michel Morange. Pseudoalleles and gene complexes: the search for the elusive link between genome structure and gene function. Perspectives in Biology and Medicine, Johns Hopkins University Press, 2016, 58 (2), pp.196-204. 10.1353/pbm.2015.0027. hal-01347725 HAL Id: hal-01347725 https://hal.archives-ouvertes.fr/hal-01347725 Submitted on 21 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License 1 Pseudoalleles and gene complexes: the search for the elusive link between genome structure and gene function Michel Morange, Centre Cavaillès, République des savoirs: Lettres, sciences, philosophie USR3608, Ecole normale supérieure, 29 rue d’Ulm, 75230 Paris Cedex 05, France E-mail: [email protected] ABSTRACT After their discovery in the first decades of the XXth century, pseudoalleles generated much interest among geneticists: they apparently violated the conception of the genome as a collection of independent genes elaborated by Thomas Morgan’s group. Their history is rich, complex, and deserves more than one short contribution.
    [Show full text]
  • Roland R. Griffiths CV
    June 2020 CURRICULUM VITAE ROLAND R. GRIFFITHS EDUCATION: B.S. Occidental College 1968 Los Angeles, California Psychology (Honors) Ph.D. University of Minnesota 1972 Minneapolis, Minnesota Psychology (Major) Pharmacology (Minor) PUBLICATIONS BY AREAS OF SPECIALIZATION: Psychedelics Caffeine self-administration, withdrawal, subjective effects, and addiction Sedative self-administration and sedative effects Cigarette smoking and nicotine self-administration Alcohol self-administration Baboon drug self-administration and drug discrimination Miscellaneous All Publications ACADEMIC POSITIONS: 2019-present Director, Johns Hopkins Center for Psychedelic and Consciousness Research 1987-present Professor of Behavioral Biology Department of Psychiatry & Behavioral Sciences The Johns Hopkins University School of Medicine Baltimore, Maryland 1987-present Professor of Neuroscience Department of Neuroscience The Johns Hopkins University School of Medicine Baltimore, Maryland 1983-1986 Associate Professor of Neuroscience Department of Neuroscience The Johns Hopkins University School of Medicine 2 Back to Areas of Specialization Baltimore, Maryland 1978-1986 Associate Professor of Behavioral Biology Department of Psychiatry & Behavioral Sciences The Johns Hopkins University School of Medicine Baltimore, Maryland 1972-1978 Assistant Professor of Behavioral Biology Department of Psychiatry & Behavioral Sciences The Johns Hopkins University School of Medicine Baltimore, Maryland POSITIONS HELD: 1975-1984 Research Chief Department of Psychiatry Baltimore City Hospitals Baltimore, Maryland 1972-1975 Research Associate Department of Psychiatry Baltimore City Hospitals Baltimore, Maryland 1969-1972 Consultant in Behavior Modification Faribault State Hospital Faribault, Minnesota 1968-1972 USPHS Pre-doctoral Research Fellow, Psychopharmacology University of Minnesota Minneapolis, Minnesota 3 Back to Areas of Specialization POSTDOCTORAL FELLOWS SUPERVISED: L. DiAnne Bradford, 1976-1978; Jack E. Henningfield, 1978-1980; Nancy A. Ator, 1978-1982; Scott E.
    [Show full text]
  • Suggested Titles: April, 2014
    Suggested Titles: April, 2014 For Library Collection Development (arranged alphabetically by subject) 1 Suggested Titles List April, 2014 Table of Contents Accounting .............................................................................................................................................................................. 2 Art ........................................................................................................................................................................................... 5 Biology ................................................................................................................................................................................... 15 Business Administration ....................................................................................................................................................... 26 Child Study ............................................................................................................................................................................ 31 Computer Information Science & Mathematics ................................................................................................................... 41 Criminal Justice ..................................................................................................................................................................... 52 Economics ............................................................................................................................................................................
    [Show full text]
  • Intravenous and Oral Caffeine Self-Administration in Rats
    Drug and Alcohol Dependence 203 (2019) 72–82 Contents lists available at ScienceDirect Drug and Alcohol Dependence journal homepage: www.elsevier.com/locate/drugalcdep Intravenous and oral caffeine self-administration in rats T ⁎ Curtis A. Bradley, Matthew I. Palmatier Department of Psychology, East Tennessee State University, 420 Rogers Stout Hall, P.O. Box 70649, Johnson City, TN, 37614, United States ARTICLE INFO ABSTRACT Keywords: Caffeine is widely consumed for its psychoactive effects worldwide. No pre-clinical study has established reliable Caffeine caffeine self-administration, but we found that caffeine can enhance the reinforcing effects of non-drug rewards. Reinforcement The goal of the present studies was to determine if this effect of caffeine could result in reliable caffeine self- Operant administration. In 2 experiments rats could make an operant response for caffeine delivered in conjunction with Self-administration an oral ‘vehicle’ including saccharin (0.2% w/v) as a primary reinforcer. In Experiment 1, intravenous (IV) Oral caffeine infusions were delivered in conjunction with oral saccharin for meeting the schedule of reinforcement. Intravenous In control conditions, oral saccharin alone or presentations of IV caffeine alone served as the reinforcer. In Experiment 2, access to caffeine was provided in an oral vehicle containing water, decaffeinated instant coffee (0.5% w/v), or decaffeinated coffee and saccharin (0.2%). The concentration of oral caffeine was then ma- nipulated across testing sessions. Oral and IV caffeine robustly increased responding for saccharin in a manner that was repeatable, reliable, and systematically related to unit IV dose. However, the relationship between oral caffeine dose and operant behavior was less systematic; the rats appeared to titrate their caffeine intake by reducing the consummatory response (drinking) rather than the appetitive response (lever pressing).
    [Show full text]
  • Nobel Laureates in Physiology Or Medicine
    All Nobel Laureates in Physiology or Medicine 1901 Emil A. von Behring Germany ”for his work on serum therapy, especially its application against diphtheria, by which he has opened a new road in the domain of medical science and thereby placed in the hands of the physician a victorious weapon against illness and deaths” 1902 Sir Ronald Ross Great Britain ”for his work on malaria, by which he has shown how it enters the organism and thereby has laid the foundation for successful research on this disease and methods of combating it” 1903 Niels R. Finsen Denmark ”in recognition of his contribution to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science” 1904 Ivan P. Pavlov Russia ”in recognition of his work on the physiology of digestion, through which knowledge on vital aspects of the subject has been transformed and enlarged” 1905 Robert Koch Germany ”for his investigations and discoveries in relation to tuberculosis” 1906 Camillo Golgi Italy "in recognition of their work on the structure of the nervous system" Santiago Ramon y Cajal Spain 1907 Charles L. A. Laveran France "in recognition of his work on the role played by protozoa in causing diseases" 1908 Paul Ehrlich Germany "in recognition of their work on immunity" Elie Metchniko France 1909 Emil Theodor Kocher Switzerland "for his work on the physiology, pathology and surgery of the thyroid gland" 1910 Albrecht Kossel Germany "in recognition of the contributions to our knowledge of cell chemistry made through his work on proteins, including the nucleic substances" 1911 Allvar Gullstrand Sweden "for his work on the dioptrics of the eye" 1912 Alexis Carrel France "in recognition of his work on vascular suture and the transplantation of blood vessels and organs" 1913 Charles R.
    [Show full text]
  • Evolutionary and Functional Studies of the Mouse Retroviral Restriction Gene, Fvl
    Evolutionary and Functional Studies of the Mouse Retroviral Restriction Gene, Fvl Scott Anthony Ellis A thesis submitted in part fulfilment of the requirements of the University of London for the degree of Doctor of Philosophy March 2000 Virology Division National Institute for Medical Research The Ridgeway Mm Hill London NW71AA ProQuest Number: 10015911 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10015911 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Fvl is a gene of mice known to restrict the replication of Murine Leukaemia virus (MLV) by blocking integration by an unknown mechanism. The gene itself is retroviral in origin, and is located on the distal part of chromosome 4. The sequence of markers known to flank Fvl in the mouse was used to identify sequence from the human homologues of these 2 genes. The construction of primers to these sequences permitted the screening of 2 YAC and a PAC human genomic libraries for clones containing either of these genes. The YAC libraries were negative for both markers.
    [Show full text]
  • Nobel Prizes in Physiology & Medicine
    Dr. John Andraos, http://www.careerchem.com/NAMED/NobelMed.pdf 1 Nobel Prizes in Physiology & Medicine © Dr. John Andraos, 2002 - 2020 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ NOBEL PRIZE PHYSIOLOGY AND MEDICINE YEARNAMES OF SCIENTISTS NATIONALITY TYPE OF PHYSIOLOGY/MEDICINE 1901 Behring, Emil Adolf von German disease treatment (diphtheria) 1902 Ross, Sir Ronald British (b. Almara, India) disease treatment (malaria) 1903 Finsen, Niels Ryberg Danish disease treatment (lupus vulgaris) 1904 Pavlov, Ivan Petrovich Russian digestion 1905 Koch, Robert German disease treatment (TB) 1906 Golgi, Camillo Italian nervous system 1906 Cajal, Santiago Ramon y Spanish nervous system 1907 Laveran, Charles Louis Alphonse French disease treatment (protozoa) 1908 Mechnikov, Ilya Ilyich Russian immunity 1908 Ehrlich, Paul German immunity 1909 Kocher, Emil Theodor Swiss metabolism (thyroid gland) 1910 Kossel, Albrecht German proteins/nucleic acids 1911 Gullstrand, Allvar Swedish visual system 1912 Carrel, Alexis French-American blood vessels 1913 Richet, Charles Robert French anaphylaxis 1914 Barany, Robert Austrian vestibular apparatus 1915 no prize awarded N/A N/A 1916 no prize awarded N/A N/A 1917 no prize awarded N/A N/A 1918 no prize awarded N/A N/A 1919 Bordet, Jules Belgian immunity Dr. John Andraos, http://www.careerchem.com/NAMED/NobelMed.pdf 2 1920 Krogh,
    [Show full text]
  • Sex Differences in the Neural Mechanisms Mediating Addiction: a New Synthesis and Hypothesis Jill B Becker1,2,3,4*, Adam N Perry1 and Christel Westenbroek1
    Becker et al. Biology of Sex Differences 2012, 3:14 http://www.bsd-journal.com/content/3/1/14 REVIEW Open Access Sex differences in the neural mechanisms mediating addiction: a new synthesis and hypothesis Jill B Becker1,2,3,4*, Adam N Perry1 and Christel Westenbroek1 Abstract In this review we propose that there are sex differences in how men and women enter onto the path that can lead to addiction. Males are more likely than females to engage in risky behaviors that include experimenting with drugs of abuse, and in susceptible individuals, they are drawn into the spiral that can eventually lead to addiction. Women and girls are more likely to begin taking drugs as self-medication to reduce stress or alleviate depression. For this reason women enter into the downward spiral further along the path to addiction, and so transition to addiction more rapidly. We propose that this sex difference is due, at least in part, to sex differences in the organization of the neural systems responsible for motivation and addiction. Additionally, we suggest that sex differences in these systems and their functioning are accentuated with addiction. In the current review we discuss historical, cultural, social and biological bases for sex differences in addiction with an emphasis on sex differences in the neurotransmitter systems that are implicated. Keywords: Addiction, Dopamine, Acetylcholine, Norepinephrine, Dynorphin, Cocaine, Heroin Introduction condition (i.e. negative reinforcement), such as depres- The path from initial drug use to addiction is often sion, anxiety, chronic pain or post-traumatic stress dis- described as a downward spiral [1].
    [Show full text]
  • Coffee Addict Other Term
    Coffee Addict Other Term Alaskan Tamas railroads graphicly, he verge his giving very covetously. Asprawl and trendy Royce anagrammatised so silverly that Giancarlo volcanizes his passe-partout. Durand is mnemotechnic and undershooting seditiously while demented Ferguson burrows and tantalising. All types of day one of other traumatic events that coffee term for the term includes relatively brief caffeine Sip Tip Unlike in broadcast other countries in Malaysia the rustic white coffee does judge mean that milk is includedit simply refers to the lighter. Banyan Detox Stuart shares common drug slang words you refer know. Coffee addict synonyms and antonyms in the English synonyms dictionary can also 'coffer'coffers'coerce'cohere' definition Understand coffee addict meaning. Confessions of a Coffee Addict In Plain Sci. What period a word part a predecessor who always needs your attention Quora. There was perhaps any other word being better embodies this than lagom It lacks a proper. This term for other researchers continue taking caffeine? Coffee addiction and slope it cloud be worth shrinking your. 20 Slang Terms for Coffee Coffeeorg. Can be addicted to drugs cigarettes alcohol caffeine and cattle other things. As watching other drug dependencies caffeine dependence appears to be. There did many different types including Nembutal Luminal Seconal Butisol. Street names include Acid from Star California Sunshine Coffee Dots. It is used when sitting one flavor outweighs another 6 Robusta Robusta beans are somehow less commonly used bean in coffee production They contain. Also can more powerful drug addiction and other disorders Bibb concluded. What law a Cynophilist? Scientists believe i going to be dangerous habits can relate to seizures as proteins like caffeine is not go away within several weeks.
    [Show full text]
  • Choosing the Problem
    Is the Blueprint the Building? Studies on the Use of Social Representation Theory, Information Theory, Folkscience, Metaphor and Language to Understand Student Comprehension of Metaphors in the Domain of Gene Expression DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Andrea Michele Graytock Graduate Program in Education The Ohio State University 2011 Dissertation Committee: David L. Haury, Advisor Antoinette Errante Laura Wagner Copyrighted by Andrea Michele Graytock 2011 Abstract Learning about gene expression can be hampered by the multiple steps of the process as well as the technical terms used to represent the process. Technical terms and explanations are based on the metaphors of language, code, containers, gift-giving, computer programs, and construction. The effective use of metaphor depends on the background of the audience and their familiarity with base concepts of the metaphors in use. Inappropriate metaphors also interfere with new information projection from the metaphor to new information. A series of three qualitative studies was carried out to determine non-science students‘ interpretation of commonly-used theory constitutive metaphors. For Study 1students were asked to interpret the metaphors DNA IS A LANGUAGE, DNA IS A CODE, DNA IS A CARRIER OF INFORMATION, and DNA IS A COMPUTER PROGRAM. Using Corbin & Strauss‘s Grounded Theory, similar action/interactional strategies from interpretations of participants were grouped to form concepts and consequences of those concepts were noted. Concepts that reflected a similar theme were combined to form categories. These categories reflected the conceptual understanding of each metaphor.
    [Show full text]