Understanding Map Projections

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Map Projections Understanding Map Projections GIS by ESRI ™ Melita Kennedy and Steve Kopp Copyright © 19942000 Environmental Systems Research Institute, Inc. All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property of Environmental Systems Research Institute, Inc. This work is protected under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as expressly permitted in writing by Environmental Systems Research Institute, Inc. All requests should be sent to Attention: Contracts Manager, Environmental Systems Research Institute, Inc., 380 New York Street, Redlands, CA 92373-8100, USA. The information contained in this document is subject to change without notice. U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable. Contractor/Manufacturer is Environmental Systems Research Institute, Inc., 380 New York Street, Redlands, CA 92373- 8100, USA. ESRI and the ESRI globe logo are trademarks of Environmental Systems Research Institute, Inc., registered in the United States and certain other countries; registration is pending in the European Community. ArcInfo, ArcGIS, GIS by ESRI, and the ESRI Press logo are trademarks of Environmental Systems Research Institute, Inc. Other companies and products mentioned herein are trademarks or registered trademarks of their respective trademark owners. attribution.p65 8 01/06/2001, 1:46 PM Contents CHAPTER 1: GEOGRAPHIC COORDINATE SYSTEMS ....................1 Geographic coordinate systems ............................................................................... 2 Spheroids and spheres ............................................................................................. 4 Datums ...................................................................................................................... 6 North American datums ............................................................................................ 7 CHAPTER 2: PROJECTED COORDINATE SYSTEMS ........................9 Projected coordinate systems ................................................................................. 10 What is a map projection? ...................................................................................... 11 Projection types ...................................................................................................... 13 Other projections .................................................................................................... 19 Projection parameters ............................................................................................. 20 CHAPTER 3: GEOGRAPHIC TRANSFORMATIONS ........................23 Geographic transformation methods ..................................................................... 24 Equation-based methods ........................................................................................ 25 Grid-based methods ............................................................................................... 27 CHAPTER 4: SUPPORTED MAP PROJECTIONS ..............................29 List of supported map projections ......................................................................... 30 Aitoff........................................................................................................................ 34 Alaska Grid ............................................................................................................. 35 Alaska Series E ........................................................................................................ 36 Albers Equal Area Conic ........................................................................................ 37 Azimuthal Equidistant ............................................................................................. 38 Behrmann Equal Area Cylindrical .......................................................................... 39 Bipolar Oblique Conformal Conic ......................................................................... 40 Bonne ...................................................................................................................... 41 Cassini–Soldner ....................................................................................................... 42 Chamberlin Trimetric .............................................................................................. 43 Craster Parabolic ..................................................................................................... 44 Cylindrical Equal Area ............................................................................................ 45 Double Stereographic ............................................................................................. 46 Eckert I .................................................................................................................... 47 mptoc.p65 3 01/06/2001, 12:31 PM Eckert II ................................................................................................................... 48 Eckert III ................................................................................................................. 49 Eckert IV ................................................................................................................. 50 Eckert V ................................................................................................................... 51 Eckert VI ................................................................................................................. 52 Equidistant Conic .................................................................................................... 53 Equidistant Cylindrical ............................................................................................ 54 Equirectangular ....................................................................................................... 55 Gall’s Stereographic ................................................................................................ 56 Gauss–Krüger .......................................................................................................... 57 Geocentric Coordinate System ............................................................................... 58 Geographic Coordinate System .............................................................................. 59 Gnomonic ............................................................................................................... 60 Great Britain National Grid .................................................................................... 61 Hammer–Aitoff ........................................................................................................ 62 Hotine Oblique Mercator ....................................................................................... 63 Krovak ..................................................................................................................... 64 Lambert Azimuthal Equal Area............................................................................... 65 Lambert Conformal Conic ...................................................................................... 66 Local Cartesian Projection ...................................................................................... 67 Loximuthal .............................................................................................................. 68 McBryde–Thomas Flat-Polar Quartic ..................................................................... 69 Mercator .................................................................................................................. 70 Miller Cylindrical ..................................................................................................... 71 Mollweide ............................................................................................................... 72 New Zealand National Grid ................................................................................... 73 Orthographic ........................................................................................................... 74 Perspective .............................................................................................................. 75 Plate Carrée ............................................................................................................. 76 Polar Stereographic ................................................................................................. 77 Polyconic ................................................................................................................. 78 Quartic Authalic ...................................................................................................... 79
Recommended publications
  • AS/NZS ISO 6709:2011 ISO 6709:2008 ISO 6709:2008 Cor.1 (2009) AS/NZS ISO 6709:2011 AS/NZS ISO 6709:2011
    AS/NZS ISO 6709:2011 ISO 6709:2008 ISO 6709:2008 Cor.1 (2009) AS/NZS ISO 6709:2011AS/NZS ISO Australian/New Zealand Standard™ Standard representation of geographic point location by coordinates AS/NZS ISO 6709:2011 This Joint Australian/New Zealand Standard was prepared by Joint Technical Committee IT-004, Geographical Information/Geomatics. It was approved on behalf of the Council of Standards Australia on 15 November 2011 and on behalf of the Council of Standards New Zealand on 14 November 2011. This Standard was published on 23 December 2011. The following are represented on Committee IT-004: ANZLIC—The Spatial Information Council Australasian Fire and Emergency Service Authorities Council Australian Antarctic Division Australian Hydrographic Office Australian Map Circle CSIRO Exploration and Mining Department of Lands, NSW Department of Primary Industries and Water, Tas. Geoscience Australia Land Information New Zealand Mercury Project Solutions Office of Spatial Data Management The University of Melbourne Keeping Standards up-to-date Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased. Detailed information about joint Australian/New Zealand Standards can be found by visiting the Standards Web Shop at www.saiglobal.com.au or Standards New Zealand web site at www.standards.co.nz and looking up the relevant Standard in the on-line catalogue.
    [Show full text]
  • International Standard
    International Standard INTERNATIONAL ORGANIZATION FOR STANDARDIZATlON.ME~YHAPO~HAR OPI-AHH3AWlR fl0 CTAH~APTM3Al&lM.ORGANISATION INTERNATIONALE DE NORMALISATION Standard representation of latitude, longitude and altitude for geographic Point locations Reprksen ta tion normalis6e des latitude, longitude et altitude pbur Ia localisa tion des poin ts gkographiques First edition - 1983-05-15i Teh STANDARD PREVIEW (standards.iteh.ai) ISO 6709:1983 https://standards.iteh.ai/catalog/standards/sist/40603644-5feb-4b20-87de- d0a2bddb21d5/iso-6709-1983 UDC 681.3.04 : 528.28 Ref. No. ISO 67094983 (E) Descriptors : data processing, information interchange, geographic coordinates, representation of data. Price based on 3 pages Foreword ISO (the International Organization for Standardization) is a worldwide federation of national Standards bodies (ISO member bedies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been authorized has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. International Standard ISO 6709 was developediTeh Sby TTechnicalAN DCommitteeAR DISO/TC PR 97,E VIEW Information processing s ystems, and was circulated to the member bodies in November 1981. (standards.iteh.ai) lt has been approved by the member bodies of the following IcountriesSO 6709 :1: 983 https://standards.iteh.ai/catalog/standards/sist/40603644-5feb-4b20-87de- Belgium France d0a2bddRomaniab21d5/is o-6709-1983 Canada Germany, F.
    [Show full text]
  • Understanding Map Projections
    Understanding Map Projections GIS by ESRI ™ Melita Kennedy and Steve Kopp Copyright © 19942000 Environmental Systems Research Institute, Inc. All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property of Environmental Systems Research Institute, Inc. This work is protected under United States copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, except as expressly permitted in writing by Environmental Systems Research Institute, Inc. All requests should be sent to Attention: Contracts Manager, Environmental Systems Research Institute, Inc., 380 New York Street, Redlands, CA 92373-8100, USA. The information contained in this document is subject to change without notice. U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS Any software, documentation, and/or data delivered hereunder is subject to the terms of the License Agreement. In no event shall the U.S. Government acquire greater than RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in FAR §52.227-14 Alternates I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212 (Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV 1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable. Contractor/Manufacturer is Environmental Systems Research Institute, Inc., 380 New York Street, Redlands, CA 92373- 8100, USA.
    [Show full text]
  • An Efficient Technique for Creating a Continuum of Equal-Area Map Projections
    Cartography and Geographic Information Science ISSN: 1523-0406 (Print) 1545-0465 (Online) Journal homepage: http://www.tandfonline.com/loi/tcag20 An efficient technique for creating a continuum of equal-area map projections Daniel “daan” Strebe To cite this article: Daniel “daan” Strebe (2017): An efficient technique for creating a continuum of equal-area map projections, Cartography and Geographic Information Science, DOI: 10.1080/15230406.2017.1405285 To link to this article: https://doi.org/10.1080/15230406.2017.1405285 View supplementary material Published online: 05 Dec 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tcag20 Download by: [4.14.242.133] Date: 05 December 2017, At: 13:13 CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 2017 https://doi.org/10.1080/15230406.2017.1405285 ARTICLE An efficient technique for creating a continuum of equal-area map projections Daniel “daan” Strebe Mapthematics LLC, Seattle, WA, USA ABSTRACT ARTICLE HISTORY Equivalence (the equal-area property of a map projection) is important to some categories of Received 4 July 2017 maps. However, unlike for conformal projections, completely general techniques have not been Accepted 11 November developed for creating new, computationally reasonable equal-area projections. The literature 2017 describes many specific equal-area projections and a few equal-area projections that are more or KEYWORDS less configurable, but flexibility is still sparse. This work develops a tractable technique for Map projection; dynamic generating a continuum of equal-area projections between two chosen equal-area projections.
    [Show full text]
  • Implications for the Adoption of Global Reference Geodesic System SIRGAS2000 on the Large Scale Cadastral Cartography in Brazil
    Implications for the Adoption of Global Reference Geodesic System SIRGAS2000 on the Large Scale Cadastral Cartography in Brazil Vivian de Oliveira FERNANDES and Ruth Emilia NOGUEIRA, Brazil Key words: SIRGAS2000, SAD69, Global Geodesic System SUMMARY Since 2005 Brazil is going through a singular moment into Cartography. In January 2005, SIRGAS2000 began to be the geodetic official reference system for Geodesy and Cartography, with the concomitant use of SAD69. Since January 2015, only SIRGAS2000 will be official, and all cartographical products will have to be referenced into this Datum. The adoption of a geocentric reference system happens from the technological evolution that has favored an improvement of the Geodetic Reference System – SGR. Differently of a single alternative for the improvement of the SGR, the adoption of a new geocentric reference system is a basic necessity into the world-wide scenery to activities that depend on spatialized information. The technological advancements in the global positioning methods, specially in the satellite positioning systems. This change reaches more quickly the organs that need spatialized information in their infrastructure and planning activities, like town halls and services concessionaires like Telecommunications, Sanitation, Electric Energy among others, which need the real knowledge of the urban space: use and occupation of the soil, subsoil and air space, fiscal and housing technical register, generic plant of values, block plant, register reference plant, municipal master plan, among others that are derived from a cartographical basis of quality. Officially, were adopted these geodetic reference systems in Brazil: Córrego Alegre, Astro Datum Chuá, SAD69, and now SIRGAS2000. For legislation it is in transition for the SIRGAS2000.
    [Show full text]
  • 7 X 11 Long.P65
    Cambridge University Press 978-0-521-74583-3 - Structural Geology: An Introduction to Geometrical Techniques, Fourth Edition Donal M. Ragan Frontmatter More information STRUCTURAL GEOLOGY An Introduction to Geometrical Techniques fourth edition Many textbooks describe information and theories about the Earth without training students to utilize real data to answer basic geological questions. This volume – a combi- nation of text and lab book – presents an entirely different approach to structural geology. Designed for undergraduate laboratory classes, it is dedicated to helping students solve many of the geometrical problems that arise from field observations. The basic approach is to supply step-by-step instructions to guide students through the methods, which include well-established techniques as well as more cutting-edge approaches. Particular emphasis is given to graphical methods and visualization techniques, intended to support students in tackling traditionally challenging two- and three-dimensional problems. Exer- cises at the end of each chapter provide students with practice in using the techniques, and demonstrate how observations and measurements from the field can be converted into useful information about geological structures and the processes responsible for creating them. Building on the success of previous editions, this fourth edition has been brought fully up-to-date and incorporates new material on stress, deformation, strain and flow. Also new to this edition are a chapter on the underlying mathematics and discussions of uncertainties associated with particular types of measurement. With stereonet plots and full solutions to the exercises available online at www.cambridge.org/ragan, this book is a key resource for undergraduate students as well as more advanced students and researchers wanting to improve their practical skills in structural geology.
    [Show full text]
  • Viewing in 3D
    Viewing in 3D Viewing in 3D Foley & Van Dam, Chapter 6 • Transformation Pipeline • Viewing Plane • Viewing Coordinate System • Projections • Orthographic • Perspective OpenGL Transformation Pipeline Viewing Coordinate System Homogeneous coordinates in World System zw world yw ModelViewModelView Matrix Matrix xw Tractor Viewing System Viewer Coordinates System ProjectionProjection Matrix Matrix Clip y Coordinates v Front- xv ClippingClipping Wheel System P0 zv ViewportViewport Transformation Transformation ne pla ing Window Coordinates View Specifying the Viewing Coordinates Specifying the Viewing Coordinates • Viewing Coordinates system, [xv, yv, zv], describes 3D objects with respect to a viewer zw y v P v xv •A viewing plane (projection plane) is set up N P0 zv perpendicular to zv and aligned with (xv,yv) yw xw ne pla ing • In order to specify a viewing plane we have View to specify: •P0=(x0,y0,z0) is the point where a camera is located •a vector N normal to the plane • P is a point to look-at •N=(P-P)/|P -P| is the view-plane normal vector •a viewing-up vector V 0 0 •V=zw is the view up vector, whose projection onto • a point on the viewing plane the view-plane is directed up Viewing Coordinate System Projections V u N z N ; x ; y z u x • Viewing 3D objects on a 2D display requires a v v V u N v v v mapping from 3D to 2D • The transformation M, from world-coordinate into viewing-coordinates is: • A projection is formed by the intersection of certain lines (projectors) with the view plane 1 2 3 ª x v x v x v 0 º ª 1 0 0 x 0 º « » «
    [Show full text]
  • Why Do We Use Latitude and Longitude? What Is the Equator?
    Where in the World? This lesson teaches the concepts of latitude and longitude with relation to the globe. Grades: 4, 5, 6 Disciplines: Geography, Math Before starting the activity, make sure each student has access to a globe or a world map that contains latitude and longitude lines. Why Do We Use Latitude and Longitude? The Earth is divided into degrees of longitude and latitude which helps us measure location and time using a single standard. When used together, longitude and latitude define a specific location through geographical coordinates. These coordinates are what the Global Position System or GPS uses to provide an accurate locational relay. Longitude and latitude lines measure the distance from the Earth's Equator or central axis - running east to west - and the Prime Meridian in Greenwich, England - running north to south. What Is the Equator? The Equator is an imaginary line that runs around the center of the Earth from east to west. It is perpindicular to the Prime Meridan, the 0 degree line running from north to south that passes through Greenwich, England. There are equal distances from the Equator to the north pole, and also from the Equator to the south pole. The line uniformly divides the northern and southern hemispheres of the planet. Because of how the sun is situated above the Equator - it is primarily overhead - locations close to the Equator generally have high temperatures year round. In addition, they experience close to 12 hours of sunlight a day. Then, during the Autumn and Spring Equinoxes the sun is exactly overhead which results in 12-hour days and 12-hour nights.
    [Show full text]
  • Chapter 3 Image Formation
    This is page 44 Printer: Opaque this Chapter 3 Image Formation And since geometry is the right foundation of all painting, I have de- cided to teach its rudiments and principles to all youngsters eager for art... – Albrecht Durer¨ , The Art of Measurement, 1525 This chapter introduces simple mathematical models of the image formation pro- cess. In a broad figurative sense, vision is the inverse problem of image formation: the latter studies how objects give rise to images, while the former attempts to use images to recover a description of objects in space. Therefore, designing vision algorithms requires first developing a suitable model of image formation. Suit- able, in this context, does not necessarily mean physically accurate: the level of abstraction and complexity in modeling image formation must trade off physical constraints and mathematical simplicity in order to result in a manageable model (i.e. one that can be inverted with reasonable effort). Physical models of image formation easily exceed the level of complexity necessary and appropriate for this book, and determining the right model for the problem at hand is a form of engineering art. It comes as no surprise, then, that the study of image formation has for cen- turies been in the domain of artistic reproduction and composition, more so than of mathematics and engineering. Rudimentary understanding of the geometry of image formation, which includes various models for projecting the three- dimensional world onto a plane (e.g., a canvas), is implicit in various forms of visual arts. The roots of formulating the geometry of image formation can be traced back to the work of Euclid in the fourth century B.C.
    [Show full text]
  • Map Projections Paper 4 (Th.) UNIT : I ; TOPIC : 3 …Introduction
    FOR SEMESTER 3 GE Students , Geography Map Projections Paper 4 (Th.) UNIT : I ; TOPIC : 3 …Introduction Prepared and Compiled By Dr. Rajashree Dasgupta Assistant Professor Dept. of Geography Government Girls’ General Degree College 3/23/2020 1 Map Projections … The method by which we transform the earth’s spheroid (real world) to a flat surface (abstraction), either on paper or digitally Define the spatial relationship between locations on earth and their relative locations on a flat map Think about projecting a see- through globe onto a wall Dept. of Geography, GGGDC, 3/23/2020 Kolkata 2 Spatial Reference = Datum + Projection + Coordinate system Two basic locational systems: geometric or Cartesian (x, y, z) and geographic or gravitational (f, l, z) Mean sea level surface or geoid is approximated by an ellipsoid to define an earth datum which gives (f, l) and distance above geoid gives (z) 3/23/2020 Dept. of Geography, GGGDC, Kolkata 3 3/23/2020 Dept. of Geography, GGGDC, Kolkata 4 Classifications of Map Projections Criteria Parameter Classes/ Subclasses Extrinsic Datum Direct / Double/ Spherical Triple Surface Spheroidal Plane or Ist Order 2nd Order 3rd Order surface of I. Planar a. Tangent i. Normal projection II. Conical b. Secant ii. Transverse III. Cylindric c. Polysuperficial iii. Oblique al Method of Perspective Semi-perspective Non- Convention Projection perspective al Intrinsic Properties Azimuthal Equidistant Othomorphic Homologra phic Appearance Both parallels and meridians straight of parallels Parallels straight, meridians curve and Parallels curves, meridians straight meridians Both parallels and meridians curves Parallels concentric circles , meridians radiating st. lines Parallels concentric circles, meridians curves Geometric Rectangular Circular Elliptical Parabolic Shape 3/23/2020 Dept.
    [Show full text]
  • Solis Catherine 202006 MAS Thesis.Pdf
    An Investigation of Display Shapes and Projections for Supporting Spatial Visualization Using a Virtual Overhead Map by Catherine Solis A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Mechanical & Industrial Engineering University of Toronto c Copyright 2020 by Catherine Solis Abstract An Investigation of Display Shapes and Projections for Supporting Spatial Visualization Using a Virtual Overhead Map Catherine Solis Master of Applied Science Graduate Department of Mechanical & Industrial Engineering University of Toronto 2020 A novel map display paradigm named \SkyMap" has been introduced to reduce the cognitive effort associated with using map displays for wayfinding and navigation activities. Proposed benefits include its overhead position, large scale, and alignment with the mapped environment below. This thesis investigates the substantiation of these benefits by comparing a conventional heads-down display to flat and domed SkyMap implementations through a spatial visualization task. A within-subjects study was conducted in a virtual reality simulation of an urban environment, in which participants indicated on a map display the perceived location of a landmark seen in their environment. The results showed that accuracy at this task was greater with a flat SkyMap, and domes with stereographic and equidistant projections, than with a heads-down map. These findings confirm the proposed benefits of SkyMap, yield important design implications, and inform future research. ii Acknowledgements Firstly, I'd like to thank my supervisor Paul Milgram for his patience and guidance over these past two and a half years. I genuinely marvel at his capacity to consistently challenge me to improve as a scholar and yet simultaneously show nothing but the utmost confidence in my abilities.
    [Show full text]
  • 5–21 5.5 Miscellaneous Projections GMT Supports 6 Common
    GMT TECHNICAL REFERENCE & COOKBOOK 5–21 5.5 Miscellaneous Projections GMT supports 6 common projections for global presentation of data or models. These are the Hammer, Mollweide, Winkel Tripel, Robinson, Eckert VI, and Sinusoidal projections. Due to the small scale used for global maps these projections all use the spherical approximation rather than more elaborate elliptical formulae. 5.5.1 Hammer Projection (–Jh or –JH) The equal-area Hammer projection, first presented by Ernst von Hammer in 1892, is also known as Hammer-Aitoff (the Aitoff projection looks similar, but is not equal-area). The border is an ellipse, equator and central meridian are straight lines, while other parallels and meridians are complex curves. The projection is defined by selecting • The central meridian • Scale along equator in inch/degree or 1:xxxxx (–Jh), or map width (–JH) A view of the Pacific ocean using the Dateline as central meridian is accomplished by running the command pscoast -R0/360/-90/90 -JH180/5 -Bg30/g15 -Dc -A10000 -G0 -P -X0.1 -Y0.1 > hammer.ps 5.5.2 Mollweide Projection (–Jw or –JW) This pseudo-cylindrical, equal-area projection was developed by Mollweide in 1805. Parallels are unequally spaced straight lines with the meridians being equally spaced elliptical arcs. The scale is only true along latitudes 40˚ 44' north and south. The projection is used mainly for global maps showing data distributions. It is occasionally referenced under the name homalographic projection. Like the Hammer projection, outlined above, we need to specify only
    [Show full text]