The Electromagnetic Spectrum

Total Page:16

File Type:pdf, Size:1020Kb

The Electromagnetic Spectrum From http://csep10.phys.utk.edu/astr162/lect/light/spectrum.html from Dept. Physics & Astronomy at the University of Tennessee and http://www.pbs.org/wgbh/aso/tryit/radio/radiorelayer.html from the WGBH Educational Foundation . The Electromagnetic Spectrum The electromagnetic spectrum is the distribution of electromagnetic radiation according to energy (or equivalently, by virtue of the relations in the previous section, according to frequency or wavelength). Regions of the Electromagnetic Spectrum The following table gives approximate wavelengths, frequencies, and energies for selected regions of the electromagnetic spectrum. Spectrum of Electromagnetic Radiation Region Wavelength Wavelength Frequency Energy (Angstroms) (centimeters) (Hz) (eV) Radio > 109 > 10 < 3 x 109 < 10-5 Microwave 109 - 106 10 - 0.01 3 x 109 - 3 x 1012 10-5 - 0.01 Infrared 106 - 7000 0.01 - 7 x 10-5 3 x 1012 - 4.3 x 1014 0.01 - 2 Visible 7000 - 4000 7 x 10-5 - 4 x 10-5 4.3 x 1014 - 7.5 x 1014 2 - 3 Ultraviolet 4000 - 10 4 x 10-5 - 10-7 7.5 x 1014 - 3 x 1017 3 - 103 X-Rays 10 - 0.1 10-7 - 10-9 3 x 1017 - 3 x 1019 103 - 105 Gamma Rays < 0.1 < 10-9 > 3 x 1019 > 105 The notation "eV" stands for electron-volts, a common unit of energy measure in atomic physics. A graphical representation of the electromagnetic spectrum is shown in the figure below. 1 The electromagnetic spectrum Thus we see that visible light and gamma rays and microwaves are really the same things. They are all electromagnetic radiation; they just differ in their wavelengths. The Spectrum of Visible Light The visible part of the spectrum may be further subdivided according to color, with red at the long wavelength end and violet at the short wavelength end, as illustrated (schematically) in the following figure. The visible spectrum How Roy G. Bv Lost a Vowel The sequence of colors red, orange, yellow, green, blue, and violet may be remembered by memorizing the name of that fine fellow "ROY G. BV". This was originally "ROY G. BIV", because it used to be common to call the region between blue and violet "indigo". In modern usage, indigo is not usually distinguished as a separate color in the visible spectrum; thus Roy no longer has any vowels in his last name. 2 FM vs AM: What's the difference? FM radio works the same way that AM radio works. The difference is in how the carrier wave is modulated, or altered. With AM radio, the amplitude, or overall strength, of the signal is varied to incorporate the sound information. With FM, the frequency (the number of times each second that the current changes direction) of the carrier signal is varied. FM signals have a great advantage over AM signals. Both signals are susceptible to slight changes in amplitude. With an AM broadcast, these changes result in static. With an FM broadcast, slight changes in amplitude don't matter -- since the audio signal is conveyed through changes in frequency, the FM receiver can just ignore changes in amplitude. The result: no static at all. 3.
Recommended publications
  • Violet-Green Swallow
    Breeding Habitat Use Profile Habitats Used in Arizona Primary: Montane Riparian Secondary: Montane Forests, locally Upper Sonoran Desert Key Habitat Parameters Plant Composition Most montane forest types, often with some element of riparian, wetland, open water or 8 other moist habitat types Plant Density and Unknown Size Violet-green Swallow, photo by ©George Andrejko Microhabitat Snags, live trees, or cliffs for nesting, mesic Features areas with high insect productivity for forag- Conservation Profile ing 8; in wooded landscapes, often noted foraging and nesting near forest clearings Species Concerns and edges. Climate Change (Droughts) Increasing Fire Frequency Landscape Largely unknown, but must include some Timber Harvesting Practices old-growth forests or cliffs Conservation Status Lists Elevation Range in Arizona USFWS 1 No 3,200 – 10,500 feet, locally to 1,200 feet 9 AZGFD 2 No Density Estimate DoD 3 No Territory Size: Unknown BLM 4 No Density: Unknown, sometimes occurs in loose colonies 8 PIF Watch List 5b No PIF Regional Concern 5a No Migratory Bird Treaty Act Natural History Profile Covered Seasonal Distribution in Arizona PIF Breeding Population Size Estimates 6 Breeding April – early August, desert nesting may Arizona 710,000 ◑ begin in March 9 Global 7,200,000 ◑ Migration February – April; August – mid-October 9 9.93% Percent in Arizona Winter Rare, very small numbers 5b PIF Population Goal Nest and Nesting Habits Maintain 8 Type of Nest Cavity or crevice Trends in Arizona Nest Substrate Tree, rock, or cliff; also artificial
    [Show full text]
  • Absorption of Light Energy Light, Energy, and Electron Structure SCIENTIFIC
    Absorption of Light Energy Light, Energy, and Electron Structure SCIENTIFIC Introduction Why does the color of a copper chloride solution appear blue? As the white light hits the paint, which colors does the solution absorb and which colors does it transmit? In this activity students will observe the basic principles of absorption spectroscopy based on absorbance and transmittance of visible light. Concepts • Spectroscopy • Visible light spectrum • Absorbance and transmittance • Quantized electron energy levels Background The visible light spectrum (380−750 nm) is the light we are able to see. This spectrum is often referred to as “ROY G BIV” as a mnemonic device for the order of colors it produces. Violet has the shortest wavelength (about 400 nm) and red has the longest wavelength (about 650–700 nm). Many common chemical solutions can be used as filters to demonstrate the principles of absorption and transmittance of visible light in the electromagnetic spectrum. For example, copper(II) chloride (blue), ammonium dichromate (orange), iron(III) chloride (yellow), and potassium permanganate (red) are all different colors because they absorb different wave- lengths of visible light. In this demonstration, students will observe the principles of absorption spectroscopy using a variety of different colored solutions. Food coloring will be substituted for the orange and yellow chemical solutions mentioned above. Rare earth metal solutions, erbium and praseodymium chloride, will be used to illustrate line absorption spectra. Materials Copper(II) chloride solution, 1 M, 85 mL Diffraction grating, holographic, 14 cm × 14 cm Erbium chloride solution, 0.1 M, 50 mL Microchemistry solution bottle, 50 mL, 6 Potassium permanganate solution (KMnO4), 0.001 M, 275 mL Overhead projector and screen Praseodymium chloride solution, 0.1 M, 50 mL Red food dye Water, deionized Stir rod, glass Beaker, 250-mL Tape Black construction paper, 12 × 18, 2 sheets Yellow food dye Colored pencils Safety Precautions Copper(II) chloride solution is toxic by ingestion and inhalation.
    [Show full text]
  • Monochromatic: Red Orange Yellow Green Blue Violet Complementary
    Monochromatic: Split Complementary: Red Red, Yellow-Green, Blue-Green Orange Red-Orange, Green, Blue Yellow Orange, Blue-Green, Blue-Violet Green Yellow-Orange, Blue, Violet Blue Yellow, Blue-Violet, Red-Violet Violet Yellow-Green, Violet, Red Green, Red-Violet, Red-Orange Complementary: Blue-Green, Red, Orange Red & Green Blue, Red-Orange, Yellow-Orange Red-Orange & Blue-Green Blue-Violet, Orange, Yellow Orange & Blue Violet, Yellow-Orange, Yellow-Green Yellow-Orange & Blue-Violet Red-Violet, Yellow, Green Yellow & Violet Yellow-Green & Red-Violet Tetradic: Red, Yellow, Green, Violet Triadic: Red, Yellow-Orange, Green, Blue-Violet Red, Yellow, Blue Red-Orange, Blue-Green, Yellow-Orange, Blue- Red-Orange, Yellow-Green, Blue-Violet Violet Orange, Green, Violet Red-Orange, Blue-Green, Yellow, Violet Yellow-Orange, Blue-Green, Red-Violet Orange, Blue, Green, Red Orange, Blue, Yellow-Green, Red-Violet Analogous: Yellow-Orange, Blue-Violet, Green, Red Red, Red Orange, Orange Yellow, Violet, Blue, Orange Red-Orange, Orange, Yellow-Orange Yellow-Green, Red-Violet, Blue-Green, Red- Orange, Yellow-Orange, Yellow Orange Yellow-Orange, Yellow, Yellow-Green Yellow, Yellow-Green, Green Yellow-Green, Green, Blue-Green Green, Blue-Green, Blue Blue-Green, Blue, Blue-Violet Blue, Blue-Violet, Violet Blue-Violet, Violet, Red-Violet Violet, Red-Violet, Red Red-Violet, Red, Red-Orange .
    [Show full text]
  • Violet Red Bile Agar M049
    Violet Red Bile Agar M049 Violet Red Bile Agar is selective medium used for the isolation, detection and enumeration of coli-aerogenes bacteria in water, milk, other dairy food products and also from clinical samples. Composition** Ingredients Gms / Litre Peptic digest of animal tissue 7.000 Yeast extract 3.000 Sodium chloride 5.000 Bile salts mixture 1.500 Lactose 10.000 Neutral red 0.030 Crystal violet 0.002 Agar 15.000 Final pH ( at 25°C) 7.4±0.2 **Formula adjusted, standardized to suit performance parameters Directions Suspend 41.53 grams in 1000 ml distilled water. Heat with stirring to boiling to dissolve the medium completely. DO NOT AUTOCLAVE. Cool to 45°C and pour into sterile Petri plates containing the inoculum. If desired, the medium can be sterilized by autoclaving at 15 lbs pressure at 15lbs pressure (121°C) for 15 minutes. Principle And Interpretation The coliform group consists of several genera of bacteria belonging to the family Enterobacteriaceae . The historical definition of this group has been based on the method used for detection i.e. lactose fermentation. This group is defined as all aerobic and facultative anaerobic, gram-negative, non-spore-forming rod shaped bacteria that ferment lactose with gas and acid formation within 48 hour at 35°C (1, 2). Examination of foods, ingredients and raw materials, for the presence of marker groups such as coliforms is the one of the common tests. Violet Red Bile Agar, a modification of MacConkeys original formulation (3) is used for the enumeration of coli-aerogenes bacterial group.
    [Show full text]
  • Color Chart Colorchart
    Color Chart AMERICANA ACRYLICS Snow (Titanium) White White Wash Cool White Warm White Light Buttermilk Buttermilk Oyster Beige Antique White Desert Sand Bleached Sand Eggshell Pink Chiffon Baby Blush Cotton Candy Electric Pink Poodleskirt Pink Baby Pink Petal Pink Bubblegum Pink Carousel Pink Royal Fuchsia Wild Berry Peony Pink Boysenberry Pink Dragon Fruit Joyful Pink Razzle Berry Berry Cobbler French Mauve Vintage Pink Terra Coral Blush Pink Coral Scarlet Watermelon Slice Cadmium Red Red Alert Cinnamon Drop True Red Calico Red Cherry Red Tuscan Red Berry Red Santa Red Brilliant Red Primary Red Country Red Tomato Red Naphthol Red Oxblood Burgundy Wine Heritage Brick Alizarin Crimson Deep Burgundy Napa Red Rookwood Red Antique Maroon Mulberry Cranberry Wine Natural Buff Sugared Peach White Peach Warm Beige Coral Cloud Cactus Flower Melon Coral Blush Bright Salmon Peaches 'n Cream Coral Shell Tangerine Bright Orange Jack-O'-Lantern Orange Spiced Pumpkin Tangelo Orange Orange Flame Canyon Orange Warm Sunset Cadmium Orange Dried Clay Persimmon Burnt Orange Georgia Clay Banana Cream Sand Pineapple Sunny Day Lemon Yellow Summer Squash Bright Yellow Cadmium Yellow Yellow Light Golden Yellow Primary Yellow Saffron Yellow Moon Yellow Marigold Golden Straw Yellow Ochre Camel True Ochre Antique Gold Antique Gold Deep Citron Green Margarita Chartreuse Yellow Olive Green Yellow Green Matcha Green Wasabi Green Celery Shoot Antique Green Light Sage Light Lime Pistachio Mint Irish Moss Sweet Mint Sage Mint Mint Julep Green Jadeite Glass Green Tree Jade
    [Show full text]
  • BWSR Featured Plant: Downy Yellow Violet
    2019 June Plant of the Month BWSR Featured Plant Name: Downy yellow violet (Viola pubescens) Plant family: Violet (Violaceae) Downy yellow Downy yellow violet, AKA hairy yellow violets are an important early violet or smooth yellow violet, is food source for a short (4- to 12-inch-tall), native, pollinators. Fine hairs along the herbaceous perennial that blooms in rounded teeth woodlands, gardens edge of the leaf are a distinguishing and shady areas Plant Stats feature. Brown lines starting in April. It STATEWIDE on the flower petals provides an early lead pollinators to WETLAND nectar and pollen. splash of color and INDICATOR Photo Credits: important early STATUS: FACU Heather Holm season nectar and PRIMARY USES: pollen. Like other Ground cover, shade/pollinator Viola species, this gardens, edibles, plant produces both woodland showy, open cross- restorations pollinating flowers at the top of the plant, and fully closed, self-pollinating flowers that may be found aboveground or underground. The showy flowers bloom before trees leaf out. The closed flowers bloom once the tree canopy leafs out. Planting Recommendations Range Downy yellow violets and can be used as Downy yellow violet is found may not be as an alternative to turf throughout Minnesota. Records aggressive as some grass, along paths and exist in all but a handful of other violets in a woodland borders, counties. It is mostly found east garden, but will spread and can be mixed with of the Missouri River, with a few over time in ideal other short woodland records west of the Missouri. conditions — part plants such as sedges, Its range stretches into New shade and medium to anemones and wild England and north into central dry soils.
    [Show full text]
  • Light and the Electromagnetic Spectrum
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © JonesLight & Bartlett and Learning, LLCthe © Jones & Bartlett Learning, LLC NOTElectromagnetic FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION4 Spectrum © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALEJ AMESOR DISTRIBUTIONCLERK MAXWELL WAS BORN IN EDINBURGH, SCOTLANDNOT FOR IN 1831. SALE His ORgenius DISTRIBUTION was ap- The Milky Way seen parent early in his life, for at the age of 14 years, he published a paper in the at 10 wavelengths of Proceedings of the Royal Society of Edinburgh. One of his first major achievements the electromagnetic was the explanation for the rings of Saturn, in which he showed that they con- spectrum. Courtesy of Astrophysics Data Facility sist of small particles in orbit around the planet. In the 1860s, Maxwell began at the NASA Goddard a study of electricity© Jones and & magnetismBartlett Learning, and discovered LLC that it should be possible© Jones Space & Bartlett Flight Center. Learning, LLC to produce aNOT wave FORthat combines SALE OR electrical DISTRIBUTION and magnetic effects, a so-calledNOT FOR SALE OR DISTRIBUTION electromagnetic wave.
    [Show full text]
  • Flags and Symbols Gilbert Baker Designed the Rainbow flag for the 1978 San Francisco’S Gay Freedom Celebration
    Flags and Symbols ! ! ! Gilbert Baker designed the rainbow flag for the 1978 San Francisco’s Gay Freedom Celebration. In the original eight-color version, pink stood for sexuality, red for life, orange for healing, yellow for the sun, green for nature, turquoise for art, indigo for harmony and violet for the soul.! " Rainbow Flag First unveiled on 12/5/98 the bisexual pride flag was designed by Michael Page. This rectangular flag consists of a broad magenta stripe at the top (representing same-gender attraction,) a broad stripe in blue at the bottoms (representing opposite- gender attractions), and a narrower deep lavender " band occupying the central fifth (which represents Bisexual Flag attraction toward both genders). The pansexual pride flag holds the colors pink, yellow and blue. The pink band symbolizes women, the blue men, and the yellow those of a non-binary gender, such as a gender bigender or gender fluid Pansexual Flag In August, 2010, after a process of getting the word out beyond the Asexual Visibility and Education Network (AVEN) and to non-English speaking areas, a flag was chosen following a vote. The black stripe represents asexuality, the grey stripe the grey-are between sexual and asexual, the white " stripe sexuality, and the purple stripe community. Asexual Flag The Transgender Pride flag was designed by Monica Helms. It was first shown at a pride parade in Phoenix, Arizona, USA in 2000. The flag represents the transgender community and consists of five horizontal stripes. Two light blue which is the traditional color for baby boys, two pink " for girls, with a white stripe in the center for those Transgender Flag who are transitioning, who feel they have a neutral gender or no gender, and those who are intersex.
    [Show full text]
  • Interspecific Competition and Social Behavior in Violet-Green Swallows
    606 ShortCommunications [Auk, Vol. 107 Interspecific Competition and Social Behavior in Violet-green Swallows JEFFREYD. BRAWN' Departmentof BiologicalSciences, Box 5640, Northern Arizona University, Flagstaff,Arizona 86011 USA Resourcecompetition can lead to aggressiveor ter- swallowaggression toward female Western Bluebirds ritorial behavioramong conspecifics or heterospecif- aswell (e.g. Prescott1982). Encounters commonly in- ics(Orians and Willson 1964).The demographiccon- volved one or more swallowsflying towards,but not sequencesof these interactions may also influence striking, a bluebird perchedon or near a box. Blue- other life-history traits(Thornhill 1987).Competition birds remained perched, made frequent "rushing" for nest sitesamong cavity-nestingbirds is a potent flightsat oncomingswallows, or left the vicinity. In selective force that often prevents sexually mature 9 instances, as swallows "harassed" a bluebird, other individuals from breeding (Morse 1980). In popula- swallowsentered disputedboxes and depositednest tions of cavity nestersthat breed in north-centralAr- material(pine needles)or removedbluebird nestma- izona (see Brawn and Balda 1988), I observed inter- terial (grass).I never observedswallow aggression specificinteractions between Violet-green Swallows toward bluebirds away from nest boxes. (Tachycinetathallasina) and Western Bluebirds (Sialia Swallows were not marked individually, but I es- mexicana),whose abundancesare limited by nest-site timated groups to range from 4 to 12 individuals. availability.Here I describethese encounters and dis- Thesegroups always included two or more brightly cussthe possibleinfluence of interspecificresource colored males and two or more dully colored indi- competitionon socialbehavior in Violet-green Swal- viduals(probably females, but the phenologyof swal- lows. low plumagecharacteristics is not reliablyknown [Pyle In 1980, I installed 60 nest boxes on each of two et aL 1987]).Solitary swallows were all brightly col- 8.5-haareas in ponderosapine (Pinusponderosa) forest ored males.
    [Show full text]
  • 10 Comparing Colors LABORATORY 1 C L a S S S E S S I O N
    10 Comparing Colors LABORATORY 1 CLASS SESSION ACTIVITY OVERVIEW NGSS RATIONALE In this activity, students first learn that visible light can be separated into different colors. Students then conduct an investigation to collect evidence that indicates that different colors of light carry different amounts of energy. From the results of their investigation, students conclude that higher frequencies of light carry more energy. In their final analysis, students apply the practice of analyzing and inter- preting data as they examine light transmission graphs for three different sunglass lenses. It is through this analysis that students engage with the crosscutting con- cept of structure and function as they determine which sunglass lens provides the best protection for the eyes. NGSS CORRELATION Disciplinary Core Ideas PS-4.B Wave Properties: When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object’s material and the frequency (color) of the light. PS-4.B Wave Properties: A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between media. Science and Engineering Practices Planning and Carrying Out Investigations: Conduct an investigation to produce data to serve as the basis for evidence that meets the goals of an investigation. Crosscutting Concepts Structure and Function: Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. WAVES 3 ACTIVITY 10 COMPARING COLORS Common Core State Standards—ELA/Literacy RST.6-8.3 Follow precisely a multi-step procedure when carrying out experiments, taking measurements, or performing technical tasks.
    [Show full text]
  • Why Is the Sky Purple?
    A laboratory experiment from the Why is Little Shop of Physics at Colorado State University the sky CMMAP purple? Reach for the sky. Overview Necessary materials: Of course, you expect the question to be “why is the sky blue?” That’s the classic version. • 1 “sunset egg” • A white light flashlight And here’s the classic answer: scattering. We’ll talk about what this word means and how it leads to sky color, but we will also see that the The most crucial piece for this experiment is the light from the sky actually contains a bit more “sunset egg.” The small-scale structure of these violet than it does blue! So why do we see glori- glass “eggs” works well to demonstrate the differ- ous blue skies rather than a purple firmament ential scattering that leads to the color of the sky when we gaze up into Earth’s atmosphere? and the color of the sunset. Theory You can find them at rock and nature shops, or you can purchase them in bulk from Pelham Grayson The first person to correctly work out the de- (www.pelhamgrayson.com) under “Magic Feng tails of the process that gives rise to the color of Shui Eggs”. the sky was the English physicist, Lord John Rayleigh, working in the late 1800’s. Rayleigh correctly surmised that the blue color of the sky was a result of scattering. As light enters our atmosphere on its journey from the sun, it interacts with air molecules and is redirected. This redirection is more pronounced for shorter wavelengths toward the blue, or violet, end of the spectrum.
    [Show full text]
  • The Electromagnetic Spectrum CESAR’S Booklet
    The electromagnetic spectrum CESAR’s Booklet The electromagnetic spectrum The colours of light You have surely seen a rainbow, and you are probably familiar with the explanation to this phenomenon: In very basic terms, sunlight is refracted as it gets through water droplets suspended in the Earth’s atmosphere. Because white light is a mixture of six (or seven) different colours, and each colour is refracted a different angle, the result is that the colours get arranged in a given order, from violet to red through blue, green, yellow and orange. We can get the same effect in a laboratory by letting light go through a prism, as shown in Figure 1. This arrangement of colours is what we call a spectrum. Figure 1: White light passing through a prism creates a rainbow. (Credit: physics.stackexchange.com) Yet the spectrum of light is not only made of the colours we see with our eyes. There are other colours that are invisible, although they can be detected with the appropriate devices. Beyond the violet, we have ultraviolet, X-rays and gamma rays. On the other extreme, beyond the red, we have infrared and radio. Although we cannot see them, we are familiar with these other types of light: for example, we use radio waves to transmit music from one station to our car receiver, ultraviolet light from the Sun makes our skin get tanned, X-rays are used by radiography machines to check if we have a broken bone, or we change channel in our TV device by sending an infrared signal to it from the remote control.
    [Show full text]