Ecological Change in Tanzanian Montane Rainforests: from Species to Landscape

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Change in Tanzanian Montane Rainforests: from Species to Landscape ECOLOGICAL CHANGE IN TANZANIAN MONTANE RAINFORESTS: FROM SPECIES TO LANDSCAPE By JACLYN MARIE HALL A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 © 2009 Jaclyn M. Hall 2 To the educators that have had such an important influence in my life, and in the lives of all of us 3 ACKNOWLEDGMENTS I would not have come to the University of Florida had it not been for Dr. Michael Binford and I do not know how I would have finished if it weren’t for my dedicated and gifted advisor, Jane Southworth. I am also grateful for my other accomplished committee members: Tim Fik, Walter Judd, and Tom Gillespie. I had the pleasure and good fortune to build relationships with some exceptional scientists that have become valuable collaborators, most important of whom are Roy Gereau from the Missouri Botanical Gardens, Neil Burgess from WWF and the University of Cambridge, Nike Doggart from Tanzanian Forest Conservation Group, Jon Lovett from the University of York, and Moses Mwangoka of Tanzanian Forest Conservation Group. Special thanks are given to Nike Doggart for valuable advice over the last five years. I am thankful for the support I have received from the University of Florida, American Association of University Women, McQuown Foundation, and the African Studies Center and the University of Florida. Throughout my time in the graduate program I received assistance and support of all kinds, financial, logistical, and emotional, from the faculty of the Department of Geography, which is the most productive department in the College of Liberal Arts and Sciences thanks to the hard work, long hours, and true heartfelt dedication given toward departmental improvement by its chair, Dr. Peter R. Waylen. The data collection that led to this research was funded by Fulbright, Conservation International and the Critical Ecosystem Partnership Fund and NSF Working Forests in the Tropics, University of Florida. The project was organized with logistical support from Tanzanian Forest Conservation Group and WWF Tanzania, and Moses Mwangoka’s knowledge of botany, experience in the field, and superior work ethic contributed greatly to success of the data collection. 4 I thank Sokoine University of Agriculture, the University of Dar es Salaam, the Critical Ecosystems Partnership Fund, Conservation International, United Nations Development Program Global Environmental Fund, York Institute for Tropical Ecosystem Dynamics (KITE), and A. Balmford (University of Cambridge) for constructive suggestions. I also thank Roy Gereau for thoughtful and detailed input to all chapters, and The Missouri Botanical Garden for developing the TROPICOS online database, accessible from www.tropicos.org, which made this dissertation possible. In addition, I am grateful to two anonymous reviewers who provided valuable comments to parts of this manuscript. I will forever view as family my fellow graduate students who went through this long process with me: Jamie Waggoner, Tracy Van Holt, Amy Daniels, Alisa Coffin, Joel Harter, Miriam Wyman, Matt Marsik, Forrest Stevens, Keith Yearwood, Sanchi Adhikari, and Brian Condon. I also recognized the entire LEUCI crew, a constantly changing assemblage of dedicated students working in research sites across the globe whose talents combine to form one of the most productive research associations on campus. I am grateful for all the support and laughs I have had thanks to the many friends I made in Gainesville. I miss and will always remember the laughs had with Kristy Capobianco, Nick Campiz, Andrea Wolf, Renee Bullock, Amy Panikowski, Erin Bunting, and Ania Szyniszewska. My friends from home have been very patient during these many years of my being a student and finishing “that paper.” I owe several dinners and drinks to Carey Schacht, Raina Strampello, Karen Karvazy, Libby Zeitler, Jen Katzban, Jen Bryant, and Josh and Emily House. Educators that have had major influences on my life: Mr. Jay Feliciani, my physics and environmental science teacher at Land O’ Lakes High School, harnessed my natural inquisitiveness and compelled me to want to be a scientist. Brian Kermath, my first physical 5 geography teacher and the reason I chose geography as a major, is the first person to take me to a rural tropical landscape, the Rio Negro of the Amazon basin; a trip which changed my life. Dr. Bruce Bradford, the Geography chair at Stetson University, not only taught me confidence as a student and researcher, but gave me my first experience in teaching in front of a class room. Dr. Robert Brinkman from the University of South Florida taught me that soils rock! and was the first to encourage me to pursue a doctoral degree. Dr. Tom Gillespie enlightened me to issues in conservation and biogeography and helped me acquire my affection for rare and endangered species. Dr. Walter Judd, the most amazing tropical botanist, not slowed by heat, mosquitoes or biting ants, gave me my fascination with the incredible diversity of the world’s plants. Dr. Jane Southworth, one of the best remote sensors of the environment, a gifted teacher, and a great advocate for students, taught me how to be a researcher and to have pride in being a Geographer. Above all, I thank my family, including my parents, Drs. Marilyn and Bruce Hall who have not only encouraged and supported me through this long and trying experience, but have been understanding of the challenges that graduate students face, and willingly approved of their only daughter spending years in the snake and killer bee infested forests of East Africa in the pursuit of a degree in Geography. I also owe a great deal of gratitude to my brother, Bruce Hall, Jr., who has dedicated his career to healing the injured, but whose most therapeutic gift is his ability to make people laugh. 6 TABLE OF CONTENTS page ACKNOWLEDGMENTS.................................................................................................................... 4 LIST OF TABLES................................................................................................................................ 9 LIST OF FIGURES ............................................................................................................................ 10 ABSTRACT ........................................................................................................................................ 11 CHAPTER 1 INTRODUCTION....................................................................................................................... 14 Ecological Services and Agroforests ......................................................................................... 18 Satellite Remote Sensing of Forests........................................................................................... 20 Research Objectives .................................................................................................................... 21 2 CONSERVATION IMPLICATIONS OF DEFORESTATION ACROSS AN ELEVATIONAL GRADIENT IN THE EASTERN ARC MOUNTAINS, TANZANIA ..... 23 Introduction ................................................................................................................................. 23 Methods ....................................................................................................................................... 26 Study Area ............................................................................................................................ 26 1) Forest Cover .................................................................................................................... 28 Paleoecological prediction ........................................................................................... 28 1955s ............................................................................................................................. 28 1975 and 2000 .............................................................................................................. 29 2) Forest Cover at different elevations ............................................................................... 30 3) Distributional Data on Endemic Trees ........................................................................... 30 5) Threat Status of Endemic Trees ..................................................................................... 32 6) Analyses ........................................................................................................................... 32 Results .......................................................................................................................................... 35 Elevational Distribution of Forest Loss.............................................................................. 35 Deforestation by Mountain Block. ..................................................................................... 36 Reassessment of the Threat Status for Endemic Trees...................................................... 37 Discussion .................................................................................................................................... 39 Deforestation Patterns Within the Eastern Arc .................................................................. 40 Conservation Relevance ...................................................................................................... 44 3 FLORISTIC COMPARISON OF PROTECTED AND CARDAMOM AGROFORESTS
Recommended publications
  • A Study on Mammalian Diversity of Abaya-Hamassa Natural Vegetation, Southern Region, Ethiopia
    A STUDY ON MAMMALIAN DIVERSITY OF ABAYA-HAMASSA NATURAL VEGETATION, SOUTHERN REGION, ETHIOPIA A Thesis submitted to the School of Graduate Studies Addis Ababa University In Partial Fulfillment of the requirement for the Degree of Master of science in DIY land Biodiversity By Yassin Chumburo Gunta June,2005 .1 iii ACKNOWLEDGMENTS I am very much indebted to Dr. Solomon Yirga for his unlimited help, superVISIon, encouragement, provision of materials and attention throughout the work. His presence in the field during the recOimaissance period and his critical comments in reading the manuscripts and supplying reference materials are among the few. Without his commitment it would have been impossible to reach at this level. Among many individuals who contributed to the study, I especially wish to extend my sincere appreciation to Dr. Assefa Mebrate, Ato Million Teshome and Tilaye Wube for thier assistance in identification of small rodents collected during the study period. Abraham Hailu,for his full cooperation and assistance in editing Pictures in the text. I wish to express my gratitude to the SIDA (RPSUO), School of Graduate Studies, AAU and Biology Department, AAU for providing funds for this research. I would like to extend my thanks to Oawit Milkano, Asrat Worana and Abera Bancha for their extensive assistance in the fieldwork. Finally, last but most definitely not least, my thanks go to my family and friends, who assisted me in one way or the other towards the completion of this work. IV TABLE OF CONTENTS Page ACKNOWLEDGEMENT .................... "................ ,........................................................... iii LISTS OF TABLES .................................. ,', .................................................................... vii LISTS OF FIGURES ................................. ", .................................................................... viii LISTS OF APPENDICES .................................................................................................
    [Show full text]
  • Annals of the Missouri Botanical Garden 1988
    - Annals v,is(i- of the Missouri Botanical Garden 1988 # Volume 75 Number 1 Volume 75, Number ' Spring 1988 The Annals, published quarterly, contains papers, primarily in systematic botany, con- tributed from the Missouri Botanical Garden, St. Louis. Papers originating outside the Garden will also be accepted. Authors should write the Editor for information concerning arrangements for publishing in the ANNALS. Instructions to Authors are printed on the inside back cover of the last issue of each volume. Editorial Committee George K. Rogers Marshall R. Crosby Editor, Missouri B Missouri Botanical Garden Editorial is. \I,,S ouri Botanu •al Garde,, John I). Dwyer Missouri Botanical Garden Saint Louis ( niversity Petei • Goldblatt A/I.S.S ouri Botanic al Garder Henl : van der W< ?rff V//.S.S ouri Botanic tor subscription information contact Department IV A\NM.S OK Tin: Missot m Boi >LM« M G\KDE> Eleven, P.O. Box 299, St. Louis, MO 63166. Sub- (ISSN 0026-6493) is published quarterly by the scription price is $75 per volume U.S., $80 Canada Missouri Botanical Garden, 2345 Tower Grove Av- and Mexico, $90 all other countries. Airmail deliv- enue, St. Louis, MO 63110. Second class postage ery charge, $35 per volume. Four issues per vol- paid at St. Louis, MO and additional mailing offices. POSTMAS'IKK: Send ad«lrt— changes to Department i Botanical Garden 1988 REVISED SYNOPSIS Grady L. Webster2 and Michael J. Huft" OF PANAMANIAN EUPHORBIACEAE1 ABSTRACT species induded in \ • >,H The new taxa ai I. i i " I ! I _- i II • hster, Tragia correi //,-," |1 U !.
    [Show full text]
  • Endangered Allanblackia Species
    Endangered Allanblackia Species: Allanblackia gabonensis Allanblackia stuhlmannii Allanblackia ulugurensis Prota 14: Vegetable oils/Oléagineux Record display Allanblackia stuhlmannii (Engl.) Engl. Protologue Engl. & Prantl, Nat. Pflanzenfam. II–IV Nachtr. 1: 249 (1897). Family Clusiaceae (Guttiferae) Vernacular names Mkange, mkanye, mkimbo, mshambo, mwaka (Sw). Origin and geographic distribution Allanblackia stuhlmannii is endemic to Tanzania, where it occurs in the Eastern Arc Mountains, extending through Iringa Region to the Southern Highlands. Uses The seed yields an edible fat called ‘allanblackia fat’ or ‘kanye butter’. It is used in cooking and has been used as a substitute for butter and cocoa butter, and to make candles. Recently, the international food industry has become interested in the fat as a natural solid component for margarines and similar products. The presscake is bitter and contains tannins, but is sometimes used as animal feed. The seeds are used as bait for small game. The wood is used for construction, cheap joinery, boxes, crates, beehives and water containers. It is also used as fuel. In traditional medicine, the leaves are chewed to treat cough, while the leaves, bark and roots are used to treat impotence. A seed extract is rubbed in to treat rheumatism. The fat is applied as a liniment on aching joints, wounds and rashes and small quantities are taken to treat rheumatism. Hehe people rub the fat mixed with pounded seeds of Psorospermum febrifugum Spach on deep cracks in the soles of the feet. The bark yields a yellow dye. Female trees of Allanblackia stuhlmannii are retained when land is cleared for cultivation and are possibly occasionally planted for shade in crops and for amenity.
    [Show full text]
  • Dry Forest Trees of Madagascar
    The Red List of Dry Forest Trees of Madagascar Emily Beech, Malin Rivers, Sylvie Andriambololonera, Faranirina Lantoarisoa, Helene Ralimanana, Solofo Rakotoarisoa, Aro Vonjy Ramarosandratana, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet & Vololoniaina Jeannoda Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. © 2020 Botanic Gardens Conservation International ISBN-10: 978-1-905164-75-2 ISBN-13: 978-1-905164-75-2 Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. Recommended citation: Beech, E., Rivers, M., Andriambololonera, S., Lantoarisoa, F., Ralimanana, H., Rakotoarisoa, S., Ramarosandratana, A.V., Barstow, M., Davies, K., Hills, BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) R., Marfleet, K. and Jeannoda, V. (2020). Red List of is the world’s largest plant conservation network, comprising more than Dry Forest Trees of Madagascar. BGCI. Richmond, UK. 500 botanic gardens in over 100 countries, and provides the secretariat to AUTHORS the IUCN/SSC Global Tree Specialist Group. BGCI was established in 1987 Sylvie Andriambololonera and and is a registered charity with offices in the UK, US, China and Kenya. Faranirina Lantoarisoa: Missouri Botanical Garden Madagascar Program Helene Ralimanana and Solofo Rakotoarisoa: Kew Madagascar Conservation Centre Aro Vonjy Ramarosandratana: University of Antananarivo (Plant Biology and Ecology Department) THE IUCN/SSC GLOBAL TREE SPECIALIST GROUP (GTSG) forms part of the Species Survival Commission’s network of over 7,000 Emily Beech, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet and Malin Rivers: BGCI volunteers working to stop the loss of plants, animals and their habitats.
    [Show full text]
  • Ixoroideae– Rubiaceae
    IAWA Journal, Vol. 21 (4), 2000: 443–455 WOOD ANATOMY OF THE VANGUERIEAE (IXOROIDEAE– RUBIACEAE), WITH SPECIAL EMPHASIS ON SOME GEOFRUTICES by Frederic Lens1, Steven Jansen1, Elmar Robbrecht2 & Erik Smets1 SUMMARY The Vanguerieae is a tribe consisting of about 500 species ordered in 27 genera. Although this tribe is mainly represented in Africa and Mada- gascar, Vanguerieae also occur in tropical Asia, Australia, and the isles of the Pacific Ocean. This study gives a detailed wood anatomical de- scription of 34 species of 15 genera based on LM and SEM observa- tions. The secondary xylem is homogeneous throughout the tribe and fits well into the Ixoroideae s.l. on the basis of fibre-tracheids and dif- fuse to diffuse-in-aggregates axial parenchyma. The Vanguerieae in- clude numerous geofrutices that are characterised by massive woody branched or unbranched underground parts and slightly ramified un- branched aboveground twigs. The underground structures of geofrutices are not homologous; a central pith is found in three species (Fadogia schmitzii, Pygmaeothamnus zeyheri and Tapiphyllum cinerascens var. laetum), while Fadogiella stigmatoloba shows central primary xylem which is characteristic of roots. Comparison of underground versus aboveground wood shows anatomical differences in vessel diameter and in the quantity of parenchyma and fibres. Key words: Vanguerieae, Rubiaceae, systematic wood anatomy, geo- frutex. INTRODUCTION The Vanguerieae (Ixoroideae–Rubiaceae) is a large tribe consisting of about 500 spe- cies and 27 genera. Tropical Africa is the centre of diversity (about 80% of the species are found in Africa and Madagascar), although the tribe is also present in tropical Asia, Australia, and the isles of the Pacific Ocean (Bridson 1987).
    [Show full text]
  • Arborescent Angiosperms of Mundanthurai Range in The
    Check List 8(5): 951–962, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Arborescent Angiosperms of Mundanthurai Range in PECIES S the Kalakad-Mundanthurai Tiger Reserve (KMTR) of the OF southern Western Ghats, India ISTS L Paulraj Selva Singh Richard 1* and Selvaraj Abraham Muthukumar 2 1 Madras Christian College, Department of Botany, Chennai – 600 059, Tamil Nadu, India. 2 St. John’s College, Department of Botany, Tirunelveli, 627 002, Tamil Nadu, India. [email protected] * Corresponding author. E-mail: Abstract: The present study was carried out to document the diversity of arborescent angiosperm taxa of Mundanthurai representingRange in the 175Kalakad-Mundanthurai genera in 65 families Tiger were Reserve recorded. (KMTR) The most of the speciose southern families Western are Euphorbiaceae Ghats in India. (27 During spp.), the Rubiaceae floristic survey carried out from January 2008 to December 2010, a total of 247 species and intraspecific taxa of trees and shrubs to this region which includes Agasthiyamalaia pauciflora, Elaeocarpus venustus, Garcinia travancorica, Gluta travancorica, (17Goniothalamus spp.), Myrtaceae rhynchantherus, (14 spp.), Lauraceae Homalium (13 travancoricum, spp.) and Annonaceae Homaium (11 jainii, spp.). OropheaOf the 247 uniflora, taxa, 27 Phlogacanthus species are endemic albiflorus, only Polyalthia shendurunii, Symplocos macrocarpa and Symplocos sessilis . This clearly signifies that this range is relevant to the conservation of the local flora. Introduction India for conserving global biological diversity and also The Western Ghats is one of the biodiversity hotspots declared as Regional Centre of Endemism in the Indian of the world (Myers et al.
    [Show full text]
  • Distribution and Ecology of Allanblackia Spp. (Clusiaceae) in African Rain Forests with Special Attention to the Development of a Wild Picking System of the Fruits
    Distribution and ecology of Allanblackia spp. (Clusiaceae) in African rain forests with special attention to the development of a wild picking system of the fruits Photo: Fruit of Allanblackia kimbiliensis (Clusiaceae) in Bwindi forest, western Uganda Source: People and plants Online, Kew, London (http://www.rbgkew.org.uk/peopleplants/wp/wp4/bwindi.htm) Renaat Van Rompaey PhD ECOSYN Consulting, Wageningen Report to Unilever Research Laboratories, Vlaardingen 2nd draft, part West Africa, and 2nd draft part Central Africa, 6 September 2003 Address of the author: Renaat Van Rompaey ECOSYN Consulting Wim Sonneveldstraat 24 NL-6708 NB Wageningen, The Netherlands ([email protected]; tel.: +31-6-234 69 633) 2 Abstract Allanblackia trees have the largest fruits of all plants in the African rain forest. The seeds are known to contain edible fat, but have only scarcely been used on a commercial scale, e.g. in Tanzania. In most parts of Africa, the use of Allanblackia has been decreased over the last 50 years to the favour of other, mostly liquid oils. Nevertheless, Allanblackia has been identified by amongst others FAO as a crop of high potential interest to the development of rural communities. This work aims to contribute to the development of this idea by quantifying the potential on a district level. The nine species of Allanblackia are mainly distributed in wet evergreen rain forest, lowland from Sierra Leone to Congo, and upland eastwards to Tanzania. In west and central Africa the species become much more abundant in the very wet forest types, reaching densities above 1000 trees per km2. Data from timber inventories were processed to estimate the density of Allanblackia trees.
    [Show full text]
  • Examination of Mycorrhizal Associations of Allanblackia Stuhlmannii – a Tree Under Current Domestication
    Faculty of Natural Resources and Agricultural Sciences Examination of mycorrhizal associations of Allanblackia stuhlmannii – a tree under current domestication Helena Ström Department of Forest Mycology and Plant Pathology Master´s Thesis in Soil Science • A2E • Uppsala 2013 Examination of mycorrhizal associations of Allanblackia stuhlmannii – a tree under current domestication Helena Ström Supervisor: Petra Fransson, Swedish University of Agricultural Sciences, Department of Forest Mycology and Plant Pathology Assistant Supervisor: Sigrun Dahlin, Swedish University of Agricultural Sciences, Department of Soil and Environment Examiner: Sadhna Alström, Swedish University of Agricultural Sciences, Department of Forest Mycology and Plant Pathology Credits: 30 hec Level: Second cycle, A2E Course title: Independent project/degree project in Soil Science Course code: EX0430 Programme/education: Agricultural Programme – Soil and Plant Sciences Place of publication: Uppsala Year of publication: 2013 Cover picture: Helena Ström Online publication: http://stud.epsilon.slu.se Keywords: Allanblackia stuhlmannii, symbionts, arbuscular mycorrhizal fungi, tree domestication, East Usambara Mountains Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Plant Pathology Abstract Allanblackia is a tree genus native to humid forests in West, Central and East Africa. Its fruits contain large seeds from which edible high-quality fat can be extracted. In order to create a sustainable supply chain of Allanblackia seeds, a domestication program has been initiated with the purpose to enable smallholder farmers to grow the tree as an agroforestry component and cash crop. More knowledge is required to understand the tree’s biology and possible symbioses involving soil microorganisms with plant growth enhancing poten- tial.
    [Show full text]
  • Downloaded from Brill.Com10/09/2021 12:24:23AM Via Free Access 2 IAWA Journal, Vol
    IAWA Journal, Vol. 26 (1), 2005: 1-68 WOOD ANATOMY OF THE SUBFAMILY EUPHORBIOIDEAE A comparison with subfamilies Crotonoideae and Acalyphoideae and the implications for the circumscription of the Euphorbiaceae Alberta M. W. Mennega Nationaal Herbarium Nederland, Utrecht University branch, Heidelberglaan 2, 3584 es Utrecht, The Netherlands SUMMARY The wood anatomy was studied of 82 species from 34 out of 54 genera in the subfamily Euphorbioideae, covering all five tribes recognized in this subfamily. In general the woods show a great deal of similarity. They are charac­ terized by a relative paucity of vessels, often arranged in short to long, dumbbell-shaped or twin, radial multiples, and by medium-sized to large intervessel pits; fibres often have gelatinous walls; parenchyma apotracheal in short, wavy, narrow bands and diffuse-in-aggregates; mostly uni- or only locally biseriate rays, strongly heterocellular (except Hippomane, Hura and Pachystroma). Cell contents, either silica or crystals, or both together, are nearly always present and often useful in distinguishing between genera. Radiallaticifers were noticed in most genera, though they are scarce and difficult to trace. The laticifers are generally not surrounded by special cells, except in some genera of the subtribe Euphorbiinae where radiallaticifers are comparatively frequent and conspicuous. Three ofthe five tribes show a great deal of conformity in their anatomy. Stomatocalyceae, however, stand apart from the rest by the combination of the scarcity of vessels, and mostly biseriate, vertically fused and very tall rays. Within Euphorbieae the subtribe Euphorbiinae shows a greater vari­ ation than average, notably in vessel pitting, the frequent presence of two­ celled parenchyma strands, and in size and frequency of the laticifers.
    [Show full text]
  • With Two New Species of Shrub from the Forests of the Udzungwas, Tanzania & Kaya
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.14.444227; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Lukea gen. nov. (Monodoreae-Annonaceae) with two new species of shrub from the forests of the Udzungwas, Tanzania & Kaya Ribe, Kenya. Martin Cheek1, W.R. Quentin Luke2 & George Gosline1. 1Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK 2East African Herbarium, National Museums of Kenya, P.O. Box 40658, Nairobi, Kenya. Summary. A new genus, Lukea Gosline & Cheek (Annonaceae), is erected for two new species to science, Lukea quentinii Cheek & Gosline from Kaya Ribe, S.E. Kenya, and Lukea triciae Cheek & Gosline from the Udzungwa Mts, Tanzania. Lukea is characterised by a flattened circular bowl-shaped receptacle-calyx with a corolla of three petals that give the buds and flowers a unique appearance in African Annonaceae. Both species are extremely rare shrubs of small surviving areas of lowland evergreen forest under threat of habitat degradation and destruction and are provisionally assessed as Critically Endangered and Endangered respectively using the IUCN 2012 standard. Both species are illustrated and mapped. Material of the two species had formerly been considered to be possibly Uvariopsis Engl. & Diels, and the genus Lukea is placed in the Uvariopsis clade of the Monodoreae (consisting of the African genera Uvariodendron (Engl. & Diels) R.E.Fries, Uvariopsis, Mischogyne Exell, Dennettia Bak.f., and Monocyclanthus Keay).
    [Show full text]
  • Novitates Gabonenses 36. Tetrorchidium (Euphorbiaceae) in Africa with Special Reference to Gabon
    Novitates Gabonenses 36. Tetrorchidium (Euphorbiaceae) in Africa with special reference to Gabon F.J. BRETELER Herbarium Vadense, Foulkesweg 37, 6703 BL Wageningen, Nederland. [email protected] ABSTRACT The African species of Tetrorchidium have been studied in order to investi­ gate the report of a corolla present in the female flowers of T. congolense. The study revealed that T. congolense does not have a corolla but an involucre. The same holds for T. gabonense which is described for the first time. KEYWORDS Tetrorchidium tenuifolium is lectorypified and treated as a synonym of T. Tetrorchidium, oppositifolium, which is lectotypified as well. Tetrorchidium ulugurense is Euphorbiaceae, maintained as a distinct species. A key to the resulting five species is given involucre, Gabon. and their distribution is mapped. RESUME Novitates Gabonenses 36. Tetrorchidium (Euphorbiaceae) en Afrique et en par­ ticulier au Gabon. Les espèces africaines du genre Tetrorchidium ont été étudiées afin de savoir si une corolle existe chez les fleurs femelles de T. congolense. L'étude a révélé que cette espèce n'est pas pourvue d'une corolle, mais d'un involucre, qui est aussi présent chez T. gabonense, décrit ici comme espèce nouvelle. MOTS CLES Tetrorchidium tenuifolium est mis en synonymie de T. oppositifolium. Les Tetrorchidium, deux noms sont lectotypifiés. Tetrorchidium ulugurense est maintenu comme Euphorbiaceae, espèce distincte. Une clé de détermination et des cartes de distribution des involucre, Gabon. cinq espèces sont présentées. sér. 3 • 1999 • 21 (1): 97-105 97 Breteler F.J. The genus Tetrorchidium of the identity of that additional floral element in T. Euphorbiaceae-Crotonoideae has ca.
    [Show full text]
  • Ecosystem: Eastern Arc Mountains & Coastal Forests of Tanzania & Kenya
    ECOSYSTEM PROFILE EASTERN ARC MOUNTAINS & COASTAL FORESTS OF TANZANIA & KENYA Final version July 31, 2003 (updated: march 2005) Prepared by: Conservation International International Centre of Insect Physiology and Ecology In collaboration with: Nature Kenya Wildlife Conservation Society of Tanzania With the technical support of: Centre for Applied Biodiversity Science - Conservation International East African Herbarium National Museums of Kenya Missouri Botanical Garden Tanzania Forest Conservation Group Zoology Department, University of Dar es Salaam WWF Eastern Africa Regional Programme Office WWF United States And a special team for this ecosystem profile: Neil Burgess Tom Butynski Ian Gordon Quentin Luke Peter Sumbi John Watkin Assisted by experts and contributors: KENYA Hamdan Sheha Idrissa Perkin Andrew Barrow Edmund Howell Kim Verberkmoes Anne Marie Gakahu Chris Kajuni A R Ward Jessica Githitho Anthony Kilahama Felician Kabii Tom Kafumu George R BELGIUM Kimbwereza Elly D Kabugi Hewson Lens Luc Kanga Erustus Lejora Inyasi A.V. Matiku Paul Lulandala Luther Mbora David Mallya Felix UK Mugo Robinson Mariki Stephen Burgess Neil Ndugire Naftali Masayanyika Sammy Odhiambo Peter Mathias Lema USA Thompson Hazell Milledge Simon Brooks Thomas Wandago Ben Mlowe Edward Gereau Roy Mpemba Erastp Langhammer Penny Msuya Charles TANZANIA Ocker Donnell Mungaya Elias Sebunya Kaddu Baldus Rolf D Mwasumbi Leonard Bhukoli Alice Struhsaker Tom Salehe John Wieczkowski Julie Doggart Nike Stodsrod Jan Erik Howlett David Tapper Elizabeth Hewawasam Indu Offninga
    [Show full text]