Viewing in 3D

Total Page:16

File Type:pdf, Size:1020Kb

Viewing in 3D Viewing in 3D Viewing in 3D Foley & Van Dam, Chapter 6 • Transformation Pipeline • Viewing Plane • Viewing Coordinate System • Projections • Orthographic • Perspective OpenGL Transformation Pipeline Viewing Coordinate System Homogeneous coordinates in World System zw world yw ModelViewModelView Matrix Matrix xw Tractor Viewing System Viewer Coordinates System ProjectionProjection Matrix Matrix Clip y Coordinates v Front- xv ClippingClipping Wheel System P0 zv ViewportViewport Transformation Transformation ne pla ing Window Coordinates View Specifying the Viewing Coordinates Specifying the Viewing Coordinates • Viewing Coordinates system, [xv, yv, zv], describes 3D objects with respect to a viewer zw y v P v xv •A viewing plane (projection plane) is set up N P0 zv perpendicular to zv and aligned with (xv,yv) yw xw ne pla ing • In order to specify a viewing plane we have View to specify: •P0=(x0,y0,z0) is the point where a camera is located •a vector N normal to the plane • P is a point to look-at •N=(P-P)/|P -P| is the view-plane normal vector •a viewing-up vector V 0 0 •V=zw is the view up vector, whose projection onto • a point on the viewing plane the view-plane is directed up Viewing Coordinate System Projections V u N z N ; x ; y z u x • Viewing 3D objects on a 2D display requires a v v V u N v v v mapping from 3D to 2D • The transformation M, from world-coordinate into viewing-coordinates is: • A projection is formed by the intersection of certain lines (projectors) with the view plane 1 2 3 ª x v x v x v 0 º ª 1 0 0 x 0 º « » « » y 1 y 2 y 3 0 0 1 0 y • Projectors are lines from the center of projection M « v v v » « 0 » R T 1 2 3 « z z z 0 » « 0 0 1 z 0 » « v v v » « » through each point in the object ¬« 0 0 0 1 ¼» ¬ 0 0 0 1 ¼ Center of • Defining the camera in OpenGL: Projection glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt(P0x, P0y, P0z, Px, Py, Pz, Vx, Vy, Vz); Projections Projections • Center of projection at infinity results with a parallel • Parallel projections preserve relative proportions of projection objects, but do not give realistic appearance (commonly used in engineering drawing) • A finite center of projection results with a perspective projection • Perspective projections produce realistic appearance, but do not preserve relative proportions Perspective Projection Parallel Projection Orthographic Projection • Projectors are all parallel Since the viewing plane is aligned with (xv,yv), • Orthographic: Projectors are perpendicular orthographic projection is performed by: to the projection plane ª x p º ª x v º ª 1 0 0 0 º ª x v º « » « » « » « » y p y v 0 1 0 0 y v • Oblique: Projectors are not necessarily « » « » « » « » « 0 » « 0 » « 0 0 0 0 » « z v » perpendicular to the projection plane « » « » « » « » ¬ 1 ¼ ¬ 1 ¼ ¬ 0 0 0 1 ¼ ¬ 1 ¼ Orthographic Oblique (x,y,z) (x,y) yv xv P0 zv Orthographic Projection Oblique Projection • Lengths and angles of faces parallel to the • Projectors are not perpendicular to the viewing planes are preserved viewing plane • Problem: 3D nature of projected objects is • Angles and lengths are preserved for faces parallel to the plane of projection difficult to deduce Top View • Preserves 3D nature of an object w Fr ie on e V t v id yv (x ,y ) iew S p p xv (x,y,z) (x,y) Oblique Projection Oblique Projection •Two types of oblique projections are ª x p º ª 1 0 a cos I 0 º ª x v º ª x v z v a cos I º « » « » « » « » y p 0 1 a sin I 0 y v y v z v a sin I commonly used: « » « » « » « » « 0 » « 0 0 0 0 » « z v » « 0 » – Cavalier: R tan « » « » « » « » D ¬ 1 ¼ ¬ 0 0 0 1 ¼ ¬ 1 ¼ ¬ 1 ¼ – Cabinet: D tan-1 |R y yv v 1/a=tan(D) (x ,y ) (xp,yp) z/b= 1/a p p b=za D D b b x =z a cos( ) p I x a xv a v (x,y,z) I yp=zasin(I) (x,y,z) I (x,y,1) (x,y,1) (x,y) (x,y) Oblique Projection Oblique Projection • Cavalier projection : 1 1 1 1 – Preserves lengths of lines perpendicular 1 1 to the viewing plane I=45o I=30o – 3D nature can be captured but shape seems distorted Cavalier Projections of a cube – Can display a combination of front, side, for two values of angle I and top views • Cabinet projection: 0.5 1 1 0.5 – Lines perpendicular to the viewing plane project 1 1 at 1/2 of their length I=45o I=30o – A more realistic view than the Cavalier projection Cabinet Projections of a cube for two values of angle I – Can display a combination of front, side, and top views Perspective Projection Perspective Projection • In a perspective projection, the center of projection is at a finite distance from the viewing plane • The size of a projected object is inversely proportional to it distance from the viewing plane • Parallel lines that are not parallel to the viewing plane, converge to a vanishing point • A vanishing point is the projection of a point at infinite distance Z-axis y vanishing point x z Vanishing Points Vanishing Points • There are infinitely many general vanishing y points • There can be up to three principal vanishing x points (axis vanishing points) • Perspective projections are categorized by z the number of principal vanishing points, equal One point (z axis) perspective projection to the number of principal axes intersected by x axis z axis the viewing plane vanishing point vanishing point • Most commonly used: one-point and two- points perspective Two points perspective projection Perspective Projection Perspective Projection Thus, a perspective projection matrix is defined as: (x,y,z) (x ,y ,0) p p ª 1 0 0 0 º « 0 1 0 0 » y « » d M center of x per « 0 0 0 0 » « 1 » projection x (x,y,z) « 0 0 1 » ¬ d ¼ z xp d z ª 1 0 0 0 º ª x º ª x º « 0 1 0 0 » « » « y » « » y « » • Using similar triangles it follows: M P « » per « 0 0 0 0 » « z » « 0 » « 1 » « » « z d » x p x y p y « 0 0 1 » 1 « » ; ¬ d ¼ ¬ ¼ ¬ d ¼ d z d d z d d x d y d x d y x ; y ; z 0 x p ; y p ; z p 0 p p p z d z d z d z d Perspective Projection Projections What is the difference between moving the center of •M is singular (|M |=0), thus M is a many to per per per projection and moving the projection plane? one mapping (for example: M P=M 2P) per per Original • Points on the viewing plane (z=0) do not change Center of Projection z • The homogeneous coordinates of a point at infinity Projection plane Moving the Center of Projection directed to (Ux,Uy,Uz) are (Ux,Uy,Uz,0). Thus, The vanishing point of parallel lines directed to (Ux,Uy,Uz) is at [dUx/Uz, dUy/Uz] Center of Projection z Projection plane Moving the Projection Plane • When dof, Mper oMort Center of Projection z Projection plane Projections Planar geometric projections Parallel Perspective Oblique Orthographic One point Front Top Two point Cavalier Side Other Cabinet Other Three point.
Recommended publications
  • CS 543: Computer Graphics Lecture 7 (Part I): Projection Emmanuel
    CS 543: Computer Graphics Lecture 7 (Part I): Projection Emmanuel Agu 3D Viewing and View Volume n Recall: 3D viewing set up Projection Transformation n View volume can have different shapes (different looks) n Different types of projection: parallel, perspective, orthographic, etc n Important to control n Projection type: perspective or orthographic, etc. n Field of view and image aspect ratio n Near and far clipping planes Perspective Projection n Similar to real world n Characterized by object foreshortening n Objects appear larger if they are closer to camera n Need: n Projection center n Projection plane n Projection: Connecting the object to the projection center camera projection plane Projection? Projectors Object in 3 space Projected image VRP COP Orthographic Projection n No foreshortening effect – distance from camera does not matter n The projection center is at infinite n Projection calculation – just drop z coordinates Field of View n Determine how much of the world is taken into the picture n Larger field of view = smaller object projection size center of projection field of view (view angle) y y z q z x Near and Far Clipping Planes n Only objects between near and far planes are drawn n Near plane + far plane + field of view = Viewing Frustum Near plane Far plane y z x Viewing Frustrum n 3D counterpart of 2D world clip window n Objects outside the frustum are clipped Near plane Far plane y z x Viewing Frustum Projection Transformation n In OpenGL: n Set the matrix mode to GL_PROJECTION n Perspective projection: use • gluPerspective(fovy,
    [Show full text]
  • An Analytical Introduction to Descriptive Geometry
    An analytical introduction to Descriptive Geometry Adrian B. Biran, Technion { Faculty of Mechanical Engineering Ruben Lopez-Pulido, CEHINAV, Polytechnic University of Madrid, Model Basin, and Spanish Association of Naval Architects Avraham Banai Technion { Faculty of Mathematics Prepared for Elsevier (Butterworth-Heinemann), Oxford, UK Samples - August 2005 Contents Preface x 1 Geometric constructions 1 1.1 Introduction . 2 1.2 Drawing instruments . 2 1.3 A few geometric constructions . 2 1.3.1 Drawing parallels . 2 1.3.2 Dividing a segment into two . 2 1.3.3 Bisecting an angle . 2 1.3.4 Raising a perpendicular on a given segment . 2 1.3.5 Drawing a triangle given its three sides . 2 1.4 The intersection of two lines . 2 1.4.1 Introduction . 2 1.4.2 Examples from practice . 2 1.4.3 Situations to avoid . 2 1.5 Manual drawing and computer-aided drawing . 2 i ii CONTENTS 1.6 Exercises . 2 Notations 1 2 Introduction 3 2.1 How we see an object . 3 2.2 Central projection . 4 2.2.1 De¯nition . 4 2.2.2 Properties . 5 2.2.3 Vanishing points . 17 2.2.4 Conclusions . 20 2.3 Parallel projection . 23 2.3.1 De¯nition . 23 2.3.2 A few properties . 24 2.3.3 The concept of scale . 25 2.4 Orthographic projection . 27 2.4.1 De¯nition . 27 2.4.2 The projection of a right angle . 28 2.5 The two-sheet method of Monge . 36 2.6 Summary . 39 2.7 Examples . 43 2.8 Exercises .
    [Show full text]
  • Implementation of Projections
    CS488 Implementation of projections Luc RENAMBOT 1 3D Graphics • Convert a set of polygons in a 3D world into an image on a 2D screen • After theoretical view • Implementation 2 Transformations P(X,Y,Z) 3D Object Coordinates Modeling Transformation 3D World Coordinates Viewing Transformation 3D Camera Coordinates Projection Transformation 2D Screen Coordinates Window-to-Viewport Transformation 2D Image Coordinates P’(X’,Y’) 3 3D Rendering Pipeline 3D Geometric Primitives Modeling Transform into 3D world coordinate system Transformation Lighting Illuminate according to lighting and reflectance Viewing Transform into 3D camera coordinate system Transformation Projection Transform into 2D camera coordinate system Transformation Clipping Clip primitives outside camera’s view Scan Draw pixels (including texturing, hidden surface, etc.) Conversion Image 4 Orthographic Projection 5 Perspective Projection B F 6 Viewing Reference Coordinate system 7 Projection Reference Point Projection Reference Point (PRP) Center of Window (CW) View Reference Point (VRP) View-Plane Normal (VPN) 8 Implementation • Lots of Matrices • Orthographic matrix • Perspective matrix • 3D World → Normalize to the canonical view volume → Clip against canonical view volume → Project onto projection plane → Translate into viewport 9 Canonical View Volumes • Used because easy to clip against and calculate intersections • Strategies: convert view volumes into “easy” canonical view volumes • Transformations called Npar and Nper 10 Parallel Canonical Volume X or Y Defined by 6 planes
    [Show full text]
  • Squaring the Circle in Panoramas
    Squaring the Circle in Panoramas Lihi Zelnik-Manor1 Gabriele Peters2 Pietro Perona1 1. Department of Electrical Engineering 2. Informatik VII (Graphische Systeme) California Institute of Technology Universitat Dortmund Pasadena, CA 91125, USA Dortmund, Germany http://www.vision.caltech.edu/lihi/SquarePanorama.html Abstract and conveying the vivid visual impression of large panora- mas. Such mosaics are superior to panoramic pictures taken Pictures taken by a rotating camera cover the viewing with conventional fish-eye lenses in many respects: they sphere surrounding the center of rotation. Having a set of may span wider fields of view, they have unlimited reso- images registered and blended on the sphere what is left to lution, they make use of cheaper optics and they are not be done, in order to obtain a flat panorama, is projecting restricted to the projection geometry imposed by the lens. the spherical image onto a picture plane. This step is unfor- The geometry of single view point panoramas has long tunately not obvious – the surface of the sphere may not be been well understood [12, 21]. This has been used for mo- flattened onto a page without some form of distortion. The saicing of video sequences (e.g., [13, 20]) as well as for ob- objective of this paper is discussing the difficulties and op- taining super-resolution images (e.g., [6, 23]). By contrast portunities that are connected to the projection from view- when the point of view changes the mosaic is ‘impossible’ ing sphere to image plane. We first explore a number of al- unless the structure of the scene is very special.
    [Show full text]
  • EX NIHILO – Dahlgren 1
    EX NIHILO – Dahlgren 1 EX NIHILO: A STUDY OF CREATIVITY AND INTERDISCIPLINARY THOUGHT-SYMMETRY IN THE ARTS AND SCIENCES By DAVID F. DAHLGREN Integrated Studies Project submitted to Dr. Patricia Hughes-Fuller in partial fulfillment of the requirements for the degree of Master of Arts – Integrated Studies Athabasca, Alberta August, 2008 EX NIHILO – Dahlgren 2 Waterfall by M. C. Escher EX NIHILO – Dahlgren 3 Contents Page LIST OF ILLUSTRATIONS 4 INTRODUCTION 6 FORMS OF SIMILARITY 8 Surface Connections 9 Mechanistic or Syntagmatic Structure 9 Organic or Paradigmatic Structure 12 Melding Mechanical and Organic Structure 14 FORMS OF FEELING 16 Generative Idea 16 Traits 16 Background Control 17 Simulacrum Effect and Aura 18 The Science of Creativity 19 FORMS OF ART IN SCIENTIFIC THOUGHT 21 Interdisciplinary Concept Similarities 21 Concept Glossary 23 Art as an Aid to Communicating Concepts 27 Interdisciplinary Concept Translation 30 Literature to Science 30 Music to Science 33 Art to Science 35 Reversing the Process 38 Thought Energy 39 FORMS OF THOUGHT ENERGY 41 Zero Point Energy 41 Schools of Fish – Flocks of Birds 41 Encapsulating Aura in Language 42 Encapsulating Aura in Art Forms 50 FORMS OF INNER SPACE 53 Shapes of Sound 53 Soundscapes 54 Musical Topography 57 Drawing Inner Space 58 Exploring Inner Space 66 SUMMARY 70 REFERENCES 71 APPENDICES 78 EX NIHILO – Dahlgren 4 LIST OF ILLUSTRATIONS Page Fig. 1 - Hofstadter’s Lettering 8 Fig. 2 - Stravinsky by Picasso 9 Fig. 3 - Symphony No. 40 in G minor by Mozart 10 Fig. 4 - Bird Pattern – Alhambra palace 10 Fig. 5 - A Tree Graph of the Creative Process 11 Fig.
    [Show full text]
  • CS 4204 Computer Graphics 3D Views and Projection
    CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: * Topic we’ve already discussed • *Define object in local coordinates • *Place object in world coordinates (modeling transformation) Viewing: • Define camera parameters • Find object location in camera coordinates (viewing transformation) Projection: project object to the viewplane Clipping: clip object to the view volume *Viewport transformation *Rasterization: rasterize object Simple teapot demo 3D rendering pipeline Vertices as input Series of operations/transformations to obtain 2D vertices in screen coordinates These can then be rasterized 3D rendering pipeline We’ve already discussed: • Viewport transformation • 3D modeling transformations We’ll talk about remaining topics in reverse order: • 3D clipping (simple extension of 2D clipping) • 3D projection • 3D viewing Clipping: 3D Cohen-Sutherland Use 6-bit outcodes When needed, clip line segment against planes Viewing and Projection Camera Analogy: 1. Set up your tripod and point the camera at the scene (viewing transformation). 2. Arrange the scene to be photographed into the desired composition (modeling transformation). 3. Choose a camera lens or adjust the zoom (projection transformation). 4. Determine how large you want the final photograph to be - for example, you might want it enlarged (viewport transformation). Projection transformations Introduction to Projection Transformations Mapping: f : Rn Rm Projection: n > m Planar Projection: Projection on a plane.
    [Show full text]
  • Perspective Projection
    Transform 3D objects on to a 2D plane using projections 2 types of projections Perspective Parallel In parallel projection, coordinate positions are transformed to the view plane along parallel lines. In perspective projection, object position are transformed to the view plane along lines that converge to a point called projection reference point (center of projection) 2 Perspective Projection 3 Parallel Projection 4 PROJECTIONS PARALLEL PERSPECTIVE (parallel projectors) (converging projectors) One point Oblique Orthographic (one principal (projectors perpendicular (projectors not perpendicular to vanishing point) to view plane) view plane) Two point General (Two principal Multiview Axonometric vanishing point) (view plane parallel (view plane not parallel to Cavalier principal planes) to principal planes) Three point (Three principal Cabinet vanishing point) Isometric Dimetric Trimetric 5 Perspective v Parallel • Perspective: – visual effect is similar to human visual system... – has 'perspective foreshortening' • size of object varies inversely with distance from the center of projection. Projection of a distant object are smaller than the projection of objects of the same size that are closer to the projection plane. • Parallel: It preserves relative proportion of object. – less realistic view because of no foreshortening – however, parallel lines remain parallel. 6 Perspective Projections • Characteristics: • Center of Projection (CP) is a finite distance from object • Projectors are rays (i.e., non-parallel) • Vanishing points • Objects appear smaller as distance from CP (eye of observer) increases • Difficult to determine exact size and shape of object • Most realistic, difficult to execute 7 • When a 3D object is projected onto view plane using perspective transformation equations, any set of parallel lines in the object that are not parallel to the projection plane, converge at a vanishing point.
    [Show full text]
  • Map Projections
    Map Projections Chapter 4 Map Projections What is map projection? Why are map projections drawn? What are the different types of projections? Which projection is most suitably used for which area? In this chapter, we will seek the answers of such essential questions. MAP PROJECTION Map projection is the method of transferring the graticule of latitude and longitude on a plane surface. It can also be defined as the transformation of spherical network of parallels and meridians on a plane surface. As you know that, the earth on which we live in is not flat. It is geoid in shape like a sphere. A globe is the best model of the earth. Due to this property of the globe, the shape and sizes of the continents and oceans are accurately shown on it. It also shows the directions and distances very accurately. The globe is divided into various segments by the lines of latitude and longitude. The horizontal lines represent the parallels of latitude and the vertical lines represent the meridians of the longitude. The network of parallels and meridians is called graticule. This network facilitates drawing of maps. Drawing of the graticule on a flat surface is called projection. But a globe has many limitations. It is expensive. It can neither be carried everywhere easily nor can a minor detail be shown on it. Besides, on the globe the meridians are semi-circles and the parallels 35 are circles. When they are transferred on a plane surface, they become intersecting straight lines or curved lines. 2021-22 Practical Work in Geography NEED FOR MAP PROJECTION The need for a map projection mainly arises to have a detailed study of a 36 region, which is not possible to do from a globe.
    [Show full text]
  • 189 09 Aju 03 Bryon 8/1/10 07:25 Página 31
    189_09 aju 03 Bryon 8/1/10 07:25 Página 31 Measuring the qualities of Choisy’s oblique and axonometric projections Hilary Bryon Auguste Choisy is renowned for his «axonometric» representations, particularly those illustrating his Histoire de l’architecture (1899). Yet, «axonometric» is a misnomer if uniformly applied to describe Choisy’s pictorial parallel projections. The nomenclature of parallel projection is often ambiguous and confusing. Yet, the actual history of parallel projection reveals a drawing system delineated by oblique and axonometric projections which relate to inherent spatial differences. By clarifying the intrinsic demarcations between these two forms of parallel pro- jection, one can discern that Choisy not only used the two spatial classes of pictor- ial parallel projection, the oblique and the orthographic axonometric, but in fact manipulated their inherent differences to communicate his theory of architecture. Parallel projection is a form of pictorial representation in which the projectors are parallel. Unlike perspective projection, in which the projectors meet at a fixed point in space, parallel projectors are said to meet at infinity. Oblique and axonometric projections are differentiated by the directions of their parallel pro- jectors. Oblique projection is delineated by projectors oblique to the plane of pro- jection, whereas the orthographic axonometric projection is defined by projectors perpendicular to the plane of projection. Axonometric projection is differentiated relative to its angles of rotation to the picture plane. When all three axes are ro- tated so that each is equally inclined to the plane of projection, the axonometric projection is isometric; all three axes are foreshortened and scaled equally.
    [Show full text]
  • Shortcuts Guide
    Shortcuts Guide One Key Shortcuts Toggles and Screen Management Hot Keys A–Z Printable Keyboard Stickers ONE KEY SHORTCUTS [SEE PRINTABLE KEYBOARD STICKERS ON PAGE 11] mode mode mode mode Help text screen object 3DOsnap Isoplane Dynamic UCS grid ortho snap polar object dynamic mode mode Display Toggle Toggle snap Toggle Toggle Toggle Toggle Toggle Toggle Toggle Toggle snap tracking Toggle input PrtScn ScrLK Pause Esc F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 SysRq Break ~ ! @ # $ % ^ & * ( ) — + Backspace Home End ` 1 2 3 4 5 6 7 8 9 0 - = { } | Tab Q W E R T Y U I O P Insert Page QSAVE WBLOCK ERASE REDRAW MTEXT INSERT OFFSET PAN [ ] \ Up : “ Caps Lock A S D F G H J K L Enter Delete Page ARC STRETCH DIMSTYLE FILLET GROUP HATCH JOIN LINE ; ‘ Down < > ? Shift Z X C V B N M Shift ZOOM EXPLODE CIRCLE VIEW BLOCK MOVE , . / Ctrl Start Alt Alt Ctrl Q QSAVE / Saves the current drawing. C CIRCLE / Creates a circle. H HATCH / Fills an enclosed area or selected objects with a hatch pattern, solid fill, or A ARC / Creates an arc. R REDRAW / Refreshes the display gradient fill. in the current viewport. Z ZOOM / Increases or decreases the J JOIN / Joins similar objects to form magnification of the view in the F FILLET / Rounds and fillets the edges a single, unbroken object. current viewport. of objects. M MOVE / Moves objects a specified W WBLOCK / Writes objects or V VIEW / Saves and restores named distance in a specified direction. a block to a new drawing file.
    [Show full text]
  • Visual Impairment and Deafblind Education Quarterly Volume 61
    Visual Impairment and Deafblind Education Quarterly 2016 Convention Issue Volume 61 Number 2 2016 ; Lorem Ipsum Dolor Spring 2016 This is a publication of the Council for Exceptional Children’s Division on Visual Impairments and DeafBlindness (CEC- DVIDB). Advertisements included in this issue are not endorsements of products or services, and individual views of authors are not necessarily the official position of CEC and/or DVIDB. Cover Photo Cover photo is of the St. Louis arch. St. Louis, Missouri was the home of CEC’s 2016 International Convention. Photograph courtesy of Stephanie Barrows. 2 2 ; Lorem Ipsum Dolor Spring 2016 Volume 61, Number 21 Page 6 Message from the Editor 8 President’s Message 14 Virgina M. Sowell Award: Jessica Kolvites 16 Dissertation of the Year Award: Dr. Ellen Bowman 19 Teacher of the Year Award: Rachel Schles 23 Exemplary Advocate Award: Teresa Lacy 26 Distinguished Service Award: Dr. Alana Zambone 30 Including Students Who Are Blind or Have Low Vision in English Language Proficiency Assessments 35 Early Intervention and Visual Impairments: A Prepared Workforce 53 Introducing the iBraille Challenge! 3 3 ; Lorem Ipsum Dolor Spring 2016 Volume 61, Number 2 Page 60 Mathematics Instruction for Students with Visual Impairments: What is there and where can we go 70 Peer Assisted Learning Strategies to Improve Reading Fluency and Socialization Among Students Who Are Blind and Visually Impaired 77 University and School for the Deaf and Blind Parternship Experience 79 The Expanded Core Curriculum: What We Learned at the Florida School for the Deaf and Blind 85 Experience of a Lifetime for an Undergraduate Student 92 Missouri School for the Blind 107 DVIDB Professional Standards Committee Report 4 4 ; Lorem Ipsum Dolor Spring 2016 Volume 61, Number 2 Page 109 Ad Hoc Committee on DVIDB Position Paper 116 The Expanded Core Curriculum 137 CEC Membership Application 5 5 ; Lorem Ipsum Dolor Spring 2016 Kathleen Farrand, Ph.D.
    [Show full text]
  • Anamorphosis: Optical Games with Perspective’S Playful Parent
    Anamorphosis: Optical games with Perspective's Playful Parent Ant´onioAra´ujo∗ Abstract We explore conical anamorphosis in several variations and discuss its various constructions, both physical and diagrammatic. While exploring its playful aspect as a form of optical illusion, we argue against the prevalent perception of anamorphosis as a mere amusing derivative of perspective and defend the exact opposite view|that perspective is the derived concept, consisting of plane anamorphosis under arbitrary limitations and ad-hoc alterations. We show how to define vanishing points in the context of anamorphosis in a way that is valid for all anamorphs of the same set. We make brief observations regarding curvilinear perspectives, binocular anamorphoses, and color anamorphoses. Keywords: conical anamorphosis, optical illusion, perspective, curvilinear perspective, cyclorama, panorama, D¨urermachine, color anamorphosis. Introduction It is a common fallacy to assume that something playful is surely shallow. Conversely, a lack of playfulness is often taken for depth. Consider the split between the common views on anamorphosis and perspective: perspective gets all the serious gigs; it's taught at school, works at the architect's firm. What does anamorphosis do? It plays parlour tricks! What a joker! It even has a rather awkward dictionary definition: Anamorphosis: A distorted projection or drawing which appears normal when viewed from a particular point or with a suitable mirror or lens. (Oxford English Dictionary) ∗This work was supported by FCT - Funda¸c~aopara a Ci^enciae a Tecnologia, projects UID/MAT/04561/2013, UID/Multi/04019/2013. Proceedings of Recreational Mathematics Colloquium v - G4G (Europe), pp. 71{86 72 Anamorphosis: Optical games.
    [Show full text]