Layer-Specific Variation of Iron Content in Cerebral Cortex As a Source Of
Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast Masaki Fukunagaa,1, Tie-Qiang Lia, Peter van Gelderena, Jacco A. de Zwarta, Karin Shmuelia, Bing Yaoa, Jongho Leea, Dragan Maricb, Maria A. Aronovac, Guofeng Zhangc, Richard D. Leapmanc, John F. Schenckd, Hellmut Merklea, and Jeff H. Duyna aAdvanced MRI, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892; bLaboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892; cLaboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892; and dGeneral Electric Global Research Center, Niskayuna, NY 12309 Edited* by Leslie G. Ungerleider, National Institute of Mental Health, Bethesda, MD, and approved January 4, 2010 (received for review September 28, 2009) Recent advances in high-field MRI have dramatically improved the and is, together with the resonance frequency, particularly sen- visualization of human brain anatomy in vivo. Most notably, in sitive to spatial magnetic susceptibility variations. Most notably, cortical gray matter, strong contrast variations have been observed contrast based on resonance frequency shifts of tissue, derived that appear to reflect the local laminar architecture. This contrast from the phase of gradient-echo signals, has allowed the robust has been attributed to subtle variations in the magnetic properties visualization of laminar structure in a number of neocortical of brain tissue, possibly reflecting varying iron and myelin content. regions, including primary visual and motor cortices (17) (Fig. 1). To establish the origin of this contrast, MRI data from postmortem Despite this progress, the origin of cortical laminar contrast brain samples were compared with electron microscopy and observed with high-field MRI remains unclear.
[Show full text]