International Journal of Molecular Sciences Review Development, Diversity, and Death of MGE-Derived Cortical Interneurons Rhîannan H. Williams 1 and Therese Riedemann 2,* 1 Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute for Neurogenomics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
[email protected] 2 Ludwig-Maximilians-Universität München, Biomedical Center, Physiological Genomics, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany * Correspondence:
[email protected] Abstract: In the mammalian brain, cortical interneurons (INs) are a highly diverse group of cells. A key neurophysiological question concerns how each class of INs contributes to cortical circuit function and whether specific roles can be attributed to a selective cell type. To address this question, researchers are integrating knowledge derived from transcriptomic, histological, electrophysiologi- cal, developmental, and functional experiments to extensively characterise the different classes of INs. Our hope is that such knowledge permits the selective targeting of cell types for therapeutic endeavours. This review will focus on two of the main types of INs, namely the parvalbumin (PV+) or somatostatin (SOM+)-containing cells, and summarise the research to date on these classes. Keywords: GABA; cortical interneurons; somatostatin; parvalbumin; interneuron diversity; interneuron development 1. Introduction Citation: Williams, R.H.; The cortex of the mammalian brain is composed of two main neuronal groups: pro- Riedemann, T. Development, jection neurons and interneurons (INs) [1–8]. Projection neurons are cells whose axons Diversity, and Death of MGE-Derived extend from the region where they are located to other brain areas and/or to the spinal Cortical Interneurons. Int. J. Mol. Sci. cord.