World Meteorological Organization Global Weather & Climate
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Cruising Guide to the Philippines
Cruising Guide to the Philippines For Yachtsmen By Conant M. Webb Draft of 06/16/09 Webb - Cruising Guide to the Phillippines Page 2 INTRODUCTION The Philippines is the second largest archipelago in the world after Indonesia, with around 7,000 islands. Relatively few yachts cruise here, but there seem to be more every year. In most areas it is still rare to run across another yacht. There are pristine coral reefs, turquoise bays and snug anchorages, as well as more metropolitan delights. The Filipino people are very friendly and sometimes embarrassingly hospitable. Their culture is a unique mixture of indigenous, Spanish, Asian and American. Philippine charts are inexpensive and reasonably good. English is widely (although not universally) spoken. The cost of living is very reasonable. This book is intended to meet the particular needs of the cruising yachtsman with a boat in the 10-20 meter range. It supplements (but is not intended to replace) conventional navigational materials, a discussion of which can be found below on page 16. I have tried to make this book accurate, but responsibility for the safety of your vessel and its crew must remain yours alone. CONVENTIONS IN THIS BOOK Coordinates are given for various features to help you find them on a chart, not for uncritical use with GPS. In most cases the position is approximate, and is only given to the nearest whole minute. Where coordinates are expressed more exactly, in decimal minutes or minutes and seconds, the relevant chart is mentioned or WGS 84 is the datum used. See the References section (page 157) for specific details of the chart edition used. -
Hurricane Flooding
ATM 10 Severe and Unusual Weather Prof. Richard Grotjahn L 18/19 http://canvas.ucdavis.edu Lecture 18 topics: • Hurricanes – what is a hurricane – what conditions favor their formation? – what is the internal hurricane structure? – where do they occur? – why are they important? – when are those conditions met? – what are they called? – What are their life stages? – What does the ranking mean? – What causes the damage? Time lapse of the – (Reading) Some notorious storms 2005 Hurricane Season – How to stay safe? Note the water temperature • Video clips (colors) change behind hurricanes (black tracks) (Hurricane-2005_summer_clouds-SST.mpg) Reading: Notorious Storms • Atlantic hurricanes are referred to by name. – Why? • Notorious storms have their name ‘retired’ © AFP Notorious storms: progress and setbacks • August-September 1900 Galveston, Texas: 8,000 dead, the deadliest in U.S. history. • September 1906 Hong Kong: 10,000 dead. • September 1928 South Florida: 1,836 dead. • September 1959 Central Japan: 4,466 dead. • August 1969 Hurricane Camille, Southeast U.S.: 256 dead. • November 1970 Bangladesh: 300,000 dead. • April 1991 Bangladesh: 70,000 dead. • August 1992 Hurricane Andrew, Florida and Louisiana: 24 dead, $25 billion in damage. • October/November 1998 Hurricane Mitch, Honduras: ~20,000 dead. • August 2005 Hurricane Katrina, FL, AL, MS, LA: >1800 dead, >$133 billion in damage • May 2008 Tropical Cyclone Nargis, Burma (Myanmar): >146,000 dead. Some Notorious (Atlantic) Storms Tracks • Camille • Gilbert • Mitch • Andrew • Not shown: – 2004 season (Charley, Frances, Ivan, Jeanne) – Katrina (Wilma & Rita) (2005) – Sandy (2012), Harvey (2017), Florence & Michael (2018) Hurricane Camille • 14-19 August 1969 • Category 5 at landfall – for 24 hours – peak winds 165 kts (190mph @ landfall) – winds >155kts for 18 hrs – min SLP 905 mb (26.73”) – 143 perished along gulf coast, – another 113 in Virginia Hurricane Andrew • 23-26 August 1992 • Category 5 at landfall • first Category 5 to hit US since Camille • affected S. -
A Climatology of Tropical Cyclone Size in the Western North Pacific Using an Alternative Metric Thomas B
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2017 A Climatology of Tropical Cyclone Size in the Western North Pacific Using an Alternative Metric Thomas B. (Thomas Brian) McKenzie III Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES A CLIMATOLOGY OF TROPICAL CYCLONE SIZE IN THE WESTERN NORTH PACIFIC USING AN ALTERNATIVE METRIC By THOMAS B. MCKENZIE III A Thesis submitted to the Department of Earth, Ocean and Atmospheric Science in partial fulfillment of the requirements for the degree of Master of Science 2017 Copyright © 2017 Thomas B. McKenzie III. All Rights Reserved. Thomas B. McKenzie III defended this thesis on March 23, 2017. The members of the supervisory committee were: Robert E. Hart Professor Directing Thesis Vasubandhu Misra Committee Member Jeffrey M. Chagnon Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the thesis has been approved in accordance with university requirements. ii To Mom and Dad, for all that you’ve done for me. iii ACKNOWLEDGMENTS I extend my sincere appreciation to Dr. Robert E. Hart for his mentorship and guidance as my graduate advisor, as well as for initially enlisting me as his graduate student. It was a true honor working under his supervision. I would also like to thank my committee members, Dr. Vasubandhu Misra and Dr. Jeffrey L. Chagnon, for their collaboration and as representatives of the thesis process. Additionally, I thank the Civilian Institution Programs at the Air Force Institute of Technology for the opportunity to earn my Master of Science degree at Florida State University, and to the USAF’s 17th Operational Weather Squadron at Joint Base Pearl Harbor-Hickam, HI for sponsoring my graduate program and providing helpful feedback on the research. -
The St·Ructural Evolution Oftyphoo S
NSF/ NOAA ATM 8418204 ATM 8720488 DOD- NAVY- ONR N00014-87-K-0203 THE ST·RUCTURAL EVOLUTION OFTYPHOO S by Candis L. Weatherford SEP 2 6 1989 Pl.-William M. Gray THE STRUCTURAL EVOLUTION OF TYPHOONS By Candis L. Weatherford Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 September, 1989 Atmospheric Science Paper No. 446 ABSTRACT A three phase life cycle characterizing the structural evolution of typhoons has been derived from aircraft reconnaissance data for tropical cyclones in the western North Pacific. More than 750 aircraft reconnaissance missions at 700 mb into 101 northwest Pacific typhoons are examined. The typical life cycle consists of the fol lowing: phase 1) the entire vortex wind field builds as the cyclone attains maximum intensity; phase 2) central pressure fills and maximum winds decrease in association with expanding cyclone size and strengthening of outer core winds; and phase 3) the wind field of the entire vortex decays. Nearly 700 aircraft radar reports of eyewall diameter are used to augment anal yses of the typhoon's life cycle. Eye characteristics and diameter appear to reflect the ease with which the maximum wind field intensifies. On average, an eye first appears with intensifying cyclones at 980 mb central pressure. Cyclones obtaining an eye at pressures higher than 980 mb are observed to intensify more rapidly while those whose eye initially appears at lower pressures deepen at slower rates and typ ically do not achieve as deep a central pressure. The eye generally contracts with intensification and expands as the cyclone fills, although there are frequent excep tions to this rule due to the variable nature of the eyewall size. -
Tropical Cyclones: Meteorological Aspects Mark A
Tropical Cyclones: Meteorological Aspects Mark A. Lander1 Water and Environmental Research Institute of the Western Pacific, University of Guam, UOG Station, Mangilao, Guam (USA) 96923 Sailors have long recognized the existence of deadly storms in Every year, TCs claim many lives—occasionally exceeding tropical latitudes where the weather was usually a mix of bright sun and 100,000. Some of the world’s greatest natural disasters have been gentle breezes with quickly passing showers. These terrifying storms associated with TCs. For example, Tropical Cyclone 02B was the were known to have a core of screaming winds accompanied by deadliest and most destructive natural disaster on earth in 1991. The blinding rain, spume and sea spray, and sharply lowered barometric associated extreme storm surge along the coast of Bangladesh was the pressure. When the sailors were lucky enough to survive penetration primary reason for the loss of 138,000 lives (Joint Typhoon Warning to the core of such violent weather, they found a region of calm. This Center, 1991). It occurred 19 years after the loss of ≈300,000 lives in region is the signature characteristic and best-known feature of these Bangladesh by a similar TC striking the low-lying Ganges River storms—the eye (Fig. 1). region in April 1970. In a more recent example, flooding caused by These violent storms of the tropical latitudes were known to be Hurricane Mitch killed 10,000+ people in Central America in Fall seasonal, hence their designation by Atlantic sailors as “line” storms, 1998. Nearly all tropical islands—the islands of the Caribbean, Ha- in reference to the sun’s crossing of the line (equator) in September (the waii, French Polynesia, Micronesia, Fiji, Samoa, Mauritius, La Re- month of peak hurricane activity in the North Atlantic). -
Tropical Cyclone: Climatology
ESCI 344 – Tropical Meteorology Lesson 5 – Tropical Cyclones: Climatology References: A Global View of Tropical Cyclones, Elsberry (ed.) The Hurricane, Pielke Tropical Cyclones: Their evolution, structure, and effects, Anthes Forecasters’ Guide to Tropical Meteorology, Atkinsson Forecasters Guide to Tropical Meteorology (updated), Ramage Global Guide to Tropical Cyclone Forecasting, Holland (ed.) Reading: Introduction to the Meteorology and Climate of the Tropics, Chapter 9 A Global View of Tropical Cyclones, Chapter 3 REQUIREMENTS FOR FORMATION In order for a tropical cyclone to form, the following general conditions must be present: Deep, warm ocean mixed layer. ◼ Sea-surface temperature at least 26.5C. ◼ Mixed layer depth of 45 meters or more. Relative maxima in absolute vorticity in the lower troposphere ◼ Need a preexisting cyclonic disturbance. ◼ Must be more than a few degrees of latitude from the Equator. Small values of vertical wind shear. ◼ Disturbance must be in deep easterly flow, or in a region of light upper- level winds. Mean upward vertical motion with humid mid-levels. GLOBAL CLIMATOLOGY Note: Most of the statistics given in this section are from Gray, W.M., 1985: Tropical Cyclone Global Climatology, WMO Technical Document WMO/TD-72, Vol. I, 1985. About 80 tropical cyclones per year world-wide reach tropical storm strength ( 34 kts). About 50 – 55 each year world-wide reach hurricane/typhoon strength ( 64 kts). The rate of occurrence globally is very steady. Global average annual variation is small (about 7%). Extreme variations are in the range of 16 to 22%. Variability within a particular region is much larger than global variability. Most (87%) form within 20 of the Equator. -
On Tropical Cyclones
Frequently Asked Questions on Tropical Cyclones Frequently Asked Questions on Tropical Cyclones 1. What is a tropical cyclone? A tropical cyclone (TC) is a rotational low-pressure system in tropics when the central pressure falls by 5 to 6 hPa from the surrounding and maximum sustained wind speed reaches 34 knots (about 62 kmph). It is a vast violent whirl of 150 to 800 km, spiraling around a centre and progressing along the surface of the sea at a rate of 300 to 500 km a day. The word cyclone has been derived from Greek word ‘cyclos’ which means ‘coiling of a snake’. The word cyclone was coined by Heary Piddington who worked as a Rapporteur in Kolkata during British rule. The terms "hurricane" and "typhoon" are region specific names for a strong "tropical cyclone". Tropical cyclones are called “Hurricanes” over the Atlantic Ocean and “Typhoons” over the Pacific Ocean. 2. Why do ‘tropical cyclones' winds rotate counter-clockwise (clockwise) in the Northern (Southern) Hemisphere? The reason is that the earth's rotation sets up an apparent force (called the Coriolis force) that pulls the winds to the right in the Northern Hemisphere (and to the left in the Southern Hemisphere). So, when a low pressure starts to form over north of the equator, the surface winds will flow inward trying to fill in the low and will be deflected to the right and a counter-clockwise rotation will be initiated. The opposite (a deflection to the left and a clockwise rotation) will occur south of the equator. This Coriolis force is too tiny to effect rotation in, for example, water that is going down the drains of sinks and toilets. -
Tropical Cyclones: Meteorological Aspects Mark A
Tropical Cyclones: Meteorological Aspects Mark A. Lander1 Water and Environmental Research Institute of the Western Pacific, University of Guam, UOG Station, Mangilao, Guam (USA) 96923 Sailors have long recognized the existence of deadly storms in Every year, TCs claim many lives—occasionally exceeding tropical latitudes where the weather was usually a mix of bright sun and 100,000. Some of the world’s greatest natural disasters have been gentle breezes with quickly passing showers. These terrifying storms associated with TCs. For example, Tropical Cyclone 02B was the were known to have a core of screaming winds accompanied by deadliest and most destructive natural disaster on earth in 1991. The blinding rain, spume and sea spray, and sharply lowered barometric associated extreme storm surge along the coast of Bangladesh was the pressure. When the sailors were lucky enough to survive penetration primary reason for the loss of 138,000 lives (Joint Typhoon Warning to the core of such violent weather, they found a region of calm. This Center, 1991). It occurred 19 years after the loss of ≈300,000 lives in region is the signature characteristic and best-known feature of these Bangladesh by a similar TC striking the low-lying Ganges River storms—the eye (Fig. 1). region in April 1970. In a more recent example, flooding caused by These violent storms of the tropical latitudes were known to be Hurricane Mitch killed 10,000+ people in Central America in Fall seasonal, hence their designation by Atlantic sailors as “line” storms, 1998. Nearly all tropical islands—the islands of the Caribbean, Ha- in reference to the sun’s crossing of the line (equator) in September (the waii, French Polynesia, Micronesia, Fiji, Samoa, Mauritius, La Re- month of peak hurricane activity in the North Atlantic). -
Frequently Asked Questions During URI/NHC/AOC Hurricane Preparedness Webinars
Frequently Asked Questions during URI/NHC/AOC hurricane preparedness webinars: Q: What is the average length of the eye of the hurricane? How big is the eye of a hurricane? A: The average size of an eye is about 20 to 30 miles across; we have seen few that have very small eyes and sometimes those storms are very strong. We can have eyes that are as small as 5 to 10 miles across and sometimes as big as 40 to 50 miles across but on average they are about 20 to 30 miles across. Q: How long can a hurricane last? A: Hurricane typically last from several days to a week or so. Hurricane life cycles may run their course in as little as a day or last as long as a month. On occasion, they can last as long as a couple or even several weeks. The longest-lived hurricane was Hurricane Ginger in 1971 that lasted an entire month. The longest-lasting tropical cyclone ever observed was Hurricane/Typhoon John, which existed for 31 days as it traveled a 13,000 km (8,100 mi) path from the eastern Pacific to the western Pacific and back to the central Pacific. There have also been many tropical cyclones that remained at hurricane intensity for 12 hours or less, including the Atlantic hurricane, Ernesto, in 2006. HSS links: http://www.hurricanescience.org/science/science/hurricanelifecycle/ Q: What was the strongest hurricane in history? A: The strongest hurricane in the Atlantic basin was Hurricane Wilma in 2005. It had peak winds of 185 mph and the pressure was an exceedingly low 882 millibars (26.05" of mercury). -
Super Typhoon Haiyan / Yolanda – Report
Center for Disaster Management and Risk Reduction Technology CEDIM Forensic Disaster Analysis Group (FDA) Super Typhoon Haiyan / Yolanda – Report 13.11.2013 – Report No. 2, Focus on Philippines – 18:00 GMT Authors: James Daniell, Bernhard Mühr, Trevor Girard, André Dittrich, Joachim Fohringer, Christian Lucas, Tina Kunz-Plapp Official Disaster Name Date Landfall UTC Local Duration (PHL) Yolanda (International: Haiyan) From 4-11 7.11. 20:40 +8 30 hours Preferred Hazard Information: Path Speed Definition Width (km) Gust (Peak) Landfall Sustained 280W (PH) then 325W (VN) 30-40kph Category 5 Max: 150 379kph 312kph 250kph JTWC JTWC Location Information: Economic Country ISO Provinces/Regions Most Impact Exposure HDI (2012) Urbanity Pop. affected IV, V, VI, VII, VIII, Leyte, Samar, Philippines PH X, XI, XIII Tacloban Ca. $104b 0.654 55% Ca. 14 million Vietnam, China VN North of Da Nang Coastal regions n/a 0.617 45% 600,000 evac. Preferred Hazard Information: Philippines Vietnam China Key Hazard Metrics Typhoon (Cat. 5) Category 4 Unk. Leyte, Dinagat, Samar, Aklan, Capiz, Guimares, Cebu (all on Hazard Description (Wind speed etc.) Philippines), with wind speeds exceeding 185kph The category 5 typhoon made landfall near Guiuan on Eastern Samar at 07.11 at 20:40 UTC and hit with the strongest landfall wind speeds ever observed. Previously, the typhoon had hit the small nation of Palau causing some damage. Wind gust speeds reached a predicted 380 kph shortly before impact.The warm sea water and low wind shear has contributed to the maximum intensity of this typhoon before landfall. The central pressure was estimated 885 hPa (according Joint Typhoon Warning Center), which makes it only the 5th in 25 years in the Western Pacific to do so (Megi 2010, Flo 1990, Ruth 1991, Yuri 1991). -
Super Typhoon HAIYAN Crossed the Philippines with High Intensity in November 2013 Dr
Super typhoon HAIYAN crossed the Philippines with high intensity in November 2013 Dr. Susanne Haeseler, Christiana Lefebvre; updated: 13 December 2013 Introduction Super typhoon HAIYAN, on the Philippines known as YOLANDA, crossed the islands between the 7th and 9th November 2013 (Fig. 1 to 3). It is classified as one of the strongest typhoons ever making landfall. The storm surge, triggering widespread floods, and winds of hurricane force caused by HAIYAN wreaked havoc. In this connection, HAIYAN bears much resemblance to a typhoon in the year 1912, even with respect to the effects (see below). Fig. 1: Infrared satellite image of typhoon HAIYAN being located across the Philippines, acquired on 8 November 2013, 09 UTC. Up to 5 m high waves hit the coastal areas. Ships capsized, sank or ran aground. In Tacloban, the capital of the province of Leyte, even three bigger cargo ships were washed on the land. Numerous towns were partly or totally destroyed. Trees were blown down. There were power outages and the communication was knocked out. Destroyed streets and airports hampered the rescue work and further help. Hundreds of thousands of people lost their homes. Although many people sought shelter, thousands lost their lives. 1 The National Disaster Risk Reduction and Management Council (NDRRMC) of the Philippines provided the following information about the effects of the typhoon in the Situational Report No. 61 of 13 December 2013, 6:00 AM, which changed daily even 5 weeks after the event: ▪ 6 009 were reported dead (as of 13 December 2013, 6 AM) ▪ 27 022 injured (as of 13 December 2013, 6 AM) ▪ 1 779 are still missing (as of 13 December 2013, 6 AM) ▪ 3 424 190 families / 16 076 360 persons were affected ▪ out of the total affected, 838 811 families / 3 927 827 persons were displaced and served by evacuation centres ▪ 1 139 731 houses (550 904 totally / 588 827 partially) were damaged. -
Hurricane Noelani”
Disaster Movies: Catastrophically Bad Science Scott Stransky ©2013 AIR WORLDWIDE CONFIDENTIAL: For the exclusive use of Atlanta Client Conference attendees 1 Agenda • Analysis of disaster movies from a scientific point of view • We’ll cover a wide range of topics, including: – Storm surge – Severe thunderstorms – Hurricanes – Geology of the Earth’s interior – Lava – Severe thunderstorms – Pandemics – Asteroid impacts – Tsunamis – Polar reversals ©2013 AIR WORLDWIDE CONFIDENTIAL: For the exclusive use of Atlanta Client Conference attendees 2 The Film The Day After Tomorrow Portrays 300-foot “Storm Surge” in New York City ©2013 AIR WORLDWIDE CONFIDENTIAL: For the exclusive use of Atlanta Client Conference attendees 3 Storm Surge Is Caused by Low Pressure and High Wind • The main drivers of storm surge are: – Wind pushing the water up towards the coast (which is why the front right quadrant of a hurricane is the worst) – Low pressure of the storm suctioning the water upwards ©2013 AIR WORLDWIDE CONFIDENTIAL: For the exclusive use of Atlanta Client Conference attendees 4 A 300-Foot Storm Surge Is Unrealistic • It would require approximately 1,200 mile per hour winds—twice the speed of sound • Yet when the surge is approaching land, there is very little wind evident • Of course, realistic storm surge is an important driver of risk, especially from hurricanes, and AIR is in the process of updating its storm surge model ©2013 AIR WORLDWIDE CONFIDENTIAL: For the exclusive use of Atlanta Client Conference attendees 5 Tornadoes in Los Angeles Make